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1. Introduction

The aim of this paper is to establish a quantum probabilistic counterpart to the well-
known Trotter product formula for one-parameter unitary groups and contraction
semigroups [25] and its forerunner, the Lie product formula for one-parameter sub-
groups of Lie groups (see [4, 21, 22]). Some years ago K. R. Parthasarathy and
the second-named author obtained a stochastic Trotter product formula for unitary-
operator valued evolutions constituted from independent increments of indepen-
denta classical Brownian motions [18]. This predated the founding of quantum
stochastic calculus by Hudson and Parthasarathy [8]. In this paper Brownian incre-
ments are replaced by the fundamental quantum martingales, namely the creation,
preservation and annihilation processes of quantum stochastic calculus [2, 6, 9,
15, 17, 23], and we prove a Lie-Trotter type product formula for unitary quantum
stochastic processes on a Hilbert space which satisfy a quantum stochastic differ-
ential equation with constant bounded coefficients. The case of quantum stochastic
differential equations with unbounded coefficients, and more general kinds of quan-
tum stochastic cocycle on operator spaces and C∗-algebras, will be addressed in the
forthcoming paper [11].
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2. Unitary Quantum Stochastic Cocycles

In this section we fix our notations and recall the essential facts about quantum
stochastic differential equations and unitary quantum stochastic cocycles that we
need here.

Let k be a complex Hilbert space, with fixed countable orthonormal basis,
which we refer to as the noise dimension space. Write Fk for the symmetric Fock
space over the Hilbert space K := L2(R+; k) and �(f) for the normalised expo-
nential vector exp(−‖f‖2/2) ε(f), f ∈ K. When R+ is replaced by [s, t[, we write
K[s,t[ and Fk,[s,t[ instead; the continuous tensor decomposition

Fk = Fk,[0,s[ ⊗Fk,[s,t[ ⊗Fk,[t,∞[,

corresponding to the direct sum decomposition K = K[0,s[ ⊕ K[s,t[ ⊕ K[t,∞[, is in
constant use below. For a start, a bounded quantum stochastic process on an initial
Hilbert space h with noise dimension space k is a family of operators (Xt)t≥0 on
h ⊗Fk satisfying the adaptedness condition

Xt ∈ B(h ⊗Fk,[0,t[)⊗ IFk,[t,∞[ = B(h)⊗B(Fk,[0,t[)⊗ IFk,[t,∞[ , (2.1)

for all t ∈ R+. For f ∈ K, f[s,t[ denotes the function equal to f on [s, t[ and
zero elsewhere; c[s,t[ is defined similarly, for c ∈ k. Let Sk and S′

k denote the
subspaces of K consisting of step functions, respectively step functions which have
their discontinuities in the dyadic set D := {j2−n : j, n ∈ Z+}, and let Ek and
E ′

k be the (dense) subspaces Lin{ε(f) : f ∈ Sk} and Lin{ε(f) : f ∈ S′
k} of

Fk. For evaluation purposes, we always take the right-continuous versions of step
functions. The order of a function f ∈ S′

k is the least nonnegative integer N such
that f is constant on all intervals of the form [j2−N , (j + 1)2−N [ for j ∈ Z+.

The time-shift semigroup (Θk
t )t≥0 of unital *-monomorphisms of B(Fk) is de-

fined by

Θk
t (X) = IFk,[0,t[

⊗ Γ(θk
t )XΓ(θ

k
t )

∗, t ∈ R+, X ∈ B(Fk),

where Γ(θk
t ) : Fk → Fk,[t,∞[ is the unitary (second quantisation) operator deter-

mined by

Γ(θk
t )�(f) = �(θk

t f) where (θ
k
t f)(s) = f(s − t) for s ∈ [t,∞[.

Let {Λμ
ν : μ, ν ≥ 0} denote the fundamental quantum semimartingales for

the noise dimension space k, with respect to its fixed orthonormal basis. Then the
quantum stochastic (QS) integral equation

Ut = Ih⊗Fk
+

∫ t

0
UsF

μ
ν Λ

ν
μ(ds) (2.2)

(where summation over the repeated greek indices is understood), has a unique
strongly continuous solution, consisting of unitary operators on h ⊗ Fk, provided
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that the matrix of bounded operators [Fμ
ν ] on the initial space h satisfies the follow-

ing structural relations [8]. It must have the block matrix structure[
K [Mk]
[Lj ] [W j

k − δj
k]

]
.

of an operator F ∈ B(h ⊕ (h ⊗ k)), where [Lj ] is the block column matrix
of an arbitrary operator L ∈ B(h; h ⊗ k), [W j

k ] is the block matrix form of a
unitary operator W ∈ B(h ⊗ k), [Mk] is the block row matrix of the operator

M = −L∗W ∈ B(h ⊗ k; h), and K = iH − 1
2
L∗L for a selfadjoint operator

H ∈ B(h), so that

Mk = −
∑
j≥1

(Lj)∗W j
k , k ≥ 0, andK = iH − 1

2

∑
j≥1

(Lj)∗Lj .

These structure relations may equivalently be expressed by the following two
identities, for all v = (vμ)μ≥0 in h ⊕ (h ⊗ k) =

⊕
μ≥0 h:

∑
μ,ν≥0

〈vμ, ((F ν
μ )

∗ + Fμ
ν +

∑
j≥1
(F j

μ)
∗F j

ν

)
vν〉 = 0, (2.3a)

∑
μ,ν≥0

〈vμ,
(
(F ν

μ )
∗ + Fμ

ν +
∑

j≥1
Fμ

j (F
ν
j )

∗ )
vν〉 = 0; (2.3b)

the first corresponds to isometry and the second to coisometry.
A contractive quantum stochastic process (Ut)t≥0 satisfying

Us+t = UsΘs(Ut), U0 = Ih⊗F , s, t ≥ 0, (2.4)

where
(
Θt := idB(h)⊗Θk

t

)
t≥0

, is called a quantum stochastic contraction cocycle.
If (Ut)t≥0 is a QS contraction cocycle then the operators on h defined by

〈u, Ptv〉 = 〈u ⊗ �(0), Ut v ⊗ �(0)〉 u, v ∈ h, t ∈ R+,

define a contraction semigroup (Pt)t≥0 on h known as the (vacuum) expectation
semigroup of the cocycle, and the cocycle (Ut)t≥0 is called Markov-regular if its
expectation semigroup is norm-continuous.

Theorem 2.1. [12] Let (Ut)t≥0 be a unitary quantum stochastic process on h with
noise dimension space k. Then the following are equivalent:

1. (Ut)t≥0 satisfies (2.2), for a matrix of bounded operators [Fμ
ν ];

2. (Ut)t≥0 is a Markov-regular quantum stochastic cocycle.

The implication (i) ⇒ (ii) follows from the form that solutions of such QS dif-
ferential equations take, by virtue of the time-homogeneity of the quantum noises:

IFk,[0,t[
⊗ Γ(θk

t )Λ
μ
ν [a, b]Γ(θk

t )
∗ = Λμ

ν [a+ t, b+ t],
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and the time-independence of the coefficients of the QS differential equation.
The converse implication (ii) ⇒ (i) may be deduced from the Quantum Martin-

gale Representation Theorem [19] applied to the regular quantum martingale(
Ut −

∫ t

0
UsK ds

)
t≥0

in which the operator K is the generator of the expectation semigroup of (Ut)t≥0

(see [7]). However the more powerful method of proof in [12] goes via the follow-
ing intermediate characterisation which is of considerable use itself, as we shall see
below:

(iii) there are semigroups {(P c,d)t≥0 : c, d ∈ k} such that, for all f, g ∈ S′
k and

t ∈ R+,

〈u⊗�(f[0,t[), Vt v⊗�(g[0,t[)〉 = 〈u, P
f(t0),g(t0)
t1−t0

· · · P
f(tm),g(tm)
tm+1−tm v〉, (2.5)

where t0 = 0, tm+1 = t and {t1 < · · · < tm} ⊂ D is the (possibly empty)
union of the sets of discontinuity of f and g in the open interval ]0, t[.

Remarks : The matrix of bounded operators [Fμ
ν ] necessarily satisfies the structural

relations required for unitarity (2.3).
The identity (2.5) is known as the semigroup decomposition and the collection

{(P c,d
t )t≥0 : c, d ∈ k} as the associated semigroups of the cocycle. Clearly the

associated semigroups are determined by

〈u, P c,d
t v〉 = 〈u ⊗ �(c[0,t[), Ut v ⊗ �(d[0,t[)〉, u, v ∈ h, (2.6)

and (P 0,0)t≥0 is the expectation semigroup of the cocycle.
In fact, each associated semigroup (P c,d)t≥0 is itself the expectation semigroup

of another unitary QS cocycle, namely the cocycle(
U c,d

t := (Ih ⊗ W c
t )

∗ Ut(Ih ⊗ W d
t )

)
t≥0

,

where the Weyl cocycles are defined by

W c
t �(f) = e−iIm〈c[0,t[,f〉�(f + c[0,t[), f ∈ Sk, c ∈ k, t ∈ R+.

Markov-regularity for a QS contraction cocycle actually implies that all of its
associated semigroups are norm-continuous. In fact, in terms of the block matrix
form of [Fμ

ν ], the semigroup (P c,d)t≥0 has bounded generator

Gc,d := K + Lc +Md +W c
d − 1

2
(||c||2 + ||d||2)Ih, (2.7)

where, in terms of basis expansions of c and d, the operators here are defined as
follows:

Lc =
∑
j≥1

cjLj , Md =
∑
k≥1

dkMk andW c
d =

∑
j,k≥1

cjdkW j
k ,
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the convergence here being in the strong operator topology (see [13]).
Given a unitary QS cocycle (Ut)t≥0, the family (Us,t := Θs(U(t−s)))0≤s≤t is

a time-homogeneous adapted unitary evolution, that is: for all a ≥ 0 and 0 ≤ r ≤
s ≤ t:

1. Us+a,t+a = Θa(Us,t);

2. Us,t ∈ B(h)⊗ IFk,[0,t[
⊗B(Fk,[s,t[)⊗ IFk,[t,∞[

;

3. Ur,t = Ur,s Us,t.

Conversely, if (Us,t)0≤s≤t is such an evolution then (Ut := U0,t)t≥0 defines a
unitary QS cocycle, and it is easily seen that the passages between QS cocycle and
adapted time-homogeneous evolution are mutually inverse.

The corresponding QS integral equation satisfied by (Us,t)0≤s≤t is

Ur,t = Ih⊗Fk
+

∫ t

r
Ur,sF

μ
ν Λ

ν
μ(ds).

Adapted evolutions that are not time-homogeneous arise as solutions of QS
differential equations with time-dependent coefficients [Fμ

ν ].

3. Trotter Product of Quantum Stochastic Cocycles

Let (U1
t )t≥0 and (U2

t )t≥0 be two unitary QS cocycles on the same initial space h,
with noise dimension spaces k1 and k2 having fixed countable orthonormal bases.
Suppose that they are both Markov-regular, equivalently that they satisfy QS dif-
ferential equations

dU l
t = U l

s
(l)Fμl

νl
Λνl

μl
(dt), U l

0 = Ih⊗F(l) , (3.1)

l = 1, 2, for matrices of bounded operators [(1)Fμ1
ν1 ] and [(2)Fμ2

ν2 ] satisfying the
structural relations which guarantee unitarity of the processes. Here F (1) and F (2)

denote the Fock spaces Fk1 and Fk2 respectively.
Our aim is to obtain a unitary cocycle (Ut)t≥0 as a Lie-Trotter type product of

the cocycles (U1
t )t≥0 and (U2

t )t≥0, in the same spirit as that of [18]. To this end let
k be the noise dimension space k1 ⊕ k2, set F = Fk, and, by ‘concatenating’ the
orthonormal bases for k1 and k2 to form an orthonormal basis of k, let [Fμ

ν ] be the
matrix of bounded operators on h having block matrix form

[
K [Mk]
[Lj ] [W j

k − δj
kIh]

]
=

⎡
⎣(1)K + (2)K (1)M (2)M

(1)L (1)W − (1)I 0
(2)L 0 (2)W − (2)I

⎤
⎦ . (3.2)

Here (l)I := Ih⊗kl and

[(l)Fμl
νl
] =

[
(l)K [(l)Mkl

]
[(l)Ljl ] [(l)W jl

kl
− δjl

kl
Ih]

]
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is the block matrix decomposition of (l)F , in which

(l)K = iHl − 1
2

∑
jl≥1

((l)Ljl)∗ (l)Ljl and (Hl)∗ = Hl,

for l = 1, 2. (We are slightly cheating in terms of indices since if the noise di-
mension space k1 is infinite dimensional then we cannot exactly count 1, 2, · · · ,
dim k1, dim k1 + 1, · · · . However all is justified by a proper indexing, or alterna-
tively by working coordinate-free as in [11]) Thus, setting H = H1 +H2,

K = iH − 1
2

∑
j≥1

(Lj)∗Lj

= iH1 + iH2 − 1
2

∑
j1≥1

((1)Lj1)∗((1)Lj1)− 1
2

∑
j2≥1

((2)Lj2)∗((2)Lj2), and

[Mk] =
[
− (1)L∗ (1)W − (2)L∗ (2)W

]
=

⎡
⎣−∑

j≥1

(Lj)∗W j
k

⎤
⎦ .

Thus [Fμ
ν ] satisfies the structure relations (2.3) for unitarity of the solution of

the QS differential equation (2.2) to be unitary.

For cl, dl ∈ kl let ((l)P cl,dl

t )t≥0 denote the corresponding associated semigroup
of the cocycle (U l

t)t≥0 (l = 1, 2). For each n ∈ N define a unitary process

(U (1,2)
n (t))t≥0 as follows:

U (1,2)
n (t) :=

(
U

(1,2)
0,2−nU

(1,2)
2−n,2·2−n · · ·U (1,2)

tn−1,tn0

)
U

(1,2)
tn0 ,t , t ∈ R+,

where, with [ · ] denoting the integer part,

tnk := 2
−n

(
[2nt] + k

)
for k ∈ Z, � ≥ −[��≈], (3.3)

and, lettingΣ2,1 denote the tensor flip B(h⊗F (2)⊗F (1))→ B(h⊗F (1)⊗F (2)) =
B(h ⊗F),

U
(1,2)
s,t := Θs(U

(1,2)
t−s ), 0 ≤ s ≤ t, (3.4)

where
U

(1,2)
t :=

(
U1

t ⊗ I(2)
)
Σ2,1

(
U2

t ⊗ I(1)
)
, t ∈ R+.

Here I(l) is the identity operator on F (l) (l = 1, 2), and we are using the natural
isometric isomorphism F (1) ⊗ F (2) = F . Also define a family of contractions on
h by

〈u, (1,2)P c,d
t v〉 = 〈u ⊗ �(c[0,t[), U

(1,2)
t v ⊗ �(d[0,t[)〉, u, v ∈ h,

for c, d ∈ k and t ∈ R+ (cf. (2.6)).
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Remarks : For each t ∈ R+, n ∈ N and k as in (3.3),

tn0 ≤ tn+1
0 ≤ t < tn+1

1 < tn1 and |tnk+1 − tnk | = 2−n.

In particular the sequence (tn1 ) decreases to t and the sequence (tn0 ) is nondecreas-
ing and converges to t.

In general, neither (U (1,2)
t )t≥0 nor (U (1,2)

n (t))t≥0 are cocycles themselves. How-

ever they are both unitary QS processes and the two-parameter process (U (1,2)
s,t )0≤s≤t

enjoys the factorisations

U
(1,2)
s,t ∈ B(h)⊗I[0,s[⊗B(F[s,t[)⊗ I[t,∞[ (3.5)

in which I[0,s[ and I[t,∞[ denote the identity operators on F[0,s[ and F[t,∞[. By the
same token, ((1,2)P c,d)t≥0 is typically not a semigroup.

Lemma 3.1. Let (U1
t )t≥0 and (U2

t )t≥0 be unitary QS cocycles on h with noise

dimension spaces k1 and k2 respectively. Set k := k1 ⊕ k2 and let (U (1,2)
t )t≥0 be

as defined above. Let t ∈ R+, then for c =
(
c1

c2

)
, d =

(
d1

d2

) ∈ k = k1 ⊕ k2,

(1,2)P
(c,d)
t = (1)P c1,d1

t
(2)P c2,d2

t ,

and, for f, g ∈ S′
k and n greater than the orders of both f and g,

〈u ⊗ �(f[0,t[), U
(1,2)
n (t) v ⊗ �(g[0,t[)〉 =〈

u,
(
(1,2)P

f(0),g(0)
2−n

(1,2)P
f(2−n),g(2−n)
2−n · · · (1,2)P

f(tn−1),g(tn−1)

2−n

)
(1,2)P

f(tn0 ),g(tn0 )

(t−tn0 ) v
〉
.

Proof : These both follow from factorisations; the first from

〈u ⊗ �(c[0,t[)(U
(1,2)
t v ⊗ �(d[0,t[)〉

= 〈u ⊗ �(c1
[0,t[)U

1
t

(
(E∗U2

t F v)⊗ �(d1
[0,t[)

)〉,
where E and F are the isometric operators h → h ⊗ F (2) defined respectively by
v �→ v ⊗ �(c2

[0,t[) and v �→ v ⊗ �(d2
[0,t[); in turn, the second from the semigroup

decomposition (3.5) and �(h) = �(h[0,s[)⊗�(h[s,t[)⊗�(h[t,∞[), for h = f, g.�
We now come to our quantum stochastic product formula. For its proof we use

the following version of the classical Lie product formula. For bounded operators
Z1 and Z2 on h,

(
ehZ1ehZ2

)[t/h] → et(Z1+Z2) as h → 0, (3.6)

in operator norm, uniformly on bounded time intervals (see e.g. Theorem VIII. 29
of [21], where the proof is obviously valid for operators).

Theorem 3.2. Let (U1
t )t≥0 and (U2

t )t≥0 be unitary QS cocycles on h with noise di-
mension spaces k1 and k2, satisfying the quantum stochastic differential equations
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(3.1), and let (Ut)t≥0 be the unitary QS cocycle on h with noise dimension space
k := k1 ⊕ k2 satisfying the QS differential equation (2.2) where [Fμ

ν ] is given by
(3.2). Then,

U (1,2)
n (t)→ Ut as n → ∞, (3.7)

in the strong operator topology on B(h ⊗F), for each t ≥ 0.
Proof : Let t ∈ R+. First note that, since Ut is unitary and each U

(1,2)
n (t) is unitary

and so a contraction, it suffices to prove that U
(1,2)
n (t) → Ut in the weak operator

topology. Also, the uniform boundedness of the operators U
(1,2)
n (t) means that it

suffices to fix u, v ∈ h and f =
(f1

f2

)
, g =

(g1

g2

) ∈ S′
k ⊂ L�(R+; k = k� ⊕ k�), and

prove the following:

〈u ⊗ �(f[0,t[)U
(1,2)
n (t) v ⊗ �(g[0,t[)〉 → 〈u ⊗ �(f[0,t[)Ut v ⊗ �(g[0,t[)〉. (3.8)

By the semigroup representation (2.5),

R.H.S. of (3.8) = 〈u, P
f(t0),g(t0)
t1−t0

· · · P
f(tm),g(tm)
tm+1−tm v〉, (3.9)

where t0 = 0, tm+1 = t and {t1 < · · · < tm} ⊂ D are the points in ]0, t[ (if any)
where f or g has a discontinuity. For n greater than the orders of the step functions
f and g, Lemma 3.1 implies that the L.H.S. of (3.8) equals〈

u, ((1)P
f1(t0),g1(t0)
2−n

(2)P
f2(t0),g2(t0)
2−n )[2

n(t1−t0)] · · ·
· · · ((1)P

f1(tm),g1(tm)
2−n

(2)P
f2(tm),g2(tm)
2−n )[2

n(tm+1−tm)]

((1)P
f1(tm),g1(tm)
(t−tn0 )

(2)P
f2(tm),g2(tm)
(t−tn0 ) ) v

〉
.

The Lie product formula (3.6) and the joint continuity of operator composition
on bounded sets, therefore implies that

lim
n→∞( L.H.S. of (3.8)) = 〈u,Q

f(t0),g(t0)
t1−t0

· · · Q
f(tm),g(tm)
tm+1−tm v〉, (3.10)

where (Qc,d
t )t≥0 is the semigroup generated by G

(1)
c1,d1 +G

(2)
c2,d2 . Now

G
(1)
c1,d1 +G

(2)
c2,d2 = (1)K + (1)Lc1 + (1)Md1 + (1)W c1

d1 − 1
2(‖c1‖2 + ‖d1‖2)Ih

+(2)K + (2)Lc2 + (2)Md2 + (2)W c2

d2 − 1
2(‖c2‖2 + ‖d2‖2)Ih

= K + Lc +Md +W c
d − 1

2(‖c‖2 + ‖d‖2)Ih,

which, by (2.7), is the generator of the semigroup (P c,d
t )t≥0, for each c, d ∈ k. The

result therefore follows from (3.10) and (3.9). �

Remark : The joint continuity of operator composition on bounded sets also gives
a straightforward extension of this result to time-homogeneous adapted unitary evo-
lutions (Us,t)0≤s≤t:

U (1,2)
n (s, t)→ Us,t as n → ∞,
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in the strong operator topology, for all 0 ≤ s ≤ t, where

U (1,2)
n (s, t) := U

(1,2)
s,sn

1

(
U

(1,2)
sn
1 ,sn

2
U

(1,2)
sn
2 ,sn

3
· · ·U (1,2)

tn−1,tn0

)
U

(1,2)
tn0 ,t .

4. Extensions and an Example

The quantum stochastic product formula also holds for Markov-regular QS con-
traction cocycles, with the same proof, since these are equally characterised as
contraction processes which satisfy a QS differential equation of the form (2.2),
in other words Theorem 2.1 still holds; contractivity of the cocycle corresponds
precisely to the matrix of coefficients of the QS differential equation satisfying the
inequality ∑

μ,ν≥0

〈vμ,
(
(F ν

μ )
∗ + Fμ

ν +
∑

j≥1
(F j

μ)
∗F j

ν

)
vν〉 ≤ 0,

equivalently, ∑
μ,ν≥0

〈vμ,
(
(F ν

μ )
∗ + Fμ

ν +
∑

j≥1
Fμ

j (F
ν
j )

∗ )
vν〉 ≤ 0,

for all v = (vμ)μ≥0 ∈ h ⊗ (C ⊕ k) =
⊕

μ≥� h [5, 16], cf. the equalities (2.3) for
the unitary case. However in this case the convergence of the Trotter products is
only assured in the weak operator topology (or rather in the hybrid norm Fk-weak
operator topology, see [14]).

Using an extension of the standard Trotter product formula to products of sev-
eral semigroups, our QS product formula extends to cover a finite number of QS
unitary (or contraction) cocycles (U1

t )t≥0, ... , (Up
t )t≥0. The coefficient matrix for

the QS differential equation of the resulting QS cocycle will then have the block
matrix form:⎡

⎢⎢⎢⎢⎢⎢⎣

(1)K + · · ·+ (p)K (1)M (2)M · · · (p)M
(1)L (1)W − (1)I 0 · · · 0
(2)L 0 (2)W − (2)I

. . .
...

...
...

. . . . . . 0
(p)L 0 · · · 0 (p)W − (p)I

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Example : The cocycles considered in [18] are the random unitaries defined by

U l(s, t, ωl) = ei(ωl(t)−ωl(s))Hl , 0 ≤ s ≤ t,

for l = 1, 2, where ω1 and ω2 are paths of two independent classical Brownian
motions (B1

t )t≥0 and (B2
t )t≥0, and H1 and H2 are selfadjoint operators on a Hilbert

space h. Recall the notation (3.3). By viewing ω := (ω1, ω2) as a path of the two-
dimensional Brownian motion ((B1

t , B2
t ))t≥0 with probability space Ω, and

U (1,2)(s, t, ω) := ei(ω1(t)−ω1(s))H1 ei(ω2(t)−ω2(s))H2 , 0 ≤ s ≤ t,
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as multiplication operators on L2(Ω; h), it is shown—under the assumption that the
nonnegative symmetric operator (H1)2 + (H2)2 is selfadjoint—that the sequence

(U (1,2)
n (s, t, ω))n≥1 of unitary operators:

U (1,2)(s, sn
1 , ω)

(
U (1,2)(sn

1 , sn
2 , ω) · · ·U (1,2)(tn−1, t

n
0 , ω)

)
U (1,2)(tn0 , t, ω)

converges in the weak operator topology to the unique contraction-operator valued
process satisfying the classical stochastic differential equations

dt U(s, t, ω)v = i U(s, t, ω)H1v dB1
t (ω) + i U(s, t, ω)H2v dB2

t (ω)

− 1
2 U(s, t, ω)

(
(H1)2 + (H2)2

)
v dt

for v ∈ Dom (H1)2 + (H2)2, and that if the process (U(s, t, ω))0≤s≤t is unitary-
valued then the convergence is strong.

Remark : Under the assumption of selfadjointness of
∑d

l=1(Hl)2, the correspond-
ing result is shown to hold for any finite number of such unitary cocycles
(U l(s, t, ω))t≥0, l = 1, . . . , d.

This may be recast in our quantum stochastic setting by identifying the Brown-
ian motion (Bl

t)t≥0 with the quantum stochastic process (Ql
t := (A

l ∗
t + Al

t)
−)t≥0

on F (l) (where the bar denotes operator closure), and setting

U l
t = eiHl(t), t ≥ 0,

where Hl(t) is the selfadjoint operator Hl⊗Q
(l)
t on h⊗F (l), for l = 1, · · · , d. Here

however the coefficients of the corresponding differential equation are unbounded,
with coefficients having block matrix form

(l)F =
[−1

2(Hl)2 iHl

iHl 0

]
, l = 1, · · · , d,

and

F =

⎡
⎢⎢⎢⎣
−1

2K iH1 · · · iHd

iH1 0 · · · 0
...

...
. . .

...
iHd 0 · · · 0

⎤
⎥⎥⎥⎦whereK = (H1)2 + · · · (Hd)2.

This class of example is discussed in more detail in [11].

5. Concluding Remarks

The methods of this paper extend to more general QS cocycles. Firstly, quantum
stochastic Trotter product formulae may be obtained for completely contractive QS
cocycles on operators spaces and completely positive QS cocycles on C∗-algebras.
Secondly, strongly continuous (as opposed to Markov-regular) QS cocycles may be
shown to satisfy the QS Trotter product formula developed here. Conversely, the
formula may be used to construct QS cocycles from simpler cocycles with lower
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dimensional noises. This yields potential applications to multidimensional diffu-
sions. The basic conditions under which Trotter products converge is that the sum
of sufficiently many pairs of associated semigroup generators are pregenerators
of contraction semigroups. Here the assumption of analyticity of the expectation
semigroups of the constituent cocycles helps ([10]). As in the Markov-regular case,
strong (as opposed to weak) operator convergence holds for Trotter products of iso-
metric QS cocycles if and only if the limiting cocycle is isometric. Coisometry, on
the other hand, is equivalent to isometry of the dual cocycle (see [9]). Unitarity for
strongly continuous contraction cocycles is assured when the cocycle satisfies a QS
differential differential whose coefficients satisfy Feller conditions (see [23]).

All these extensions are treated in [11]. They are facilitated by characterisa-
tions of QS cocycles in terms of (a small number of) their associated semigroups
([1, 14]). Here Skeide’s multidimensional generalisation ([24]) of a theorem of
Parthasarathy and Sunder ([20]) plays a key role. The homomorphic property of
Trotter product limits of Evans-Hudson type cocycles on operator algebras is tack-
led in [3].
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