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1 Introduction

For a fixed #, an irrational number in [0, 1], consider the C*-algebra A,
generated by a pair of unitary symbols subject to the relation :

UV= exp(2mif)VU = A\VU. (1.1)

For details of the properties of such a C*-algebra, the reader is referred to
B, [[7]. The algebra has many interesting representations :
(i) H = L*(T'), T! is the circle, and for f € H, (7 (U)f)(2) = f(Az2),
(m(V)f)(z) = 2f(2), = € T
(ii) In the same ‘H, with the roles of U and V' reversed :
for f € H, (m2(V) f)(2) = f(Az), (m(U)f)(2) = 2f(2), z € T".
(iii) In H = L*(R),
(m3(U) f)(@) = flz+1), (m(V)[f)(z) = A" f(x).
While the first two were inequivalent irreducible representations, the ultra-
weak closure of the third one is a factor of type I1;.
There is a natural action of the abelian compact group T? (2-torus) on
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Ay given by,

a(zl,zg) (Z aanmvn) = Z amnz{nzSUmV",

where the sum is over finitely many terms and ||z1|| = [|22]| = 1. « extends
as a x-automorphism on Ay and has two commuting generators d; and ds
which are skew-*-derivations obtained by extending linearly the rule:

di(U) =T, di(V) =0
do(U) = 0,do(V) = V. (1.2)

Both d; and dy are clearly well defined on 4> = {a € Ay | 2 — a,(a) is
C®} = {3 nezmnUn V™ | supmp|m*n'am,| < cforall k1 € N}. Since the
action is norm continuous Ay is a dense *-subalgebra of Ay. A theorem of
Bratteli, Elliot, Jorgensen [[] describes all the derivaions of A, which maps
Ag° to itself : for almost all § (Lebesgue), a derivation ¢ : A3° — A is of
the form 0 = c1dy + codo + [, .|, with r € A3°, ¢1, ¢ € C. Another important
fact about Ay is the existence of a unique faithful trace 7 on Ay defined as
follows:

T(Z amnU™V™) = ago. (1.3)

Then one can consider the Hilbert space H = L?(Ay,7) (see [[J for an
account on noncommutative L spaces.) and study the derivations there. It is
easy to see that the family {U™V"},, ncz constitute a complete orthonormal
basis in H. The next simple theorem is stated without proof.

Theorem 1.1 The canonical derivations dy, dy are self adjoint on their natu-
ral domains: Dom(dy) = {3 aymnU™V™ | Y (14+m?)|aymn|? < 0o} Dom(dy) =
5 amn U™V | 321 + n?)|amn|*> < oo}, Furthermore if we denote by
d, = [r,.] withr € Ay C L*(Ay,T) acting as left multiplication in H, then
d,” =d. € B(H)

2  Diffusion on Ay and a noncommutative
Laplacian

There is a canonical construction of a quantum stochastic flow or diffusion
on a von Neumann [§ or a C*-algebra A [ associated with a completely
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positive semigroup on A. The question about which of these semigroups have
‘local” generators £ remains open , though Sauvageot studied these in [I9] .
Following these studies , we know that L is characterized by :

(i) D € Dom(L) € A C B(H), dense in A such that D itself is a *-algebra,
(ii) a *-representation 7 in some Hilbert space K and an associated 7 deriva-
tion § such that §(x) € B(H,K) and §(zy) = 0(x)y + m(x)d(y),

(iii) a second order cocycle relation : L(z*y) — L(x) 'y — 2*L(y) = d(x) 0(y),
for z,y € D. In analogy with the heat semigroup in the case of classical
diffusion, we shall call £ the non-commutative Laplacian or Lindbladian.
Hudson and Robinson [[(] studied the above question for A, in the case
where the representation 7 is the identity representation in H itself and
concluded that while there exist classical stochastic dilations for the Lind-
bladians £(z) = —idi*(z) or —1dy*(z), there does not exist any £ corre-
sponding to 0 = dy + ids so that there is no quantum stochastic dilation
corresponding to this case. We claim that if we choose 7(x) = z ® I in
K=H®C?~H&H, and § = di ® dy, then Loy = —2(di* +dp*), D = Ay™
satisfies all the properties (i) - (iii) and one can construct a quantum stochas-
tic flow driven by (7, do, L£o). In analogy, one can have the perturbed triple
(m,9,L) where § = 01 @ dy with 6; = dy + d,, and dy = dy + d,, and
L= —%(512 +685%),D = Ap™.

Thus we have two triples (7, o, Lo) and (7,6, £) both satisfying (i)-(iii).
Hence they should give rise to two quantum stochastic processes and that
they indeed do so is the content of theorem 2.1. Therefore from the quantum
stochastic point of view also, the two ”Laplacians” Ly and L are equally
good candidates for driving the processes. Then the question arises: can
we associate the same geometric features with these two Laplacians or are
there geometrically discernible changes as we go from the Laplacian L to
the perturbed one £ 7 This will be addressed in the following section.

Theorem 2.1 (i) The quantum stochastic differential equation (q.s.d.e) [I4]
for x € Ap™

dj}(z) = j; (idi (2))dw (t) + j; (idz(x))dws(t) + j) (Lo(x))dt;
jr)y =11 (2.1)
has unique solution j° which is a x-homomorphism from Ay to
.Ae ® B(F<L2(R+) ® 02)) [77, fact jto(l’) = a(exp2niw1(t),e:cp27rz’w2(t))(I)a where

(w1, we)(t) is the standard two dimensional Brownian motion. Also
Ejd(x) = et o(z), where E is the vacuum expectation in the Fock space
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I'(L*(R,) ® C?).
(i) The q.s.d.e in H®T':

1
AUy = ZUt{Z]t (r))d AT+, (r")d AL — 2t O(r )t}

=1

Uy =1 (2.2)
has a unique unitary solution [[]. Setting ji(x) = UjP(x)U;, one has the
q.s.d.e:

dj(x Z{Jt (10 (2))d A" + G (16,1 (2))d A} + jo(L(x))dt, (2.3)

and Eji(z) = em(x).

We do not give the proof here since most of it is available in the references
cited above.

3 Weyl Asymptotics for Ay

For classical compact Riemannian manifold (M,g) of dimension d with met-
ric g, one has the natural heat semigroup 7; as the expectation semigroup
of the Brownian motion on the manifold [[§] so that the Laplace-Beltrami
operator A is the generator of 7;. It is known [[§] that 7; is an integral op-
erator on L?*(M, dvol) with a smooth integral kernel 7;(x,y), which admits
an asymptotic expansion as t — 0+:

T(w,y) = > TV (x,y)t= ", (3.1)

5=0

and that

vol (M / T(z, z)dvol(z)

where we have taken the trace in LQ(M , dvol). Slmllarly the scalar curvature
s at x € M is given as s(z) = £T7W(x,z). This gives the integrated scalar

curvature
s:/ s(z)dvol (z /T (z, z)dvol (z)
M



= étlilg%r pd/2—1 /[7;(5571') — t_d/QTO(I,ZIJ)]dvol(;L’)

1
= ¢ Jim tY2 T T, — w0l (M)

For the non-commutative d-torus ( with d even ) one possibility is to define
its volume V" and integrated scalar curvature s by analogy from their classical
counterparts as :

V(Ag) =V = lim tY2 T, (3.2)
1
s(Ag) =s= G tl—i}ori t27 YT T, — V] (3.3)

where the heat semigroup 7; in the classical case is replaced by the expecta-
tion semigroups of the last section: 7, = e'*¢ and the perturbed one 7; = e'*
respectvely acting on L?( Ay, 7). Before we can compute these numbers, we
need to study the operators £y and £ in L?(7) more carefully . The next
theorem summarizes their properties for d = 2 and we have denoted by B3,
the Schatten ideals in B(H) with the respective norms.

Theorem 3.1 (i) Ly is a negative selfadjoint operator in L*(1) with com-
pact resolvent. In fact Lo(U™V™) = —1(m?* + n®)U™V™;m,n € Z so that

(Lo — 2)"" € B,(L*(7)) for p > 1 and z € p(Ly)

(i) If 1,79 € A3° and are selfadjoint, then L = Lo+ B + A, where B =
—%(d%l + dfz +da,(r) + day(r)) and A = —d, dy — d,,ds, so that A is compact
relative to Lo and L is selfadjoint on D(Ly) with compact resolvent.

Ifri,ry € Ag, then —L = —Lo— B — A as quadratic form on D((—EO)%)
and

N[
N[=

(—L+n2) " = (=Lo+n) (I + Zy) =Ly +n?)~ (3.4)

where

Zn = (—Lo+n*) " 2(B+ A)(—L —l—nz)_%, is compact for each n with B =
—3(d2, + d2), A = 1(did,, + dy,dy + dod,, + dyyds). This defines £ as a
selfadjoint operator in L*(T) with compact resolvent. Furthermore, in both
cases of (ii) , the difference of resolvents (£ — z) ™" — (Lo — )" is trace class
for z € p(L) N p(Lo).
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Proof:~

The proof of (i) is obvious and hence is omitted. (ii) It is easy to verify
that £ = Lo+ B+ A on A3 and that A(—Ly 4+ n2) " is compact for every
n=1,2,.... Therefore (£ — Lo)(—Lo+n2) " = (£ — Lo)(—Lo+ 1) (Lo +
1)(=Lo +n?)~" — 0 in operator norm as n — co. By the Kato-Rellich the-
orem [I3], £ is selfadjoint and since

(—L+n2)7"" = (=Lo+n2) L+ (Lo— L) (~Lo+n2)"Y " for sufficiently
large n, one also concludes that £ has compact resolvent. Furthermore for

z € p(L) N p(Lo),
(L—2)"—=(Lo—2)"" = (Lo — 2) " [14+(L—Lo) (Lo — 2) | "HLo—L) (Lo — 2) 7"

Since (L — Lo)(—Lo +n2)_% is bounded , (—Ly +n2)_% € B3(L?(7)) and
since (—Lo + 2) " € Bsja(L2(7)), Tt follows that (£ —n?) " — (Lo —n?) " is
trace class for n = 1,2,... by the Holder inequality.

When 7,72 € Ay, we cannot write the expression for £ as above on A,
since 71, 1o may not be in the domain of the derivations d;, d>. For this reason,
we need to define —L as the sum of quadratic forms and standard results as
in [I5] can be applied here . From the structure of B and A it is clear that
Z, is compact for each n and hence an identical reasoning as above would
yield that || Z,|| — 0 as n — oo and therefore (I + Z,)”" € B for sufficiently
large n and the right hand side of (B.4) defines the operator —L associated

1

with the quadratic form with D((—£)2) = D((—L)?). Clearly

D=
=

(—L+n?) = (=Lo+n?) ' = —(=Lo+ 1Y) 2 (I + Z,) ' Zu(—Lo +n2)~

= —(—Lo+n2)"2(I + Z) N (=Lo+n?)"2(B + A)(—Ly + n2) ™"

for sufficiently large n and since

=

(—=Lo+n2)"2 € By, (—Lo +n2) 2A(—Lo +n2)"2 € Bs,

it is clear that (£ —n?)~" — (Lo —n2) ™" is trace class. O

The next theorem studies the effect of the perturbation from Ly to £ on the
volume and the integrated sectional curvature for Ajy.

Theorem 3.2 (i) The volume V of Ag(d = 2) as defined in (B.3) is invariant
under the perturbation from Ly to L.

(ii) The integrated scalar curvature for r € Ag°, in general is not invariant
under the above perturbation.



Proof :— We need to compute Tr(e** — et*?). Note that if 1,y € AS°, then
el — etfo — — [Telt=5)L(L — £)e*Lods which on two iterations yields:
0

t t
et — etho = —/ et — Lo)eFods + / dtye=Lo (L — L)
0 0

t1 t t1
/ dtyer =1L (L L )et2Eo — / dt e (L—Lo) / dt,eM =50 (L L) x
0 0 0

to
/ dt36(t2_t3)£O (£ — £0)6t3£O = Il (t) + Ig(t) + lg(t) (35)
0

For estimating the trace norms of these terms , we note that the B,-norm of
(L — Ly)e*<o is estimated as

I(£ = Lo)e™ |, = [[(B + A)e>[l, < || Bl[le>]|,+

car(lldre |, + lldae™l,) < " ([le*]l, + [[dae™],)
< (s s ) <es P e

for constants ¢, ¢1, ¢, ¢ since we are interested only for the region
0 < s <t < 1. Using Holder inequality for Schatten norms and the fact that

I )7 < (Lo = n2) 1+ (£ = Lo) Lo —n?) ] <

for sufficiently large n. We get for the third term in B.j

t t1
Hh®m§2/dh/«%wﬁ—%k““WM%
0 0
to
/‘ﬁﬂw—cwwrw“mmw—zww%mg
0

bt
< C(Pl,Pz,P?,)/ t, 2dt; — 0
0

as t — 0 where p;' + p;* +p3' = 1. A very similar estimate shows that
¢ 1
L@ < / ds||e ™0, |(£ = Lo)e™ ||, < et
0

7



( with py > 2 and p;* +p;* = 1) and

t t1
[ 12(2) (1 S/O dtllle(t_“)“!lpl/o dty|| (L—Lo)e" 25 |, [ (L—Lo)e |y, < ¢

(with p;* +py' +p3' = 1, in particular the choice p; = p, = p3 = 3 will do)
a constant independent of t . From this it follows that

lim; o4 t Tr(et* —et*) = 0 and thus the invariance of volume under pertur-
bation.

In the case when 71,79 € Ay only , then £L — Ly = B+ diBy; + d2Bs +
Bidy + Bidy where B, By, By, By, B}, are bounded. Therefore the term like
elt=9Lod, Biesc0 = [e3£0 Bid et=9%0]* admits similar estimates as above and
the same result follows.

(ii) From the expression (B.3) for the integrated scalar curvature s, we see
that for d = 2

S(L) — s(Lo) = é lim T (e — e'%o) (3.6)

t—0+

if it exists, and conclude that the contribution to (B:g) from the term I5(t)
vanishes as we have seen in (i).We claim that though ||Z5(¢)||, < constant,
Triy(t) — 0 ast — 0+. In fact since the integrals in I5(f) converges in trace
norm

t t1
Triy(t) = / dt, / dtsTr((L — Lo)e )50 (L — Lo)el=1Hi2)E0)
0 0

and by a change of variable we have that

ITrL(t)] <t f, (£ — Lo)es o (L — Lo)el=90 || ds For r € A3, the pertur-
bation (£ — Ly) is of the form by + b1d; + bads with b; € B(H) for i = 0,1,2
and the Hilbert-Schmidt norm estimates are as follows :

L 1. _3
I(£=Lo)e™ ]2 < [[Bolllella+v2(br ][ +lIba]) | (=Lo)Ze 02 < e(s™24574).

Therefore

]

Triy(t)] gct/o (545 ((t—s)F 4 (t—s)D)

and this clearly converges to zero as t — 04.
This leaves only I;(t) contribution so that

6(s(L) = 5(Ly)) = — lim t Tr((L = Lo)e'™).
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As before we note that (£ — L) contains two kinds of terms :

B=—1(d +d2), A= —1(d d\ + did,, + dy,dy + dod,,)

We show that the term Tr(Aet o) = 0 for all ¢+ > 0. It suffices to show that
Tr(d.det*) = 0 for r € AS° and for this we note that

Tr(d,die) =Y < U™V" d.die“(UmV") >

m,n

— Zme—t/2(m +n?2) (V nyr- md Umvn Zme—t/2m +n?) (V (P L VAT

1dent1cally. This leaves only the contribution due to B. Thus

s(L) — s(Ly) = —chm t Tr((d2 + d2,)e™), (3.7)
if it exists. However since {tT7((d,,* + d,,*)e***)} is bounded as t — 0+, we

can and will interpret the above limit as a special kind of Banach limit as in
Connes [2,p.563]

1

s(L) — s(Ly) = ELz’mtqutTT((al,nl2 + d,,2)et ) (3.8)
1 .

= STru(dy +di”) Lo ! (3.9)

The notation £, will be explained in the next section. In the following we
show that in general the right hand side of (3.8) is strictly positive.
For example set r; = (U +U~!) and ry = 0, then 71,7, € A3, and

6(s(L) — 5(Lo)) = %Lz’mtl_wtz:e_t/z(WQJr" < UMV R (UMY >

) 71
m,n

=27 L1yt Y e PO (L ATIAT U (L-AT)PAT U T (2-A-A)

m,n

= 27 Limy-1_t (2 Z em? 4 1) (8 Z sz’nz(ﬂén)e_"zt/2>
m=1

n=1

Next note that for 0 <t < 2

[\v/2/1]

\/l_fz sin?(m0n)e"1? >\t Z sin?(wOn)e "1/
n=1 n=1

) =0



[v/2/1]
> e (V2 - V1) Z [V/2/t]  sinr(nf — [n]) = e (V2 — V) E(sinn Xy),

where for each 0 < ¢ < 2, X, is a [0,1]-valued random variable with
Probability(X, = k0 — [k6]) = [/2/1]~" for k = 1,2, [,/2] and E is the

t
associated expectation. Since 6 is irrational, it is known that ([ff) as ¢t — 0+,
the random variable X; converges weakly to one with uniform distribution

on [0, 1] and therefore

[v/2/1]
hmmf\stm (mOn)e™ 2 > lim \/t Z sinz(ﬁﬁn)e_"%/z
=1

t—0+ t—0+

1
> \/56_1/ sin’rrdr = (\/ie)_l

0

We also have by Connes (page 563) [B] limy oy V300, e ™2 = % Now
by the general properties of the limiting procedure as expounded in [g]

S(L) — 5(Ly) > 2f

O

Remark:— From the expression for s(Ly), we see that for d = 2, s(Ly) =
limy_o4 (Tre*® — Y. Since the expression for Tre'“°and the volume V' are
exactly the same as in the case of classical two-torus with its heat semigroup,
the integrated scalar curvature for L; is the same as in the classical case,
which is clearly zero. Therefore s(L£) is strictly positive for the case considered
here.

4  Spectral Triple on AJ°, its perturbation
and cohomology

Following Connes [f] we consider the even spectral triple
(A=A H = L*7)®L*(1), Dy, T") where Dy , the unperturbed Dirac oper-

ator= 0 . th +idy = im1di(a) +iy2ds(a) in H. Here 71,y are the
d1 - ’Ldg 0
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0 —I
One easily verifies that al'’ = T'a,I* =T =I'"1,'Dy = —D,I". Note also D,
Lo 0 and kerDy = kerLoy @ C?
0 Ly
is two dimensional. The perturbed spectral triple is taken to be (A, H, D,T")
where D = Dy + ( d?* C(l)r
that Dy and D are both essentially selfadjoint on A C L?(7) and that the
perturbed triple is also an even one. Here, as in Connes [f], by the volume
form v(a) on A we mean the linear functional v(a) = %Trw(a\ﬁrzP) where
T'ry, is the Dixmier trace [f], and we have used the notation that for a self-
adjoint operator T" with compact resolvent T=T | N = TP, where P is

2 x 2 clifford matrices. The grading operator is given by [' = ( [0 ) .
has compact resolvent since D3 = —2

) for some r € Ag°. It is not difficult to see

the projection on N (T)L. Next we prove that the volume form is invariant
under the above perturbation. For this we need a lemma.

Lemma 4.1 Let T be a selfadjoint operator with compact resolvent such that
T is Dizmier trace-able. Then for a € A and every z € p(T),
Tro(al~'P) = Try(a(T —2)7").

Proof:~

Note that (T —z)" = (T — z)_lP ® —z~1 P+ and P+ is finite dimensional.
Therefore Try(a(T — 2)™") = Try(PaP(T — z)_lP). On the other hand
Tryo(PaPT-'P — PaP(T — 2) ' P) = —2Tr (PaPT-Y(T —2)"'P) =

0,
R . -1
since 77! is Dixmier trace-able and (7' — z) is compact [} O

Theorem 4.2 If we set vy(a) = %Trw(a|l§0|_2) and v(a) = %Trw(a|f)|_2)
fora € A, then vy(a) = v(a)

Proof :—
Ly 0
2 1
Note that D* = —2 0 L

£1 = ;CO + drdr* + (dldr* —+ drdl) + Z(dgdr* — drdg) and

Lo = Lo+ dpd, + (did, + dy=dy) + i(dad,« — d,ds), and that by theorem (B.1))
of section 3, both £; and L5 have compact resolvents with P;, P, projections
on N(£1)" and N(Ly)" respectively. Therefore by the previous lemma for

Imz#0

, where

v(a) = Tro(a(—L1) " P) + Tro(a(—Ls) " Py)
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=Try(a(—Ly — z)_1 +a(—Ly — z)_l)
= Tro(a(—Ly— 2)"" +a(—Lo — z)_l) + Try(a(—Ly —2)7"
—a(—Ly—2)" )+ Tryla(—Ly — 2) " —a(—Lo — 2)7") = vo(a)

since (—L; — 2) ' — (=L — 2)" " is trace class for i = 1,2 O

We say that two spectral triples (Ay, H1, D1) and (A, He, D) are uni-
tarily equivalent if there is a unitary operator U : H; — Hs such that
Dy = UDU* and my(.) = Um(.)U*, where 7;, j = 1,2 are the represen-
tation of A; in H; respectively. Now, we want to prove that in general the
perturbed spectral triple is not unitarily equivalent to the unperturbed one.

Let Q'(Ag°) be the universal space of 1-forms ([J]) and 7 be the representa-
tion of Q' = Q' (AZ) in H given by

m(a) = a,7(6(a)) = [D, al,
where ¢ is the universal derivation.

Note that [D,a] = i[61(a)y1 + d2(a)ye], where 11 = Re r, 79 = Im r 6, =
di +d,,, 00 = dy + d,,.

Theorem 4.3 (i) Let r = U™, then Q5L (A3°) = 7(Q') = AP & Ar.
(iii) Q*(AP) =0 forr =U™.

Proof :-

(i) Clearly 7(Q')
that d,(U*) = 0,
ciently large [.

C AP + A°7,. The other inclusion follows from the facts
61(U*) is invertible, and that d,(V?) is invertible for suffi-

(iii) Let J; = Kerm|qi, Jo = Kerm|gz. Then Jy + §.J; is an ideal, implying
that m(6J;) = w(Jo + 6J1) is a nonzero submodule of 7(0?) C A & A3°.
Since A is simple there are two possibilities, namely either 7(d.J;) = A3°,
or m(dJ;) = A3° @ Ag°. To rule out the first possibility we take a closer look
at Jl and 7T<(5J1) Jl = {Zz alé(bl)| Zz alél(bl) = 0, Zz alég(bl) = 0} USiIlg

the fact that d;, 0, are derivations we get

Z(Sl CLZ 52 Z&Z(Sl 52 (41)
Z(Sg CLZ (51 ZCLZ(SQ (51 (42)
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for ZZ G,Z(S(bz) ey

W(Z 8(a;)3(bi)) = D (B1(ai)ys + Sa(a:)y2) (81(bi) 11 + 0a(bi)7s)

= Z (61(a:)01(bi) + S2(a:)da(bi)) + > (01(as)da(b;) — 0a(a;)dr (bi)) 2,

where Y12 = Y172 = =271 Taking © = U~16(U) +US(U) € QF it is easy to
verify that = € J; and 7(dz) = —2. This proves A3° &0 C 7w(6.J;). We show
that the inclusion is proper by showing the nontriviality of coefficient of 75.
Using (-], -3 we get coefficient of y15 to be > a;[01, 02](b;) = > —ima;[ry, bi].
As before we can find ng such that for [ > ng, d(V') is invertible. If
we now choose a; = I,b; = V™, ay = —6(V™)5 (V)L by = Viag =
(—a181(by) — agda(by))Ut, b3 = U, then the vanishing of the coefficient of
v12 will imply that [ry, V0] = §o(V™0)8y(V) " ry, V'] for all I > ny and we
note that while the left hand side is nonzero and independent of 1, the right
hand side converges to 0 as [ — oo leading to a contradiction. Therefore

AX @ Ax =n(6J;) C m(Q?) C AP & A5, Hence Q% (AX) = ”((Lz)) =0. O

Thus we have the following :

Theorem 4.4 The spectral triples (A3°, H, Do) and (A3°, H, D) are not uni-
tarily equivalent for r = U™.

The proof is clear since QF, (Ag°) = AP # 0 = QF, (AP).

Classically there is a correspondence between connection form and covari-
ant differentiation. This correspondence comes from the duality between the
module of derivations and the module of sections in the cotangent bundle.
Unfortunately there is no such duality in the non-commutative context. Here
for defining the connection form we visualize it more as the connection form
arising from covariant differentiation. We need to do so because if we take
the existing definition [J] then the curvature form becomes trivial.

Let K be the vector space of all derivations d : A5° — A3°. This space is
same as {ci1dy + cody + |1, ] : v € AP} for almost all § ( lebesgue) [ for the
rest of this section we will be using those #'s only. Let §,,, be the element of
KC given by 6 (a) = [U™V™,a]. We turn K into an inner product space by
requiring that {dy, da, d,,n } to be orthonormal, for example as in [[1]. Let £
be any normed Ag°-module. For § € IC, let ¢5 : EQK — &, be the contraction
with respect to §. Topologize £ ® IC with the weak topology inherited from

13



cs,0 € K. Then a connection is a complex-linear map V : £ — £ ® K such
that ¢sV(€a) = ¢sV(€)a+£d(a), Vo € K.

Theorem 4.5 Suppose that Vi,V are maps from & to € satisfying

Vi(€a) = Vi(§)a +&di(a), 1= 1,2.
Then the map V given by
V() =Vi®d +Vy®dy —ZgUmV"GQémn

1s well-defined and is a connection.

Proof :-

Let 6 € K, such that § = cidy + cads + > CrunOmn, Where {cn,} € S(Z?) C
1,(Z?). Therefore the sum in the right hand side of the definition of V
converges in the topology referred above. The rest is straightforward. O

It is clear from the definition of V in the above theorem that V; = ca; V
for (j =1,2). We also set V, = ¢4,V for r € A3°

Definition 4.6 Let R : K ® K — L(E) be the map given by R(d1,02) =
sy, V — [€5,V, 5, V]. We call R the curvature 2-form associated with the
connection V.

Theorem 4.7 We have
R(dy,dy) = R(dy +d,,,ds + d.,).
Proof :-
[dy + d,y,do + d,,] = [di(r2),.] — [d2(r1),.] + [[r1,72], .]. So we have
R(dl +d,,dy + d;,)(§)
= —&di(r2) + &da(r1) — E[ri,ma] = (Vi + Vi ) (Vo€ = &ra) + (Vo + V) (Vi§ = &)
= —[Vi, Va]€ + Vi(€ra) + (Vo)1 — Erary — Va(Er)
— (Vi&)rg + &rirg — &di(ra) + Eda(r1) — &E[r1, 72
= —[Vy,Vy]€ = R(dl, dy)(§) (since [dy,dy] = 0).

O

Remark:— In section 3, we have seen that the integrated scalar curvature
under the perturbed Lindbladian is different from zero, whereas in section
4,the curvature 2-form has been shown to be invariant under the same per-
turbation.
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5 Non-commutative 2d-dimensional space

In this section we shall discuss the geometry of the simplest kind of non-
compact manifolds, namely the Euclidean 2d-dimensional space and its non-
commutative counterpart. Let d > 1 be an integer and let A, = Cy(R??),
the (nonunital) C*-algebra of all complex-valued continuous functions on R
which vanish at infinity. Then 0;(j = 1,2,...,2d), the partial derivative in
the j-th direction, can be viewed as a densely defined derivation on A, with
the domain A% = C%°(R??), the set of smooth complex valued functions on
R?¢ having compact support. We consider the Hilbert space L?(R??) and
naturally imbed A2° in it as a dense subspace. Then ¢0; is a densely defined
symmetric linear map on L?(R??) with domain A% and we denote its self-

adjoint extension by the same symbol. Also, let F be the Fourier transform

on L?(R*?) given by
F(k) = (FP)(k) = (2m) / e f(2)de

and M, be the operator of multlphcatlon by the function ¢. We set M =
FIM,F, thus i9; = M A= M. 5 a2 is the self-adjoint negative operator,

called the 2d- dlmensmnal Laplacian. Clearly, the restriction of A on AX is

the differential operator sz_l 8]2 Let h = L*(R?) and U,, Vj be two strongly

continuous groups of unitaries in h, given by the following :
Uah)(t) = ft+a), (Vaf)(t) =e"Pf(t), a,8,t R, feCERY).
Here t./3 is the usual Euclidean inner product of R?. It is clear that

U Uy = Ua+a’>

VeV = Viip,

UV = e*PV,U,.
(5.1)

For convenience, we define a unitary operator W, for x = (a, 3) € R* by
W, = UyVge 27,

so that the Weyl relation (b)) is now replaced by W, W, = WHye%p(x’y),
where p(x,y) = x1.92 — x2.y1, for x = (x1,22),y = (y1,y2). This is exactly
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the Segal form of the Weyl relation ([A]). For f such that f € L'(R2%), we
set
b(f)= | f@)Wedz € B(h).
R2d

Let A% be the x-algebra generated by {b(f)|f € C°(R?*?)} and let A be the
C*-algebra generated by 4% with the norm inherited from B(h). It is easy
to verify using the commutation relation (5.1) that b(f)b(g) = b(f ® g) and
b(f)* = b(f*), where

We define a linear functional 7 on A by setting 7((b(f)) = f(0)

(= (2m)~¢ [ f(x)dz), and easily verify ([], page 36) that it is a well-defined
faithful trace on A*. Tt is natural to consider H = L?(A*, 7) and represent
A in B(H) by left multiplication. From the definition of 7, it is clear that
the map C®(R?) > f — b(f) € A® C H extends to a unitary isomorphism
from L?*(R??) onto H and in the sequel we shall often identify the two.

There is a canonical 2d-paramater group of automorphism of A given by
©a(b(f)) = b(f.), where fo(z) = e f(x), f e C(R), a € R, Clearly,
for any fixed b(f) € A™, a — @, (b(f)) is smooth, and on differentiating
this map at a = 0, we get the canonical derivations ¢;,7 = 1,2,...,2d as
§;(b(f)) = b(0;(f)) for f € C>(R*). We shall not notationally distinguish
between the derivation §; on A* and its extension to H, and continue to
denote by id; both the derivation on x-algebra A> and the associated self-
adjoint operator in H.

Let us now go back to the classical case. As a Riemannian manifold,
R?? does not posses too many interesting features; it is a flat manifold and
thus there is no nontrivial curvature form. Instead, we shall be interested
in obtaining the volume form from the operator-theoretic data associated
with the 2d-dimensional Laplacian A. Let 7; = e2® be the contractive
Co-semigroup generated by A, called the heat semigroup on R??. Unlike
compact manifolds, A has only absolutely continuous spectrum. But for any
f € C®(R*) and € > 0, M;(—A+ €)% has discrete spectrum. Furthermore,
we have the following :

Theorem 5.1 M;7; is trace-class and Tr(M;T;) = t= [ f(x)dx. Thus, in
particular, v(f) = [ f(x)dz = t9Tr(M;T;).
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Proof :-
We }{ave Tr(M;T;) = TT(]—"Mf}"_lMe,%Zz?), and ]—“Mf]:_lMe,,tzzz? is an
integral operator with the kernel k(z,y) = f(z — y)e_% 2 Tt is continuous
in both arguments and [ |k;(z, z)|dz < oo, we obtain by using a result in
B, (p. 114, ch.3) that M;7; is trace class and Tr(M;T;) = [ ky(z,x)de =
(2m) £ (0) = ¢~ (f). O
As in section 4, we get an alternative expression for the volume form v in
terms of the Dixmier trace.

Theorem 5.2 For e > 0, M;(—A + €)™ is of Dizmier trace class and its
Dizmier trace is equal to mv(f).

For convenience, we shall give the proof only in the case d = 1. We need
following two lemmas.

Lemma 5.3 If f,g € LP(R?) for some p with 2 < p < oo, then Mf]\fig is a
compact operator in L*(R?).

Proof :-
It is a consequence of the Holder and Hausdorff-Young inequalities. We refer
the reader to [Iq], volume III for a proof. 0

Lemma 5.4 Let S be a square in R? and f be a smooth function with
Supp(f) C int(S). Let Ag denote the Laplacian on S with the periodic bound-
ary condition. Then Tr,(Mi(—Ag +€)™') = [ f(x)dz.

Proof :-
This follows from [[J] by identifying S with the two-dimensional torus in the
natural manner. a

Proof of the theorem :-

Note that for g € D(A) C L*(R?), we have fg € D(Ag) and (AgM; —
M;A)(g) = (AMy—M;A)(g) = Bg, where B = —Ma;+2i 37 My,()00;.
From this follows the identity

Mf(—A + 6)_1 - (—AS + E)_le
= (—As+e)'B(-=A+e) " (5.2)

Now, from the Lemma [.3, it follows that B(—A+¢)~! is compact, and since
(—Ag + ¢€)7! is of Dixmier trace class (by the Lemma [.4), we have that the
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right hand side of (p.9) is of Dixmier trace class with the Dixmier trace = 0.
The theorem follows from the genaral fact that Tr,(vy) = Tr,(yx), if y is
of Dixmier trace class and « is bounded (see [J]). O

Similar computation can be done for the non-commutative case. The
Lindbladian £, generated by the canonical derivation d; on A is given by

Lolalf)) = a(AF), f e C2(RY) (53)

Since in L?(R*?) 1A has a natural selfadjoint extension ( which we continue
to express by the same symbol), £, also has an extension as a negative
selfadjoint operator in H = L?(R??), and we define the heat semigroup for
this case as 7T; = e’*°. By analogy we can define the volume form on A> by
setting v(a(f)) = lim;_o4 t*Tr(a(f)7;). Then we have

Theorem 5.5 v(a(f)) = [ fdz

Proof:~
The kernel K, of the integral operator a(f)Z; in H is given as K;(z,y) =
fz — y)e WP 2eir@n)/2 - As before we note that K is continuous in R*¢ and

Ky(z,2) = ky(z,2) = f(0)e~"1*/2, Using [f] we get the required result. O

Remark:— (i) Note that in the theorem B.2, T'r,(M;(—A+e)~%) = néu(f)
which is independent of € > 0. This could also have been arrived at directly
as in section 4 for the algebra 4y once we have observed in the proof of the
theorem that Tr,M;(A — €)™ = Tr,M;(Ag —e)".

We want to end this section with a brief discussion on the stochastic
dilation of the heat semigroups on the spaces considered. For the classical
(or commutative) C*-algebra of Cy(R2?) the stochastic process associated
with the heat semigroup is the well known standard Brownian motion. For
the non-commutative C*-algebra A we first realize it in B(L*(R?)) by the
Stone-von-Neumann theorem on the representation of the Weyl relations [H]

Uaf)&) = (a2 +0)
(Vaf)(a) = e f(2). (5.4)

Let ¢j,pj(j = 1,2...d) be the generators of V3 and U, respectively, in fact
they are the position and momentum operators in the above Schrodinger
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representation. For simplicity of writing we shall restrict ourselves to the
case d = 1, and consider the q.s.d.e in L*(R) @ T'(L*(R,,C?)) :

1 1
dX; = Xi[—ip dwy(t) — §p2dt —iq dw(t) — §q2dt], Xo=1 (5.5)

where wq, wy are independent standard Brownian motions as in section 2.
The following theorem summarizes the results.

Theorem 5.6 (i) The ¢.s.d.e ([5.3) has a unique unitary solution.
(i) If we set ji(x) = Xi(x @ I;) X} then j; satisfies the q.s.d.e :

dji(x) = ji(—i[p, x])dwi(t) + je(—ilg, x])dws(t) + jo(L(x))dt
for all z € A and Ej,(z) = e**(z) for allx € A

Proof:~
Consider the q.s.d.e in T'(L*(R,)) for each A\ € R for a.a wy,

1
AW = W (—i(X + wy (£))dws () — 5 (A Fwn(t)’de), wN = 1.

It is clear from [[4] that Wt()‘) = exp(—i fg()\+w1(s))dw2(s)) which is unitary
in D(L*(Ry)) for fixed A and w;. Next we set W; = [, E4(d\) @ W which
can be easily seen to be unitary in L?(R) ® T'(L*(Ry)) for fixed w;, where
E4 is the spectral measure of the self adjoint operator ¢ in L?*(R). Writing
X, = WiemP1®) it is clear that X, is unitary in L?(R) ® I'(L?(R,;, C?)). A
simple calculation using Ito calculus shows that X; indeed satisfies equation
5.3

The part two follows from the observation that for fixed w; and wy, X
and b(f) ® I+ with f € C°(R?) maps S(R) ® I'(L*(R,,C?)) into itself. It
is also easy to see that j,(z) = XX} = e w2t g=pwilt) geipwn(t) giqua(t) —
P(—w1 (1), ~ws(1))- 0
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