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1. Introduction

Zero temperature fermion field operators in one space dimension were constructed by
Hudson and Parthasarathy (1986) as quantum-stochastic integrals of a certain
reflection valued process with respect to the boson field operator processes using the
boson stochastic calculus developed by the same authors Hudson and Parthasarathy
(1984). This leads to a canonical unitary isomorphism between the boson and Fermion
Fock spaces over L, (R). Parthasarathy and Sinha (1986) showed that the stochastic
integral representation of the fermion field with respect to the boson field over R is
unique subject to the requirement of irreducibility, martingale property and existence of
a vacuum. Here we extend this construction and some of the results to the case of
arbitrary dimension and arbitrary temperature. As a consequence we obtain a new
reducible, cyclic, non-Fock (nonzero temperature) fermion representation in terms of
a reducible, cyclic, non-Fock boson representation in a boson Fock space. There have
been other constructions of fermion operators as functionals of boson operators in the
literature (Dell’ Antonio et al 1972; Coleman 1975; Garbaczewski 1975; Carey and
Hurst 1985). :

It was observed by Dell’ Antonio et al and Coleman that in some models in 1 +1
dimension (for example, massless Thirring model) certain formal expressions of boson
fields can be formed having the vacuum expectation values and statistics of fermion
fields. In Carey et al, this process is made rigorous for the canonical anticommutation
relation (CAr) algebra over L, (S!, C). However, the constructions employed by both
Carey et al and Garbaczewski are complicated and the fermion operators so obtained
could not be expressed in terms of an operator martingale process. The quantum-
stochastic calculus used here as well as in Hudson and Parthasarathy (1986) makes the
construction of fermion operator martingales in terms of the boson operator
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martingales not only transparent but also keeps the relationship entirely kinematic and
hence totally independent of any model.

Section 2 is devoted to the construction of an abstract fermion representation
without reference to any dimension. The uniqueness of such a representation upto
unitary equivalence is expected to be true but still remains an open question. In § 3 we
extend the construction to the positive temperature case in several dimensions. This
leads to a direct relation between the canonical commutation relations (ccr)
representations of Araki and Woods (1963) and the car representations of Araki and
Wyss (1964) and Dell’ Antonio (1968).

2. Zero temperature boson-fermion relations in several dimensions

Let 4 be any complex separable Hilbert space and let P be a continuous spectral measure
on R whose values are orthogonal projection operators in 4. In the boson Fock space
T(A)=COR4D.. DAY D...over 4 were ®" denotes n-fold symmetric tensor
product, we consider the annihilation and creation operators a(u), a' (u), u € £and define
for every teR

Ap, () = a(P(— o, t]u), A}, (1) = a(P(- oo, t]u). (1)

Writing /(u) for the coherent vector 1Qu@® ... ®(n!) 2u® @ ... define the
second-quantized reflection operators J,(t) by the relations

Jp(t) Y (u) = ¥ (R,u),
R = —P(— o0, tJu+ P(t, o)u. )

Then, in the language of Hudson and Parthasarathy (1984) Ap s A;,u and J, can be
interpreted as adapted processes. Furthermore

Jo(8) Jp(t) = Jp(t) Jp(s) foralls,t,

(3)
L@ =1, JL0)=J).

The stochastic calculus and the quantum Ito’s formula, developed by Hudson and
Parthasarathy (1984) for the case where the spectral measure P is absolutely continuous
with respect to the Lebesgue measure, can easily be extended to the present more general

case. Therefore following the central idea in Hudson and Parthasarathy (1986), we
define:

t

FP,.u(t)=jt Jp(s) dA4p 4 (5), F;,u(t)=j Jp(s)dA} ,(s); )

— -

Fp(u) = Fp (), Fl(u)=F},(c0). ()

Our aim is to show that {Fp(u), F ;r, (u), ue4} is a representation of car and establish
some of its basic properties. We start with the observation that (4) and (5) define the
operators in the domain & which is the linear manifold generated by all coherent vectors.

Proposition 1 For every teR, ue#

Jp(t) Fp () + Fp ,(t) Jp(t) = 0 on the domain . (6)
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Proof For any v, we 4, (2), (3) and (4) imply

14

; J,(s) dAP,u(s)w(w)>

(Y (), Jp(0) Fpu (Y (W) > = <!I/(R:v),J

= j_ CY(R,v), ¥ (Rw) ) (Pds)u,w)

and on the other hand

1

(Yo}, Fru(0) T W (W) = <¢l(v),J Jp(s)d4p, . ()Y (R:W)>

-0

=f Qo) W(R, Row)> CP(As)u, Rowy

=J' CU(R0), W (Ryw) < P(ds) 1w

Adding (7) and (8) we conclude (6).
Proposition 2 'The operators Fp ,(t) are bounded for all t < o0, ue 4.

Proof We have the stochastic differential equations

dF,, = JrdA,,, dF},=Jrddf,.

By the quantum Ito’s formula

CFL W wi), FLo 0y (wy)>

= f CF} ()W (W), Jp(s) Y (w2) > (P(ds)v,wy)

# [ Com), P @vm)> <@
Q) YO <o P 0,10,
Similarly, |
(Fro0¥ 0 Fra 0¥ 0)
= [ P u @) P @

+ j CTp($) W 091), Fr ()9 (w) > (P 0, w1 .
Adding (9) and (10) we obtain

CFL (09 (wy), Fl,u(t)¢(w2)> + (Fp, @)W (wy), Fp o (0% (W2) 5
= {Y(wy), ¥ (wy)> {u, P(— oo, t]v) forall ¢.
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- Then for any ¢e&, we obtain by putting u = p in (11)
I &I+ 11Fp O = 1€ Cu, P(— oo, t]u ). (12)
This completes the proof.

Corollary The operators Fp ,(t) and F I,,u(t) can be extended uniquely to the whole
space I'(#). If these extensions are denoted by the same symbols then F }:,u(t) is the
adjoint of Fp ,(t).

Proof This is immediate from the definition of stochastic integrals (4) and the density
of &. _

Hereafter we define the operators F p.u(t)and F }: «(£) to be the extensions of (4) to the
whole boson Fock space I'(4) and put Fp (=)= F;,u(— o) = 0.

Proposition 3 The operators {Fp (), F I,,u(t), ue4} obey the car
LFp (@), Fpo(0)]4 = Fp y(O)Fp () + Fp , (8) Fp, (1) = 0,

[Fru(®, FL (074 = <u, P(= 0, 10> for all u, pe4, — 00 < ¢ < oo,

Proof The second relation is immediate from (11). In order to prove the first relation
we deduce from Proposition 1 and the quantum Ito’s formula the identity

d(Fp , Fp,+Fp, Fp,)= JoFp,ddp ,+Fp,Jpd4p,
+Jp Fp dAp ,+Fp ,JpdAp, =0.

Since Fp, and F,, vanish at — oo the proof is complete.

Proposition4 LetUbea unitary operator on #and let I'(U) be its second quantization
defined by

C(U) Y (u) = ¥ (Uu) for all ue
Then
LU Fp (T (U)™ = Fypy=1,u,(t) forall —oo <t < 0, UEA,

where UPU™! is the spectral measure defined by (UPU~ ) (E) = UP(E)U~! for any
Borel set E < R.

Proof We have from definitions
Y@, DU Fp T WU W) = Y (U™ o), B, (0 (U~ w))
= J.I CUU™ o), oY (U™ w)y CP(ds)u, U™ 1w

H

= <llf(v),Jupu-1(S)l/’(W)>(UP(dS)U‘lUu,W>

= (Y (), Fypy-1,5uOY W) 5.

From now on we fix the spectral measure P in 4 and drop the suffix P from
Ap s Ipy Fpy etcC. :

Proposition 5 Let Q = (0) be the vacuum vector in T (#).
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Then F,(t)Q =0,

Fl(t)...Fl Q=Y &) J dAl  (s:)- -+ dAl ()9, (13)
oeS,
) —0<§H < <, <L
AL Al (0Q= :LS J dFf (s;) -~ dF (s,)Q (14)
OE€o,
—0<§H < LS, <t :
for every positive integer n, u;, u,,...,u,e#4, —oo <t< oo, where S, is the
permutation group acting on {1,2,...,n} and e(o) denotes the parity of the

permutation o.

Proof This is proved exactly along the same lines as in Hudson and Parthasarathy
(1985) by using induction, quantum Ito’s formula and the relation (6) on the whole Fock
space. '

Proposition 6  Let 4, denote the range of the projection P(— o, t] and let H, denote
the closed linear span of the set {\/(u), ue4,}. Then each of the sets

Qu{Al ... 4L O, up,uy .. ueh, n=1,2,.. .}
{Q}U{Fl (1) ... Fl 0Q, up,us ... ueh n=12..}
is total in H,.

Proof The first set contains the vacuum vector and all the n-particle vectors arising
from 4,. Hence it spans the Fock space I'(#4,) = H,. It follows from (14) that the second
set is total in H,.

Theorem 1 The operators { Fu(t), Fi(t), u€ 4} restricted to the subspace H, constitute
an irreducible cAr representation of the Hilbert space #, for each —o0 <t < 0.

Proof LetT,(4)=C@#4®... ®4® @... be the fermion Fock space where @"
denotes n-fold skew symmetric tensor product. The canonical irreducible representa-
tion of car over # in [,(#4) is completely characterized upto unitary equivalence by the
existence of a vacuum which is cyclic for the algebra generated by the creation operators.
Thus the required result follows from Proposition 3, 5 and 6.

Theorem 2 Let Q and Q_ be the vacuum vectors respectively in I'(#£) and I,(#).
Suppose P is a continuous spectral measure on R whose values are orthogonal
projections on 4. Then there exists a unitary isomorphism &: I,(#4) — I'(#) satisfying

EPQ~ = Q
Ep .Al P(—o0,t]u;= (n)" 2 ) .g(cr) ' J dAde(Sl) e dAL(")(S,,)Q
i= s, -
i —0<§ ... <, <t
. n
forn=1,2,...,uy,Uy....,u€%and —oo < t< oo, where A denotes the skew

j=1
symmetric tensor product in the order 1, 2,.. ., n.
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Proof By theorem 1 we have for every n
CFLG) ... FLOQFL@ ... FLO®)
= det (({u;, P(— o0, t]v;>)) =nl < A uj, A P(-oo0, t]v,-> .
j=1 i=1

~ The required result follows immediately from Proposition 6.

We now spec1a11se to the case when #Z = L,(R"). Express any pomt in RY as

- (s, X1, X3, . . . , X,—1)and consider the absolutely continuous spectral measure P onRin

# defined by
[P(E)f] (S’ Xis ooy xv—l) = XE(S)f(S, Xy eeos xv*l)a

where y; denotes the indicator of the Borel set E = R.

In view of Theorems 1 and 2 we can realise the fermion field operators in v variables in
the boson Fock space over L, (R") through (4) and (5). In such a construction we have
taken the first coordinate as a distinguished one but in view of Proposition 4 change of
coordinates through permutations or rotations yields only an equivalent fermion field.

3. Positive temperature boson-fermion relations in several dimensions

As at the end of the last section we consider # = L*(R") and the spectral measure P of
multiplication by the indicator in the first variable. In order to construct the positive
temperature boson and fermion fields we introduce the Fock spaces

~

H=TAQT (4)=T4®4), H =T#QT(4)=T(#D4) (15)

where #, is the range of the projection P(— o0, t]. H, isto be looked upon as a subspace
of H. For any ¢ €4 let

AP = 4,001, AP0 =1@4,() (16)
where 4, (t) = A4, ,(t)is defined by (1) and 1 denotes the identity operatorin I'(#). Let o,

Bbetwo bounded complex valued measurable functions on R’ satisfying the condltlons

la>—|B> =1, |af]> O everywhere. . | (17)

Define the operators

3,00 = AQ 0+ A% ), | (18)
A0 = 4B () + AD (1), - | (19)
A(g) = Ay(0), A1(¢) = Af(c0). (20)

Then the following commutation relations hold:
[‘Zdi (t)’ ;{\0 (t)] = 0’ [ZT¢’ ZI,] = 0,
[4,@), A, (0] =<{o,P(—o0, t]Y) o (21)
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forall —co < t < 0 and ¢, Y € 4. In particular, {4 (¢), A (), ¢,y €4} is a representa-
tion of ccr in H. Let

Wy=Weu@W_ps, b€t (22)
where ¢ — W, is the Weyl fepresentation of 4 in I'(4) defined by the relations

Wt (f) = exp (—3lI@I1* ~ (. /)Y (f+¢) forall fes. (23)

Then we have the Weyl commutation relations

WoWy= Wyryexp—ilm<{¢, ¥ ); (24)

Wy Wy = Wysyexp —iIm <, 0>, ¢, yes (25)
in I'(#) and T'(4)® I'(#) respectively. Whereas

(Q, W,Q) =exp=1lol? - (26)
we have B

(G, W8y = exp[—3(llad|I> + B¢ 1)), = QRQ. (27)

Since |a|* + |B]* = 1 +2|B}* > 1,itis clear that W is a quasi-free non-Fock representa-
tion of positive temperature.
Following the notations at the end of the last section we write for any ¢, Y € £

(P, ¥ Dols) = J$(8,X)W(S,X)dx, X=Xy, .0, Xy-1);

Rv-l
16115 (s) = <, &0 (s).

Let W, (t) = Wp(_w. 4. Then { W, (), teR} isan adapted unitary process satisfying the
quantum-stochastic differential equation

AW, (1) = {dA5(0—d, (0~ 3Ll I3 () + 1BSI3 (1)1 de} Wi (o).

Furthermore ¢ — W¢(t), ¢ € 4,. satisfies the Weyl commutation relations in H,.

Proposition 7 The set {W,(t)(}, ¢ €4} is total in the subspace H,. The map
¢ — W, (1), ¢ €4, is a reducible projective unitary representation in H, of the additive
group #, for each — oo <t < 0.

Proof Let
| £ = {6 D (—pP), pes].

Then #, is a real linear manifold in 4, @ #, and by (17) £, + i£, is a dense linear manifold
in 4, @#4,. Hence the set {{(u), ue£,} is total in H,. Since

W,y (Y0 = c(t) ¥ (P(~ 00, t1p @ P (— oo, t](— )
=c(t) Y (Gp D (— ) for ¢pe,

where ¢(¢) is a nonvanishing scalar, this proves the first part. To prove the second part we
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have only to note that the unitary operators W¢ and Wy, @ W_g commute for all
P, Y e _ :

In order to construct the positive temperature fermion field operators in terms of th.e
positive temperature boson field operators A(¢) and A'(¢) we introduce the stochastic

integrals

t

F,i)= j I J(s)dA,4 (s), FL(x):j T(s)dA},(s), (28)

-0 -

"~ where

p=(lal+IB1) 12, J(s)=T(ORI6) (29)

(J(s) = Jp(s) being defined by (2) in T'(#)). It is to be noted that (28) defines the
processes F,, and F}, on the domain & = & ® & which is the linear manifold generated
by exponential vectors in H. Furthermore they are adjoint to each other on &.

Proposition 8 For any ¢ €4, — o0 St<
JOF, 0+ Fs)J()=00né. ' (30)
Proof Since H = I'(#@#) we have for any /= f; ®f, 9 =9:Dg: '

1

() TOF,0u(9)> = [

YR, ), ¥ (Rag)> {po, ag1 — By Do (s)ds

and

), Fo@ T = j Y () W(RR.G)) {pd, —ags + B2 )0(s)ds.
Adding these two relations we obtain (30).
Proposition 9 The operators F(t) are bounded for every pe 4, — 0 < t < oo.

‘Proof We proceed along the same lines as in the proof of Proposition 2 and use the
quantum Ito’s formula

dAPdAP = dAP" dAP" = dAPT d4P =0,
dAP dAY" =5, (P, PAOWD, ij=1,2.
We get
CEL W), By @)y + CFu@u(f), Fo(00 ()
=Y (f)¥(g))<{¢, P(— oo, t]¢ >

for all f,ge/A@#4, — oo <t < . Hence

IFSOEIP + I FoEl> = 1IE112 <$, P(— o0, ]9 ), E€8.

This completes the proof.
Proposition 9 enables us to extend the operators F,(t), F(¢) uniquely to the whole
space H. Hereafter we denote these extensions by the same symbols. '




Boson-fermion relations in several dimensions 113
Theorem 3 The operators {F,(t), Fi(t), ¢pe#} satisfy the following for evcry
— 0 <t< 00!
@) F§(2) is the adjoint of F,(z),
(i) [Fy(0), Fy(®1+ =0,
(i) [Fy(2) FJ(@)1+ = <, P(— o0, t]Y ).
Proof This is proved exactly like Proposition 3.
Proposition 10 For any ¢4, .. .,0m Yy, ..., ¥,€h, —0 <t < 0

QF;0...Fy 0F, ... f"%(t)ﬁ) =0 ifm#n

= det ((<y;, P(— o0, t]|B|*p*¢; D)) otherwise. (31)

Proof Let m # n. Suppose H, denotes the n-partxcle subspace #©" in I'(4). Then
F v, (@) .. ()QeH(,@H Since different particle subspaces are mutually ortho-
gonal the propo_smon is proved in this case.

Let m = n. Since J(s)Q = O we have from (28) and (18)

Fy)Q=Q@4},;(0Q=Q®F},5 ()%,
where FJ(t) is defined by (4). By quantum Ito’s formula d4,(f) dA4,(t) = 0 and hence

dF¢xF¢2 e F¢nﬁ = Z (_1)"'JF¢1 .t 'F¢.i—1 F¢j+1 vt Fqbn(dA‘(I;’)d’ +dA(ﬁ%%j)Q®Q

Z: (=17 Fg .. Fy Fy .. Fy dafl Q.

Hence by induction and Proposition 5

Fo...F,00=0® ¥ &0 J dAf 5 (s1) ... A4}z, ()0

g€ES,
—0<5 < ... <§, <t

=Q®Fpz (1) ... Fpp5 ()Q.
Thus the left hand side of (31) is equal to

Fap, (0 - - Fpop, (0 Fgo, () ... Fyp, (9023
= det ((<P(~, t1Bp¢:, P(— 0, t]1Bpy;>))

= det(((‘//_}’ P(_ 00, t] ]ﬂ[zpz ¢l>))

Proposition 11 Theset 2, = {Q} V{F} ()... F} 0F, ()...F, % ¢y, ..., b
Uiy oo s n€dmn=0,1,2, . }1stota11n1? foreveryt

Proof Let H,(t) be the n-particle subspace of I'(4,). We write H, ,(t)=H,(t)® H,(t)
and denote by S, the closed linear span of #,. By Proposition 6 and (32) it follows that
Ho, ,(t) = S, for all n. We now proceed by induction. Suppose H; (O H,(Y) < §; for
J<mandn=0,1,2,.. Itisclear that F} (f) maps H,, ,(t) into H,,,+1 n (@D Hpy, -1 (0).
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Let u be a vector in H,, 4 1 ,(t) which is orthogonal to F§ (1){H,, »(2)} for all ¢ € £ Then
by induction hypothesis

t
<u, J J(s)d ALY (s)v> =0 for all veH,, ,(t), P 4. (33)
The element u can be expressed as a function u(&y, . . ., Env1, M1y - - s Mw)inm+n+1
variables from R, which is symmetric in the first m + 1 variables and the last n variables
separately. Similarly v can be expressed asv(éy, . . ., &m, 15 « - - ,11x) Which is symmetric
in the first m and the last n variables separately. We denote the first coordinate of the
points ¢;, n,eR" by s;, t, respectively and put

O s Emtts Maa e v oo M) = [ Y Aimoor s 03 (85) + > X(=c0.8,,7 (t)s
i=1 k=1

y denoting indicator. Then by the definitions of J (s)and 4{"" the left hand side of (33)is
equal to ’

(m+1)1/2 a(gls sy £m+17 r’l LR nn)v(éla e ’ém: ’11, soe . ann)
S0, Sm+1$[
8., ST
X UpP(Ems 1) (— 120 lment ey dEy g dyy ... dr =0
Since w is symmetric in (&, ..., &,) and (1, . . ., n,), v is arbitrary in H, ,(t), ¢ is

arbitrary in 4, and |ap|> 0 everywhere it follows that u=0. In other words
Hpi1,0(t) < S;.

Proposition 12 The car representation {F,(t), F(f), ¢e4,} restricted to H, is
reducible for every t.

Proof Consider the unitary operator S defined by

SY(fD@gP =v(—g®D—f), f9¢4
and put

G,(t) = SF, (S~ 1.
Then {G,(2), G}(1), ¢ €4} is another cAr representation for 4,. From the two relations

dF, = J(dA%, +dAR),

dG, = ~J(dAQ, +dAls)
and quantum Ito’s formula we have

d[Fy (1), Gy(0]+ = —2{pdg, pP Yo dt for all ¢, Y € 4.

Hence

t

[F¢(t)’Gw(t)]+ = “ZJ

{piy, pPY Do (s)ds

= ~2J (@, p*aff Do (5)ds.
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Since

t

[Fe(, FL(O] = J (9,& D0 (s)ds

it follows that

[F, (0, Gy (t) +2F 1,55 ()]4 = O for all ¢,y € 4.
Once again by quantum Ito’s formula

[Fy(, G (9]+ = 0.
Combining the last two relations we conclude that

[F(0), {G}(0) + 2F gz (0} { Gy (6) + 2F s ()} = 0

for all ¢, y e 4. Since the second operator in the above commutator is self-adjoint the

required result follows.
We now summarize our conclusions in the following theorem.

Theorem4 Let the operators { F,(t), F}(t), g € 4, — 00 < t < 0o} be defined in terms of
the positive temperature boson field operators {4, (t), A}, (), ¢ €4, — 00 < t < 00} and
the reflection operators { J(t), — o0 <t < oo} by the stochastic integrals (28), where 4
= L%(R"). Let P denote the spectral measure of multiplication by the indicator in the
first coordinate in R'. Then for each fixed — oo <t< o0, {F,(t), Fi@), ¢e
P(— c0,t]#} restricted to the boson Fock space H, = I' (P(= co, t]/% (—DP(— o0,t]#4)isa
reducible car representation for P(— co,t]#4 which has the vacuum Q in A, as a cyclic
vector. Furthermore

QFy@0...F, 0F, (... F, ®Q>=0 ifms#n,
=det (({¥;, P(— 0, t]|B1*p%¢:))) ifm=n. (33)

Proof This is just a restatement of theorem 3, Proposition 10~12 put together.

Now we shall compare the car representation {F(¢), F'(¢), ¢ €4} obtained from
Theorem 4 when t = oo and the positive temperature CAr representation of Araki and
Wyss (1964). Using the isomorphism E, of Theorem 2 the Araki-Wyss representation
may be defined by

F(¢)=F(pad)@1+J () F'(pp), (34)

where «, B satisfy (17), p is given by (29), F(¢), F'(¢) denote the zero temperature
irreducible cAr representation in I'(#£) and J (o0) is defined by (2) by putting t = oo

It has been shown by Araki and Wyss that the operators defined by (34) and their
adjoints constitute a reducible representation of car with Q as cyclic vector and
expectation values (&, F1(¢,) ... FT (¢ )E W) ... F(y,)Q) are given by the right
hand side of (33) when t=o0. In other words the CcAR representation
{F(¢), F'(¢), ¢ €4} described in Theorem 4 when t = oo is unitarily equivalent to the
Araki-Wyss representation. Since formula (34) involves the reflection J(o0) it is not
possible to replace ¢ by P(— oo, t]¢ in F(¢) and localize it to an adapted process. On
the contrary formula (28) localizes F(¢) and at the same time realizes it in terms of the
positive temperature boson field operators.
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