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Abstract. A necessary and sufficient condition is formulated for minimal quantum dynamical
semigroups to be conservative. The paper also provides a Markovian dilation of the minimal
semigroups, as a contractive solution of an associated quantum stochastic differential
equation in Boson-Fock space, which is isometric if and only if the minimal semigroup is
conservative. Using the reflection principle of Brownian motion a necessary and sufficient
condition for the contractive solution to be co-isometric is also obtained.
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1. Introduction

Feller [8] proved the existence of a unique minimal semigroup P,,t > 0 on , associated
with the Fokker-Planck equation:

d
&Pik(t) = Z_pij(t)ij’ t>0,p,(0) =9, 1)
J
subject to the Markov condition:
Q,>0forj#k and kéijk= - Q< oo - 2)

Exploiting the special nature of [, Kato [14] constructed the minimal semigroup in
the framework of semigroup theory. It was also shown in [8,14] that the minimal
semigroup is conservative i.e. || P, vl = lylly, for all yel] if and only if

B, = {xelt, Y Q,x,=ix;} ={0}, for some 1>0. 3)
k

In this paper we consider the quantum mechanical Fokker-Planck equation in 7,
the Banach space of trace class operators in Ay

pO=p, pt)=Yp()+p() Y*+ 2 Zip(Z )

subject to Q
RER S ;zsz;fzﬁ 0, (5)
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where Y, Z,,keS < Z ., are densely defined operators in #, and peZ,, the real
Banach space of self-adjoint elements in . Davies [4], following essentially Kato’s
method, constructed the minimal dynamical semigroup ¢/*(t > 0) in 7, as a solution
to (4)—(5). In this context, we formulate a condition similar to (3) as the necessary
and sufficient one for the preservation of trace under the action of ¢™". We also
provide a Markovian dilation of c™" in the sense of Accardi [1,2] as a contractive
solution of an associated Hudson—Parthasarathy equation [11,12,19]. The solution
is isometric if and only if ™" is trace preserving. Finally using Journé’s reflection
principle [13, 17] we also obtain a necessary and sufficient condition for the contractive
solution to be co-isometric. Some results on the related dilation problem may be
found in Chebotarev [3] and Fagnola [6,7]. The method employed here is different
from that in [3,7].

" The paper is organized as follows: In §2 we describe the framework of quantum
stochastic calculus and a class of contractive cocycles satisfying quantum stochastic
differential equation (gsde) with bounded coefficients and also recall [11, 17, 20] the
necessary and sufficient condition for the solution to be isometric, co-isometric or
unitary. Section 3 is devoted to exactly the same ‘questions as in §2, this time with
unbounded coefficients subject to some conditions. Many of the results in this section
are quoted without proof since they are published elsewhere [19]. In §4 we consider
the problem mentioned at the beginning.

2. Contractive bar-cocycles

All the Hilbert spaces that appear here are assumed to be complex and separable
with inner product {-,-) linear in the second variable. For any Hilbert space H, we
denote by I'(H) the symmetric Fock space over H and B(H) the C* algebra of all
bounded linear operators in H. For any ueH, we denote by e(u) the exponential
vector in I'(H) associated with u. The family {e(u):ue.#} is total for any dense linear
manifold # in H and linearly independent in I"(H).

We fix two Hilbert spaces ##, and k and write

H =H QT (LR, ,k)).

It is clear that for any pair of linear manifolds 2 and . dense in #, and L*(R,, k)
respectively, the algebraic tensor product 2 ® ¢(.#) is dense in #, where ¢(#) is the
linear manifold generated by the vectors e(u):ue#. We also denote the vacuum
conditional expectation on #, by E,.

For the basic notions in boson stochastic calculus such as adapted, regular, bounded,
contractive, isometric, co-isometric and unitary process, we refer to [11,21]. The notion
of Markovian cocycle was first introduced in [1]. However in this paper we follow
the definition introduced in [13] and call it bar-cocycle to avoid confusion.

We fix an orthonormal basis {e;:ieS} in k and set E" le;>e;l:i,jeS. With
respect to this basis we  define the basic quantum stochastic processes

{Al:i,je§S:=S5U{0}} asin[18, 23] Then quantum Ito’s formula [11] can be expressed
as:

dAldAf =5, dAk (6)
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for all i, j, k, leS where

i

-~ _{0 iff=00ri=0
L=

8, otherwise.

We denote by u/(s) = (e;,u(s)), u;(s)=u'(s) for jeS and Uo(s) = u®(s) = 1. Choose
M ={ueH:u()=0 for all but finitely many jeS} and set N(u)= {j;u/()#0}. So
#N(u) < oo for ue .

We also denote by &g the class of elements L= (L}e@(%’ o) i,j€8) such that for
each jeS there exists a non-negative constant c; (depending on L) satisfying

SILfIE< IS ) | (7)

ieS

for all fe#,. For any LeZy define the family of bounded linear operators
{"g;als.}eg} on f%o by

&= Li+ L)+ YL L
' keS

where the necessary convergence follows from (.
Fix Le % 5. Then there exists a unique adapted process X = {X(¢),t > 0} satisfying
the following gsde:

dx = Y LidA(H)X (), X(0)=1 | (8)
ijeS

on #,® e(M). Moreover X is isometric whenever Le$z, where Sp= {LeZ g,
Sfj. =0, for all i,jeS}. For a complete account of these facts the reader is referred to
[11,16,17,18,20,21].

Observe that for all i, je§, £ = (¥£])* and L, = (£)); jes: 18 aself adjoint operator

on the Hilbert space #,®1,(S") for any finite subset S’ of S. We set
Fr={L %<0, forall§c< S, #S' < oo}

Hence Src &y < Zx. : :
The following proposition gives a necessary and sufficient condition for X to be
contractive.

PROPOSITION 2.1.

Fix Le % z. Consider the family X ={X(1),0<t< o} of operators satisfying (8). The
following statements are valid: ‘ .

(i) X has a contractive extension if and only if LeZ ¢;

(ii) X has an isometric extension if and only if LeSg.

Proof. By (6) and (8) we have .
(X () fe(u), X (2)ge()> — { fe(w), ge®))
= Jl <X () few), Y., u(t)v/(7) Sfj.X (r)ge(v)> dr,0<t ‘ 9)

0 i jeS
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for all f, ge%o,u ve#. For finitely many vectors f, e, “ue . let y:=X, f e("u)
leCu)| % It is convenient to introduce the Hilbert space H =@, H, with
Haz:@]eN( 2> the vector in H:¥(t)=&® ljrfa(t) with wf D)= jeN(u)uJ(t)X( ) fe(uy
le(uw)| ~*,and the bounded operator L in H: [L“‘ & for all o, f. Then from (9) we have

%n XY 2 = CF @), LY©). (10)

Also observe that & is negative semi-definite if and only if L is negative semi-definite.
Hence from (10) it is clear that the map ¢ — || X () ||,t >0 is decreasing whenever
LeZ ;. This completes the proof of the sufficiency part of (i). Conversely, let X be
contractlve so that (d/dt) || X ()¢ || 2 1=0 < 0. Fix any finite set of vectors g, ,, aes’,
where §' < §, #S' < co. Taking continuous funutlons “ye M so that “u/(0) = 67 and

( G ifa 5 Q,
fim - BZ;O gg, if0eS,a=0
- ﬁ;o gp,  f0¢S,0=0

in (10) we have -

Y. {Gar L5g;> <O.

o, feS’

Hence LeZ ;. This cofnpletes the proof of (i). The proof of (ii) is very similar to that
of (i). [

For any L—(L‘ i,jeS) with L‘ densely defined closed operators in #, we define
= {Li,jeS} by

Li=(Liy*, ijeS.
and set N _ _ N _ ~
Fr={LLeZy), Z;={LLeZy}and Sg={L, Lesy}.

As a consequence of Proposition 2.1 and ‘time reversal ﬁrinciple’ [17], we have

the following theorem, which we state without proof. The proof can be found in [17,
20].

Theorem 2.2. Suppose ZeX xn % R.‘ Then there exists a unique regular (3, H#)-
adapted process V ={V(t),0 <t < oo} satisfying

av() = Z_ V(t)Zj.dA{(t), Vioy=1 - (11)
ijeS .
on K, Q e(M). Moreover the following hold:
(i) The following statements are equivalent: (a) V has a contractive extension,
(b) ZeZz; (c) ZeF5.
In such a case V is a strongly continuous bar-cocycle.
(i) V has an isometric extension if and only if Ze S g;

Az
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(iii) V has a co-isometric extension if and only if Z e r;
(iv) V has a unitary extension if and only if ZEfRF\jR.

3. A class of gsde with unbounded coefficients

In this section we recall some results from [19] which will enable us to deal with more
general quantum evolutions satisfying (11)on 2® (M), where 9 is a common dense
domain of the family Z = {Z},1,j S} of operators in the initial Hilbert space # ;.

We denote by & (2) the class of elements Z = {ZL,i, jeS) such that ZJ is the
generator of a strongly continuous contractive semigroup with @ as a core and
assume furthermore that

(@) 2 2(Z); (,jeS); - (12)
(b) there exists a sequence Z(n)eZ' g nNF z,n>1so that for all fe2, i, jeS
s= lim Z\(n)f = Z}f. | - (13)

Let ZeZ ~(9). From Lemma 3.1 in [19] we observe that for each fe%, je& there
exists a constant ¢;(f) >0 such that

Squ PN Zim f1I* < c¢;(f) (14)

nz1 s

and ;
SIZif 12 < cilf)- (15)

ieS
For any X e#(# ,) we define the bilinear forms ﬁf‘j.(X)(i, jeS) on 2 by
o &(X)g> =<f. XZig> + (Zif, Xg>+ kZS<Z§‘f, XZ4gy
where the necessary convergence follows from (15) and Cauchy—Schwarz inequality.
We set for A>0
B, = (X >0:XeB(H o) LX) =X},
and denote by . the class of elements ZeZ ™ (2) such that
£1=0 for all i,jes.

Fix a sequence Z(n)eZ' g ~Z; satisfying (12) and (13). We denote by V"=
{V®(r):t =0} the unique regular (# o, ) adapted contractive process satisfying (11)
with Z(n) as its coefficients. We state the following propositions without proof,
referring to [19, 20] for the proofs.

PROPOSITION 3.1.

Let ZeZ ™ (D) and V™ be as above. Then
G) w—lim,_ V™) = V() exists for all t =0,
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(i) V= {V(t):t >0} is the unique strongly continuous contractive barcocycle satisfying
(11) on 2 @ e(A);

(iii) V is isometric only if Ze 4,

(iv) if ZeS# and B, = {0} for some A >0 then V is isometric.

Remark 3.2. Suppose for each n> 1, V™ is a regular contractive (o, M)-adapted
process satisfying (11) on 2 @ &(#) where Z (n) are densely defined operators on 2.
Then Proposition 3.1 holds as well for the associated sequence V™ provided (12)—(14)
are valid for Z. We omit the proof since it follows by the method employed for the
proof of Proposition 3.3 in [191. _

_Let ZeZ ~(9), for some a dense linear manifold & in #,. We denote by £ and
B, the classes .# and B, respectively, with Z replaced by Z.

COROLLARY 3.3.

Consider_the contractive cocycle V defined as in Proposition 3.1. Let in addition
Ze% ~(%). Then the following hold:

() if V is co-isometric then Ze

(i) if Ze# and B, = {0} for some A >0 then V is co-isometric.

4. Minimal quantum dynamical semigroup and its dilation

We consider the quantum mechanical Fokker-Planck equation written formally as

p(0)=p, p(ty="Yp()+pt)Y*+ kZSka(t)Z,’:‘ (16)

subject to

Y4 Y*+ ) Z*¥Z, <0 17)
keS

for peJ,, where Y,Z,,keS are densely defined operators in #, and 7, is the real
Banach space of all self-adjoint trace class operators in ;. When Y is a bounded
operator, (17) implies that {Z,, keS} is a family of bounded operators and the series
% sZ¥ Z, converges in strong operator topology. In such a case, for each p (16) admits
a unique J ,-valued solution p(z), t >0 and the map p—a,(p)=p(t), t >0 is a one
parameter contraction semigroup in the Banach space (77, | -[l,,). On the other hand
by Theorem 2.2 (i) there exists a unique regular (5, .#)-adapted contractive operator
valued process V= {V(t),t >0} satisfying

v =3 VOZ:M@), V(0)=1 (18)
: . keS
on #, ® e(A) where
(si—4, i,j€S,
Zi: iES,j = O,
Z= wak s (19)
-2, Zysk, i=0,jes, |
, keS
LY, i=0=j
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and S = ((S;)) is a contractive operator in # ® [,(S). The contractive one parameter
semigroup 7,:= Eo[V(O*(x® ) V(1)], t >0 of completely positive maps [1] and o,
t >0 satisfy the relation

tr (xo,(p)) = tr(pt:(x))

whenever t >0, peJ ,, xeB(H o). :

Here our aim is to deal with the dilation problem associated with the Fokker-Planck
equations (16)—(17) when the operators Y, Z,, keS are not necessarily bounded
operators.

DEFINITION 4.1.

[9, 15] A one parameter family of completely positive maps ©= {1,,t >0} on B(H o)
is said to be a quantum dynamical semigroup if the following hold:

(1) To(x) =X, Tt(rs(x)) = TS_H(JC), S, t= 09 xe'@(%o);
@) Il <Lt20; ‘
(i) The map t — tr(pt,(x)) is continuous for any fixed xe#(H# ) and ped , the trace
class operators in #.
(iv) For each t>0 the map x—1,(x) is continuous in the ultra-weak operator
topology. '

Given a dynamical semigroup 7 we define the predual semigroup ¢ = {o,,t =0}
on 7 as '

tr(xa,(p)) = tr(pT.(x)) (20)

wherever ¢t >0, ped , xeB(# o). Note that the family o is uniquely determined if (20)
holds for p:=|f > <g|, figeH,o. It is also evident that ¢ is a strongly continuous
one parameter semigroup in the Banach space (7, |I*ll,.)- Conversely, for a strongly
continuous one parameter semigroup ¢ on 7, (20) determines a unique dynamical
semigroup 7. Moreover for any ¢ > 0, tra,(p) = tr(p), peT 4 if and only if 7,(I) = I.

The central aim of this section is to exploit the theory developed in §3 and the
construction of the minimal quantum dynamical semigroup, as outlined in Davies
[4], in dilating the minimal semigroup in a boson-Fock space.

Before we proceed to the next result we state the following simple but useful lemmas
without proof. -

. Lemma 4.2. Let slim , A,=A and slim__  B,=B. Then lim _,  A,pBy = ApB* in

I-ll,, topology whenever ped .

Lemma4.3. Let A, k>1and By, k=1 betwo families of bounded operators such that
both the series I, Ax Ax and Z, B By converge in strong operator topology.
Then for each peJ , the series T, 1 BipAf converges in |||, norm topology.

As in Davies [4], let Y be the generator of a strongly continuous contractive
semigroup in 4, and let Z,, keS be a family of densely defined operators on Ko
such that | ‘

2(V) =22y, keS | S @1)




166 A Mohari and K B Sinha

and

LYY +LYL >+ 2 AL [ Zif > <0 (22)

keS
for all fe2(Y).
In view of Lemma 4.2 the following relation

K, (p) =& pe'””
defines a strongly continuous, positive, one parameter, contraction semigroup on J ,
whose generator G is given formally by

G(p)= Yp+pY* (23)
We introduce the positive one-to-one map = on 7 , defined by

n(p)=(1—¥) 'p(l— Y*)"

As in [4] we set n (7,)={n(p), peT,} and define the positive linear map
Fm(T )~ T, by

f@=gaﬂf (24)
where the convergence follows from (22) and Lemma 4.3.

PROPOSITION 4.4.

" Consider the family Y, Z,, keS of operators sattsfyzng (21) and (22) Then the following
hold:

(i) n(J,) is a core for G and (23) is valid for all pen(T ,);
(i) The map # has a positive extension ¢' on 2(G) such that

r(Gp) + £ (p) <0 » (25)

wherever pe 2(G). Moreover equality holds in (25) if and only if equality holds in (22);

(iii) For each fixed A>0Q, #'(A— G)~' is amap from n(J ;) into I, and has a unique
bounded positive extension Ai in I, suchthat [A,| <1and #'(p)=A,[1—G](p) for
all pe2(G);

(iv) For any fixed 0<r <1, n(7",) is a core for the operator W =G +r ¢’ defined
on 2(G). Moreover W® is the generator of a strongly continuous positive one parameter
contraction semigroup o', whose resolvent at A >0 is given by

R()=(— W) =(i-G) ' ¥ r4, (26)
~ ; k>0

where the series converges in trace norm;

(v) For each p 20, t >0 the map r — 6" (p), re[0,1) is increasing and continuous,

(vi) There exists a positive one parameter strongly continuous contraction semigroup
™" on I, such that

Wq@=f%)
rtl

for all peT ,;

L
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(vii) For each >0, R™(2):=(A~ G) ™! Zockan A5 = R(A) strongly as n— oo, where
R(A)=(A— W)™', W is the generator of o,
Proof. For (i)—(vi) see Davies [4]. Now for (vii) we follow Kato [14] (Lemma 7). For
each A>0,0<r<1 we have

R™(2):=(A—G)* A% < R(4) S R(A).
P 0

<k

"

n

Letting r11 we get R™(})<R(1). But as R®™(1) is increasing with n,
slim _ R™(4)=R'(2) exists and R'(4) < R(A). We also have R®() < R™(4) < R'(A).
Hence R,(4) =lim _ R™(1) < R'(}), R(A) =lim,, R,(4) < R'(3) by {vi). This completes
the proof. '

Now our aim is to obtain a necessary and sufficient condition for ¢ to be trace
preserving. It is evident that equality in (22) is necessary. We have the following
theorem giving sufficient conditions.

Theorem 4.5. Consider the semigroup ™", t =0 defined as in Proposition 4.4. Let
W, = G + #'with domain n(J ) and let W¥ be the adjoint of W,. Assume furthermore
the equality in (22). Then the following statements are equivalent:

@) tr(e™"(p)) = tr(p) for all t>0, pe7y;
(i) for each fixed 1.>0, A5—0 strongly as n— c0;
(iii) for each fixed A>0, (A— W, )((T ) is dense in T ;
(iv) for each fixed 1>0, the characteristic equation W§(x) = Ax has no non-zero
solution in B(H ,);
(v) for any fixed >0,

Br={x>0,xeB(Ho):{f,xYg) + ¥, xg) + ’§<Zkf,xzkg> = AL
(27)

‘hold for all f,9e2(Y)} ={0}.

min

Proof. The proof is exactly along the lines of Theorem 3 in [14]. We write 0 =0
As in [14] in this context we note that

o0

IR(A @), = J exp(— A1) | o.(0) |l dt (28)

0

for all p >0, which follows from the resolvent formula R(4) = { o exp(— At) o,dt, 1 >0.
As a simple consequence of the following identity

I+ #'R™(3) = (Al — G)R™(A) + A} (29)

and (22) and (25), we get tr(p) = Atr(R™(A)(p)) + tr(A%* 1 (p)) for peT . Since
R®(W)(T )= T . we have

Ipll = AIR®A)(P, + 1477 () (30)
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for all p > 0. Now taking limit as n— co in (30) we get by Proposition 4.4(vii)

lim 457 (o)l =l ol = AIR(A) ()¢

n-*c

=ijwexp(—?‘~t)(llpil[,— lo:(0)]l,;) (31)

0

for all p >0, where we have used (28) in the second equality. Since for each fixed
ped the map t— |a,(p)|, is continuous and |a,(p)[, <llpll,, t =0 from (31) we
conclude that (i) and (ii) are equivalent. ’

Our next aim is to show that (i) and (iii) are equivalent for any fixed 4 > 0. From
(29) we note that (ii) is equivalent to

lim [A—G — #'1RP(A)(p)=p
for all pe7 . Since R™(1)(p)e2(G) we conclude that [A1—G— #'1(2(G)) is dense in

. Since n(7,) is a core for G, for any fixed pe Z(G) we choose a sequence p,en(J ;)
such that p,— p and G(p,)— G(p) as n— 0. By Proposition 4.4(iii) we have

12" )l = 1 4:[1 = Ol < N1 = Gl <l ll + 1G(P)
for all p in 2(G), hence #'(p)=lim,_ _ #'(p,). Thus it is evident that

(A=G—F)p)=lim,_ ,(A—G— #")(pn)

Hence [A— G — #'](n(J,)) is dense in T .

Conversely let (iii) be valid. Since [I—A;1(7,)=[I—-A4,;1[A—Gl(2(G))=
[A—G—-#1n@G)]>[A—-G— 1T )], I—-A4,1(7,) is dense in F,. Set
C = (1/n+1)Zy ¢, < o A5, Which is a uniformly bounded by 1. That slim, _, CP=0
is now an easy consequence of C®’[I — 4,1 = (1/n + 1)[I — A}**]. On the other hand,
A, being a contractive positive map, | A7 [ < || 4%l whenever m > n, hence

(n) _____-‘!___ k AN
ICY I, = " 10<§<n 1450 = 1 450)

whenever p = 0. Thus we have A"(p)— 0 as n— oo. This shows that (i) and (iii) are
equivalent.

That (iii) and (iv) are equivalent follows by the deﬁmtlon of adjoint of a densely
defined operator and Hahn—Banach theorem. Finally we need to show that an element

xe (W) satisfies W§(x) = Ax if and only if x satisfies (27). For any fixed f,ges,
and xeZ2(W{) we have

tr(n(lf > <gl) W5(x) = kZS<Zk(1 — V) xZ(1-Y) " g)

+{YQ=-Y)" f,x(1-Y) gD
+{(1= V)" 1f,xY(1—Y) !g). (32
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Since Z(1 — Y)™!)=2(Y), that (iv) and (v) are equivalent is a simple consequence
of (32). ‘ [ |

We use the same symbol for the linear canonical extension of a bounded map that
appeared in Proposition 4.4 to the Banach space of all trace class operators. In the
case of an unbounded operator, say G we extend it to 2(G) + i2(G) by linearity. The
family of maps 7™": = (¢7""")* on the dual space B(H ) is called the minimal dynamical
semigroup. For further details we refer to [4].

Our next aim is to deal with the dilation problem associated with the Fokker-Planck
equation (16) whenever the operators Y, Z,, keS satisfy the following assumption.

Assumption A. Y is the generator of a strongly continuous semigroup on #, and
Z,, keS is a family of densely defined operators satisfying (21) and (22). There exists
a dense linear manifold @ in 4, so that it is a core for Y and

S = DZ}), k.jeS

where S = ((S’;, k,jeS)) is a contractive operator on H o ® 1,(S). Furthermore for any
fixed jeS, Sj.:;éO for finitely many ieS. The last hypothesis ensures that the third
expression (19) is meaningful and is indeed verified for most applications [19].

For any 4> 0 we define bounded operators Y,, Z}, keS by

Y, =120~ Y¥) " Y- Y)Y, ZE=2Z,-Y)

where boundedness of ZZ, ke§ follows from (22). Moreover for each A>0, Y;,Z},
ke satisfies (17), hence the series , (Z;)*Z * converges in strong operator topology.
On the other hand for each ge2(Y) we have Y,g— Yg as A—c0. Taking
f=I—AA—Y)"")g in (22) we get

1Zo( = AA— V)" Dgll <201 =23 — V71l YT~ 2~ Y)"Hgl

Hence Z}g— Z,g as A— oo for all ge2(Y) [5].

For any A>0,0<r <1 we define bounded operators Z(4,7) = {Z}{4 1)1, jeS} as
in (19) with Y, Z,,keS replaced by Y,,rt>Z}, keS respectively. So for each0<r<1
and 4> 0, Z(4, e ; N Z g - We denote by y&n = [ VAI(5),t > 0} the unique regular
(#,, M) — adapted contractive process satisfying (18) with Z(4,r) as its coefficients.

We also define operators Z(r) on & as in (19) with Z; replaced by r'/*Z,, keS and
write Z(4,1)=Z(4), Z(1)=Z. For each 0 <r <1 it is evident that

lim Z¥(r, ) f = Z§(?)f,

A0

for all i,jeS, fe2.

PROPOSITION 4.6. ‘
Consider the operators Y, Z,, keS satisfying Assumption A. Then the following hold:

(i) For each 0<r<1,wlim,_ yan(g) = VO(t) exists for all t >0 and Yy ={VO(),
t>0} is the unique regular (# o, M )-adapted contractive operator valued process

1
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satisfying (18) on D ® e(M) with Z(r) = {Zi(r), 1, ] €S} as its coefficients. Moreover V)
is a strongly continuous contractive bar-cocycle;
(ii) Foreacht > 0themapr— V®(t),0 <r < 1is continuous is weak operator topology.

Proof. Foreach0<r<1,1>0; Z(A1NeZ ; n %y and the triad Z(r), Z(4,7), D satisfy
(12) and (13) with n replaced by A. By our hypothesis & is also a core for Y. Hence
we conclude (i) by Proposition 3.1 (i)—(i1).

Choose 0<r,r,<1(n>1) such that r,—»r as n—c. Since the triad
(Z(r), Z(r,),n > 1, D) satisfies (12) and (13) on & and Zi(r,) f—»Z'(r)f as r,— oo for
any fe2, remark 3.2 implies that wlim _, _ V(t) = V*(1),0 <t < co. This completes
the proof. =B

For each A, u>0, 0<r s<1, we define the semigroup t**" on #(#,) by
) = B [V (O* xV 420, 20,

where the semigroup property follows from the cocycle property of the contractive
processes V. The associated pre-dual semigroup o'**" on  is defined as in (20)
whose bounded generator ,2”‘*”‘"“) is given by

LERDp) = Y,p+ pY5+Jrs T ZEp(Z0) e
For each 0 <r <1 we also have

W (p)=Yp+pYV*+ r;SkaZ:‘, pen(7),
€
where W is described in Proposition 4.4. :
We write r*", t‘“‘" ¢*" and g0 for tthArn), r(“‘”’ gh+rn and glhern
respectively. When r =1 we omit the symbol r. For each 0<r,s<1 we also define
the one parameter scmigroup

Tgr,s): —_ [EO tV(r)(t)* xV(S)(t)], t=0

on #(H#,). Again when r =s=1 we omit the symbol r.
Our aim is to show that ¢™® is the pre-dual map of <, for all >0, where ™" is .
defined as in Proposition 4. 4 For this we need the following lemma.

Lemma 4.7. Let A,, k> 1 and B,k > 1 be two families of bounded operators such that

the series I, | Af Ay converges in strong operator topology and slim,_, B, = B. Then

for eachpeJ p,lim ., Cmny=lim, %  A,B,pB*A¥= 3, sABpB*A*=Cin
-1, norm.

m,n—* 0

Proof. Lemma 4.3 implies that C, C(m,n), m,n>1 are elements in . For any fixed
m,n>=1and ped we have

I1Cim,m—Cll,, < k; {1l Ax(By, — B)p (4B, )* ||,

+ || 4 Bp(4(B, — B))* |- }-
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Hence for p=|f){g| we have

IC(m,n) — Cll, < k; {1l A(Bn—B)f || AB,g || + | A Bf | | 4(B, — B)g Il

1/2 1/2
<( Y nAk(Bm—B)fnZ> (k; uAkB,,g||2>

k=1

172 1/2
+( > HAkaZ) <k‘>/:1 ||Ak(Bn"B)g|lz>

k=1

<a(|(Bu—BfIBugl + 1 f11B,—Bgl)<Blf gl

where «, § are some positive constants independent of f,g. Herce the result follows
for p=|f)<gl, f,ge# . For a general p =Z,c,|f:><gil, 1 fill = lg:ll = 1, Zjlei < oo,
we use dominated convergence theorem to conclude the required result. |

PROPOSITION 4.8.

Consider the family of operators {Y, Z,., keS} satisfying (21) and (22). Then for each
fixed 0<r <1 the following hold:
(i) For each A, u>0,0<r,s< 1,

65}"“"'”) = G(/‘L,u,(rS)‘/z)’ t>0;

(i) For pen(7), lim, | L") — W (o), =0
where the limit is independent of the order of A, 1

(§ii) lim,, e 084" (p) — (o), =0 for all peT,
where o is the map defined as in Proposition 4.4;

(iv) The pre-dual map of ©” is o\, > 0;

(v) For each 0<s<1, 0" = ol for all t > 0.

Proof. Since for each fixed 4, u >0, L+ = Pl ) 29 e conclude (i) by the

. fact that a bounded generator uniquely determines the semigroup [5].

Now for (ii) first observe that
L0 (n(p)) = V,m(p) + 7(0) Y

+12Y Ziu(— V)THpAA— Y)THZ )

keS
and

WO (p) = Yr(p) +n(p) Y* + r? kZSZ,i p(Z)*

for all pe and Y,m(p)=p*(u— Y¥) Yu— V) Y- Y) T p(l = Y*)™!). Now
(ii) is immediate from Lemma 4.7.
Since n(7) is a core for W which is the generator of a strongly continuous

contraction semigroup, (iii) is evident from (i) and a standard result (Corollary 3.18
[5]) in the theory of semigroups.
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‘For any fixed f,ge#y, 4, u >0 we have
tr(xa™# (| f ><gl)) = {fe(0), V*"(t)* xV*" () ge (0) >

Hence (iv) follows from Proposition 4.6(i) and (iii). Finally, we arrive at (v) from (i)
and (iii).
The following theorem establishes the main result.

Theorem 4.9. Let Y, Z,, keS be a family of operators satisfying Assumption A. Consider
the family Z = {ZL i,jeS} defined as in (19) on 9. Then there exists a unique regular
(D, M)-adapted contractive process V= {V(t),t = 0} satisfying (18) on D @ e(M).
Moreover the following hold:

() TP (x)=E,[V()*xV(t)], where ™8 s the minimal dynamical semigroup on
B (H o) associated with (16) and (17)

(ii) Assume furthermore that S is an isometry and the equality in (22) holds. Then
Ze#. In such a case V is isometric if and only if 8, =0 for some A >0, where B; is
defined as in Theorem 4.5 (v).

Proof. The first part is a restatement of Proposition 4.6 (i) for r = 1.
In view of Proposition 4.8 it is evident that for all 0<r <1,

tr(@®(1f > (gl)x) = lim tr(o{"" (1> g1)x)

sT1

= lim ( fe(0), VO (t)*xV?(t)ge(0))

st
= {fe(0), VO (t)*xV () ge(0)>

for any f, ges#,. Now taking limit as r {1 in the above identity we get the required
identity for (i) by Proposition 4.4(vi).
That Ze.# is simple to verify. The ‘only if” part of (ii) follows from (i) and Theorem
4.5. For the converse we appeal to Proposition 3.1 (iv). This completes the proof.
|

Now combining Corollary 3.3 and Theorem 4.9 we arrive at necessary and sufficient
conditions for V to be co-isometric.

Theorem 4.10. Consider the family V={V(t), t >0} of operators defined as in
Theorem 4.9. Suppose the family {Y*, Z,, keS} of operators also satisfy (21), (22) and
D is a core for Y* so that 9= 2 (Z}), keS. Assume further the equality in (22) and
S is a co-isometry then ZeJ. In such a case V is co-isometric if and only if B, =0

for some A >0, where B, defined in Corolary 3.3 is modified as B, was in the statement
of Theorem 4.5(v).

Proof. S being a contractive operator we observe that

L ILSIP< 2 NZef )P
keS ‘ keS

for each fe2(Z,), keS, where L, = les(S )*Z,. Hence the family {Y*, L, keS} also

)
J
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satisfy (21) and (22)

. Thus Ze% ™ (%). The proof is complet
Corollary 3.3. ‘ plete once we appeal to

Example 4.11. Let L,, keS be a family of closed operators in 4, and Y be the
generator of a contractive C, semigroup satisfying (21) and (22). For each keS consider
the polar decomposition L, = S,|L,|, where S, is the partial isometry with initial
subspace as (| L;|), hence Sy L, =|L,|. Now with Z, = L,,S*=6%S,, define the
family of operators Z = {Zj., i,jeS} asin (19) on 2(Y). It is evident that Assumption
A is valid. In general it is difficult to verify if B, or B, or both are trivial. However,

when | L,|, keS is a family of commuting self-adjoint operators then B, =0 for some
(hence for all) 1> 0. For more explicit examples refer [19].
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