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Abstract
Background: The cell-membrane G-protein coupled receptors (GPCRs) are one of the largest
known superfamilies and are the main focus of intense pharmaceutical research due to their key
role in cell physiology and disease. A large number of putative GPCRs are 'orphans' with no
identified natural ligands. The first step in understanding the function of orphan GPCRs is to identify
their ligands. Phylogenetic clustering methods were used to elucidate the chemical nature of
receptor ligands, which led to the identification of natural ligands for many orphan receptors. We
have clustered human and Drosophila receptors with known ligands and orphans through cross
genome phylogenetic analysis and hypothesized higher relationship of co-clustered members that
would ease ligand identification, as related receptors share ligands with similar structure or class.

Results: Cross-genome phylogenetic analyses were performed to identify eight major groups of
GPCRs dividing them into 32 clusters of 371 human and 113 Drosophila proteins (excluding
olfactory, taste and gustatory receptors) and reveal unexpected levels of evolutionary conservation
across human and Drosophila GPCRs. We also observe that members of human chemokine
receptors, involved in immune response, and most of nucleotide-lipid receptors (except opsins) do
not have counterparts in Drosophila. Similarly, a group of Drosophila GPCRs (methuselah receptors),
associated in aging, is not present in humans.

Conclusion: Our analysis suggests ligand class association to 52 unknown Drosophila receptors
and 95 unknown human GPCRs. A higher level of phylogenetic organization was revealed in which
clusters with common domain architecture or cellular localization or ligand structure or chemistry
or a shared function are evident across human and Drosophila genomes. Such analyses will prove
valuable for identifying the natural ligands of Drosophila and human orphan receptors that can lead
to a better understanding of physiological and pathological roles of these receptors.

Background
G protein-coupled receptors (GPCRs) are one of the larg-
est superfamilies of cellular receptor proteins, generally

consisting of seven transmembrane helices (TMH) con-
nected by three extracellular and three cytoplasmic loops
of varying lengths. Different GPCRs respond to a wide
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variety of different external stimuli (light, odorants, pep-
tides, lipids, ions, nucleotides etc) and activate a number
of different GTP binding proteins (G proteins), there by
initiating a wide spectrum of intracellular responses.
GPCRs play important roles in cellular signaling networks
involving such processes as neurotransmission, taste,
smell, vision, cellular metabolism, differentiation and
growth, inflammatory and immune responses and secre-
tion. Abnormalities of signaling by GPCRs are the root
cause of disorders that affect most tissues and organs in
our body, such as color blindness, thrombosis, restenosis,
atherosclerosis, hyper functioning thyroid adenoma and
nephrogenic diabetes insipidus and precocious puberty.
GPCRs are of major importance to the pharmaceutical
industry since they play major roles in the pathogenesis of
human diseases and are targets for more than half of the
current therapeutic agents on the market [1]. Despite the
importance of GPCRs in physiology and diseases, only
one high-resolution structure has been solved, that of
bovine rhodopsin [2]. A majority of the identified GPCRs
are with no known ligand specificity (orphan receptors),
which presents a challenge for identifying their native lig-
ands and defining their function.

Characterizing the role of any GPCR involves the identifi-
cation of both the activating ligand and the activated G
protein. A diverse range of procedures have led to the
identification of ligands for orphan receptors: (1) identi-
fying relationship between receptor and ligand expression
patterns [3], (2) testing tissue extracts in receptor-based
functional assays and (3) testing ligands for identified
GPCRs on orphan GPCRs with high sequence identity [4]
and in some cases randomly evaluating orphan GPCRs
against arrayed families of known ligands. The physiolog-
ical role of these receptors can be well understood by the
identification of natural ligands, which further advance
the design of pharmacologically active surrogate activa-
tors or inhibitors of the GPCRs that have defined native
ligands. Strategies described above will be facilitated by
better prediction of ligand structure or chemical class of
orphan GPCRs.

Proteins similar in sequence often exhibit similar func-
tions. Therefore, sequence homology can be used as a pri-
mary criterion for functional screening. This powerful
principle can be extended to proteins that are homolo-
gous in different species. This has led to the identification
of many new novel GPCRs across different species [5].
Many orphan GPCRs are conserved among different spe-
cies suggesting that they should be active and thus bind
novel ligands. This led to the idea that orphan GPCRs
could be used as targets to identify their natural ligands
and consequently led to the discovery of novel transmit-
ters [6]. Those orphan receptors that share more than 45
percent of sequence identity with the GPCRs with known

ligands are very likely to also share common ligands [5].
Often, the direct association of ligand class to orphan
receptors is non-trivial by simple BLAST searches even at
high sequence identity [7]. The top ranking hits constitute
GPCRs from diverse ligand classes (Metpally and Sowd-
hamini unpublished results) and may not suggest a con-
sensus on possible ligand class to be inferred directly.
However, if the sequence identity is below the twilight
zone (less than 30 percent), predictions using direct
sequence search methods often fail. Phylogenetic tree
building has shown that receptors that respond to the
same, or similar, agonists often cluster together, even with
low sequence identity. For example, most members of the
prostanoid receptor subfamily share less than 30 percent
amino acid identity, yet these receptors are more like one
another than any other GPCR [8]. Phylogenetic clustering
methods were used to elucidate the chemical nature of
receptor ligands, which led to the identification of natural
ligands for many orphan receptors [9-14].

GPCRs were previously classified into distinct families by
different groups [14-18]. The classifications would
include rhodopsin-like receptors, secretin receptor-like
receptors, metabotropic glutamate-like receptors, adhe-
sion-like receptors and frizzled/smoothened-like recep-
tors as proposed by Fredriksson and coworkers [16]; in
addition, other groups have proposed two more classes,
viz., the fungal pheromone receptor like family and cyclic
AMP receptors family [17,18]. These classification
schemes were generated mostly from individual genome
studies [12,16].

Studies in model organisms and cross-genome compari-
sons have provided major insights in the general under-
standing of numerous genes and pathways involved in a
wide variety of physiological processes and human dis-
eases [19]. Drosophila is a very good model organism
owing to the simplicity in the genetic system and a short
lifespan enabling the screening of large individuals to
identify mutations in new candidate genes that may have
human counterparts involved in cellular physiology and
diseases [20]. Despite disparity in morphology or pheno-
type, Drosophila shows similarity with humans in develop-
mental and cellular processes like core aspects of cell
cycle, signaling pathways, apoptosis, neuronal signaling,
cytoskeleton and core proteome (including main protein
domains and families) [21]. We, therefore, sought out to
adopt Drosophila GPCRs to study human gene function
using comparative genomics [21-23].

A large number of Drosophila GPCRs have no character-
ized ligands. On the other hand, many human GPCRs are
well characterized in their physiology and pharmacology.
In this study, we collected a large set of GPCR sequences
from human and Drosophila genomes and performed
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Table 1: List of GPCRs in each of the 32 clusters derived from phylogenetic analysis. Suffix _Hum and _Dro refers to human and 
Drosophila sequences respectively. Orphan receptors are shown in bold.

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5 CLUSTER 6 CLUSTER 7 CLUSTER 8

GALR_Hum GPR7_Hum AG22_Hum BRS3_Hum GHSR_Hum Q9VFW6_Dro GP19_Hum FSHR_Hum CCKR_Hum
GALS_Hum GPR8_Hum AG2R_Hum ET1R_Hum GP39_Hum Q9VP15_Dro GRHR_Hum LGR4_Hum GASR_Hum
GALT_Hum OPRD_Hum APJ_Hum ETB2_Hum MTLR_Hum Q9VT27_Dro GRR2_Hum LGR5_Hum NFF1_Hum
GP24_Hum OPRK_Hum BRB1_Hum ETBR_Hum NTR1_Hum Q9W025_Dro GRHR_Dro LGR6_Hum NFF2_Hum
Q969F8_Hum OPRM_Hum BRB2_Hum GP37_Hum NTR2_Hum Q9W027_Dro OXYR_Hum LGR7_Hum OX1R_Hum
Q969V1_Hum OPRX_Hum GP15_Hum GRPR_Hum NMU1R_Hum Q9W4H3_Dro GRHRII_Dro LGR8_Hum OX2R_Hum
Q9NBC8_Dro Q8I943_Dro GP25_Hum NMBR_Hum NMU2R_Hum TRFR_Hum Q8ITD2_Dro LSHR_Hum Q14439_Hum
Q9U721_Dro Q8ISJ9_Dro Q8NGZ8_Hum Q8TDV0_Hum Q8ITC7_Dro Q8NGU9_Hum Q8SX01_Dro GPR103_Hum
SAPR_Hum SSR1_Hum Q9V858_Dro Q8ITC9_Dro V1AR_Hum Q9NDI1_Dro Q8MKU0_Dro
UR2R_Hum SSR2_Hum Q9V9K3_Dro Q8SWR3_Dro V1BR_Hum Q9VBP0_Dro Q9VWQ9_Dro

SSR3_Hum Q9V5T1_Dro V2R_Hum Q9VYG0_Dro Q9VWR3_Dro
SSR4_Hum Q9VDC4_Dro TSHR_Hum
SSR5_Hum Q9VFW5_Dro

CLUSTER 9 CLUSTER 10 CLUSTER 11 CLUSTER 12 CLUSTER 13 CLUSTER 14 CLUSTER 15 CLUSTER 16 CLUSTER 17

C3AR_Hum MAS_Hum GP10_Hum C3X1_Hum ADMR_Hum OPN3_Hum CLT1_Hum GP34_Hum ACTR_Hum
C5AR_Hum MRG_Hum GP72_Hum CKD6_Hum CCR3_Hum OPN4_Hum CLT2_Hum H963_Hum CB1R_Hum
C5L2_Hum MRGF_Hum NK1R_Hum CKR1_Hum CCR4_Hum OPS1_Dro GP17_Hum P2YC_Hum CB2R_Hum
CML1_Hum Q8NGK7_Hum NK2R_Hum CKR2_Hum CCR5_Hum OPS2_Dro GP31_Hum P2YX_Hum EDG2_Hum
FML1_Hum Q8TDD6_Hum NK3R_Hum CKR3_Hum CCR6_Hum OPS3_Dro GP40_Hum PAFR_Hum EDG3_Hum
FML2_Hum Q8TDD8_Hum NK4R_Hum CKR4_Hum CKR6_Hum OPS4_Dro GP41_Hum Q8TDU7_Hum EDG4_Hum
FMLR_Hum Q8TDE0_Hum NY1R_Hum CKR5_Hum CKR7_Hum OPS5_Dro GP43_Hum Q96JZ8_Hum GP12_Hum
GP32_Hum Q96LB1_Hum NY2R_Hum CKR8_Hum CKRA_Hum OPS6_Dro GP82_Hum GPR3_Hum
GP44_Hum NY4R_Hum CXC1_Hum CKRB_Hum OPSB_Hum HM74_Hum GPR6_Hum
GPR1_Hum NY5R_Hum O75307_Hum CML2_Hum OPSD_Hum P2Y2_Hum MC3R_Hum
L4R1_Hum NYR_Dro DUFF_Hum OPSG_Hum P2Y4_Hum MC4R_Hum
L4R2_Hum PKR1_Hum IL8A_Hum OPSX_Hum P2Y6_Hum MC5R_Hum
Q8NGA4_Hum PKR2_Hum IL8B_Hum Q96FC5_Hum P2YB_Hum O95136_Hum
Q8TDT2_Hum Q8SZ35_Dro CKR9_Hum Q9VTU7_Dro P2YR_Hum O95977_Hum

NY6R_Hum Q96CH1_Hum Q8TDQ8_Hum Q8WUL7_Hum
Q9VRM0_Dro RDC1_Hum Q8TDS5_Hum Q9H228_Hum
Q9VW75_Dro Q96P68_Hum Q9NRB8_Hum
Q9W189_Dro Q9BXC0_Hum Q9NYN8_Hum
TLR1_Dro
TLR2_Dro

CLUSTER 18 CLUSTER 19 CLUSTER 20 CLUSTER 21 CLUSTER 22 CLUSTER 23 CLUSTER 24

O00325_Hum EBI2_Hum 5H4_Hum ML1A_Hum 5H1A_Hum AA1R_Hum GP63_Hum 5H2A_Hum HH2R_Hum
O75228_Hum FK79_Hum O14804_Hum ML1B_Hum 5H1B_Hum AA2A_Hum GP85_Hum 5H2B_Hum O61730_Dro
PD2R_Hum GP18_Hum Q969N4_Hum ML1X_Hum 5H1D_Hum AA2B_Hum HH1R_Hum 5H2C_Hum O97171_Dro
PE21_Hum GP20_Hum Q96RI8_Hum O77269_Dro 5H1E_Hum AA3R_Hum HH3R_Hum 5H6_Hum OAR_Dro
PE22_Hum GP35_Hum Q96RI9_Hum O77270_Dro 5H1F_Hum ACM1_Dro HH4R_Hum A1AB_Hum Q13675_Hum
PE24_Hum GP68_Hum Q96RJ0_Hum Q9NQS5_Hum 5H5A_Hum ACM1_Hum O43898_Hum A1AD_Hum Q8IPN2_Dro
PF2R_Hum GPR4_Hum Q9P1P4_Hum 5H7_Hum ACM2_Hum Q8NDV2_Hum A2AA_Hum Q8IS45_Dro
PI2R_Hum O75819_Hum Q9P1P5_Hum 5HT1_Dro ACM3_Hum Q8TDV4_Hum A2AB_Hum Q8N6U8_Hum
Q9VVJ1_Dro P2Y5_Hum Q9VCZ3_Dro 5HTA_Dro ACM4_Hum Q9VAA2_Dro A2AC_Hum Q8NGU3_Hum

P2Y9_Hum Q9VG54_Dro 5HTB_Dro ACM5_Hum Q9VHW1_Dro B1AR_Hum Q8TDV5_Hum
P2YA_Hum Q16538_Hum GP21_Hum Q9VMI4_Dro B2AR_Hum Q96P66_Hum
PAR1_Hum Q8TDV2_Hum GP27_Hum SRB3_Hum B3AR_Hum Q9GZN0_Hum
PAR2_Hum Q9VEG1_Dro GP52_Hum D3DR_Hum Q9NZR3_Hum
PAR3_Hum Q9VEG2_Dro GP62_Hum D4DR_Hum Q9VBG4_Dro
PAR4_Hum DADR_Hum Q9VE32_Dro
Q8N580_Hum DBDR_Hum Q9VHP6_Dro
Q9H1C0_Hum DOP1_Dro Q9W3V5_Dro
Q9UNW8_Hum DOP2_Dro

CLUSTER 25 CLUSTER 26 CLUSTER 27 CLUSTER 28 CLUSTER 29 CLUSTER 30 CLUSTER 31 CLUSTER 32

CALR_Hum MTH_Dro BAI1_Hum Q8NG96_Hum MGR_Dro CASR_Hum O75205_Hum GBR1_Hum FRIZ_Dro
CGRR_Hum MTH1_Dro BAI3_Hum Q8NGA7_Hum MGR1_Hum Q8NGV9_Hum O95357_Hum GBR2_Hum FRZ2_Dro
CRF2_Hum MTH2_Dro CD97_Hum Q8NGB3_Hum MGR2_Hum Q8NGW9_Hum Q9NQ84_Hum Q8NFN8_Hum FRZ3_Dro
GIPR_Hum MTH3_Dro CLR1_Hum Q8NGW8_Hum MGR3_Hum Q8NGZ7_Hum Q9NZD1_Hum Q9BML5_Dro FRZ4_Dro
GLP1_Hum MTH4_Dro CLR2_Hum Q8NH12_Hum MGR4_Hum Q8NHZ9_Hum BOSS_Dro Q9BML7_Dro FZ10_Hum
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cross-genome multiple phylogenetic analyses. Further
analysis reveals unexpected levels of similarity between
GPCRs of these two species and phylogenetic association
could be employed to predict ligands (chemical structure
or class and/or functions) for many of Drosophila and
human orphan receptors.

Results and discussion
Cross genome phylogenetic analysis of human and Dro-
sophila non-olfactory receptors resulted in eight major
groups. They are i) peptide receptors, ii) chemokine recep-
tors, iii) nucleotide and lipid receptors iv) biogenic amine
receptors v) secretin receptors vi) glutamate receptors vii)
cell adhesion receptors and viii) frizzled receptors. These
were further classified into 32 clusters (Table 1) with
eleven clusters of peptide receptors, two clusters of chem-
okine receptors, six clusters of nucleotide and lipid recep-
tors, five clusters of biogenic amine receptors, two clusters
of secretin receptors, four clusters of glutamate receptors
and one cluster each of cell adhesion and frizzled recep-
tors (The combined phylogenetic and ligand analyses of
human-Drosophila GPCRs are shown in Figures 1, 2, 3, 4,
5, 6, 7, 8, 9). About thirty one GPCR sequences could not
be assigned to any of these clusters; these are discussed
separately below as unassociated GPCRs. Our method
sometimes resulted in clusters with members whose lig-
ands belong to different chemical structure or classes and
these results are discussed in detail below.

Peptide receptors
Clusters 1 to 11 comprise of peptide receptors (Figure 1).
The size of peptide ligands can vary from two amino acids
to as many as 50. Some of the natural peptide ligands
include apelin, bombesin, calcitonin, endothelin,
galanin, gastrin, ghrelin, neurotensin, neuropeptide B, W,
Y, orexin, oxytocin, relaxin, somatostatin, urocortins, etc.
These receptors are involved in many human diseases
including chronic inflammatory diseases, degenerative
diseases, autoimmune diseases, cancer, cardiovascular

diseases etc, thus they could be of new therapeutic targets
[24,25].

Receptors with known ligands in cluster 1 binds to
galanins or kisspeptins or cyclic peptides. Drosophila
allostatin receptors (DARs) (Q9NBC8_Dro and
Q9U721_Dro) are very closely related to galanin receptors
[26]. Receptors, Q969V1_Hum and Q96S47_Hum, are
closely related to GP24_Hum receptor that bind to mela-
nin-concentrating hormone and may have similar cyclic
peptides as their ligands. As the name suggests, orphan
receptor, SAPR_Hum, does not bind to somatostatins and
angiotensins [27] since it is distantly related to
GP24_Hum and UR2R_Hum receptors in this tree.
Instead, this receptor may bind to similar cyclic peptides.

Cluster 2 consists of receptors for opioid, somatostatin
and neuropeptide (NPB or NPW) ligands forming differ-
ent branches. Opioids and somatostatins are obtained
from preprocessing of larger precursor peptides. It is
known that GPR7_Hum and GPR8_Hum bind to NPB/W
ligands [28]. Drosophila orphan receptors, Q8ISJ9_DRo
and Q8I943_Dro branch is close to somatostatin recep-
tors and might bind to ligands similar to somatostatins.
Small peptide (apelin, angiotensin, and bradykinin)
receptors comprise of cluster 3. The human orphan recep-
tors encoded by GPR15_Hum, GPR25_Hum and
Q8NGZ8_Hum are related to APJ_Hum and show signif-
icant amino acid identity suggesting these might bind to
small peptide endogenous ligands.

Cluster 4 comprises of endothelin and bombesin recep-
tors with known ligands (ET1R_Hum, ETAR_Hum and
ETBR_Hum, gastrin-releasing peptide receptor
(GRPR_Hum), the neuromedin B receptor (NMBR_Hum)
and bombesin receptor (BRS3)). Drosophila orphan recep-
tors, Q9V9K3_Dro and Q9V858_Dro, share the branch
with bombesin, GRPR and NMBR receptors. They share
many conserved amino acids, known to be important for

GLP2_Hum MTH5_Dro CLR3_Hum Q8SZ78_Dro MGR5_Hum Q9V3Q9_Dro FZD1_Hum
GLR_Hum MTH6_Dro O94910_Hum Q8T4B2_Dro MGR6_Hum Q9VKA4_Dro FZD2_Hum
GRFR_Hum MTH7_Dro O95490_Hum Q8WXG9_Hum MGR8_Hum Q9VNZ5_Dro FZD3_Hum
PACR_Hum MTH8_Dro Q8IXE3_Hum Q96JW0_Hum Q8NFS4_Hum Q9VR40_Dro FZD4_Hum
PTR2_Hum MTH9_Dro Q8IZF1_Hum Q96K78_Hum Q9V4U4_Dro Q9Y133_Dro FZD5_Hum
PTRR_Hum MTHA_Dro Q8IZF2_Hum Q96PE1_Hum FZD6_Hum
Q8NG71_Hum MTHC_Dro Q8IZF3_Hum Q9BY15_Hum FZD7_Hum
Q8NHB4_Hum Q8INM0_Dro Q8IZF4_Hum Q9HAR2_Hum FZD8_Hum
Q9V6C7_Dro Q8IPD0_Dro Q8IZF5_Hum Q9HBW9_Hum FZD9_Hum
Q9V6N4_Dro Q8IZF6_Hum Q9V4V8_Dro SMO_Dro
Q9V716_Dro Q8IZF7_Hum STAN_Dro SMO_Hum
SCRC_Hum Q8IZP9_Hum
VIPR_Hum
VIPS_Hum

Table 1: List of GPCRs in each of the 32 clusters derived from phylogenetic analysis. Suffix _Hum and _Dro refers to human and 
Drosophila sequences respectively. Orphan receptors are shown in bold. (Continued)
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Phylogenetic trees of peptide receptors (clusters 1–11)Figure 1
Phylogenetic trees of peptide receptors (clusters 1–11). Trees were inferred as described in Methods (using TREE-
PUZZLE 5.1 corrected using JTT substitution frequency matrix. Quartet-puzzling support percentage values from 10,000 puz-
zling steps are shown). Out-group not showed in the figure. The scale bars indicate a maximum likelihood branch length of 0.1 
inferred substitutions per site. Orphan receptors are shown in bold letters. Cluster numbers are marked in the top left corner.
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Representative multiple sequence alignment of GPCR clustersFigure 2
Representative multiple sequence alignment of GPCR clusters. GPCR sequences of ET1R_Hum, ETAR_Hum, 
ETBR_Hum, ETB2_Hum, GRPR_Hum, NMBR_Hum, BRS3_Hum, GP37_Hum, Q8TDV0_Hum, Q9V858_Dro and 
Q9V9K3_Dro belonging to cluster 4 were aligned with ClustalX. Sequence region comprising of TMH-1 to TMH-7 alone were 
considered for the analysis (Alignment was modified by deleting the extremely variable amino termini upstream of the first 
transmembrane helix and carboxyl termini downstream of the seventh transmembrane helix). Identical amino-acid residues in 
all aligned sequences are shaded in black and similar residues in gray and consensus residues are indicated below. Transmem-
brane helices (TMH) identified by the HMMTOP program are indicated.
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Phylogenetic trees of chemokine receptors (clusters 12 and 13)Figure 3
Phylogenetic trees of chemokine receptors (clusters 12 and 13). The mode of deriving phylogenetic trees is as 
described in Methods and indications are as in Figure 2.

Phylogenetic trees of nucleotide and lipid receptors (clusters 14–19)Figure 4
Phylogenetic trees of nucleotide and lipid receptors (clusters 14–19). The mode of deriving phylogenetic trees is as 
described in Methods and indications are as in Figure 2.
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high affinity binding of gastrin-releasing peptide (GRP)
and bombesin to GRPR and NMB binding to NMB-R [29-
31] (Figure 2). This suggests Q9V9K3_Dro and
Q9V858_Dro might bind to similar neuropeptide(s) for
its activation. Human orphan receptor GPR37_Hum is

closely related to ETB2_Hum suggesting it may bind to
endothelin-like peptides. Q8TDV0_Hum is sequentially
similar to both galanin (cluster 1) and bombesin recep-
tors but sub-clustering of peptide receptors by maximum

Phylogenetic trees of biogenic amine receptors (clusters 20–24)Figure 5
Phylogenetic trees of biogenic amine receptors (clusters 20–24). The mode of deriving phylogenetic trees is as 
described in Methods and indications are as in the Figure 2 except for the cluster 22, where scale bar indicates a maximum like-
lihood branch length of 1.0 inferred substitutions per site.
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likelihood method has placed it in this cluster suggesting
closer association of these two clusters.

Cluster 5 is composed of receptors for neurotensin (NT),
neuromedin U (NMU), motilin, growth hormone secret-
agogue, thyrotropin-releasing hormone and some of PRX-
amide peptides. GPR39_Hum is closely related to NT
receptors and might bind to neurotensin ligands. Dro-
sophila receptors, Q8ITC7_Dro, Q9VFW5_Dro,
Q9VFW6_Dro, Q8ITC9_Dro and Q9VP15_Dro form a
separate branch, which are closely related to vertebrate
neuromedin receptors and they bind to PRXa pyrokinins
or FXPRXamide or Cap2b-like peptides (FPRXamide) or
ecdysis triggering hormones (PRXamide) (Park et al.
2002). Q9VDC4_Dro forms a distinct branch and is
sequentially close to GHSR_Hum, TRFR_Hum,
Q8ITC7_Dro and Q9VFW5_Dro and might bind to neu-
ropeptides. Drosophila orphan receptors, Q9W4H3_Dro,
Q9VT27_Dro, Q8SWR3_Dro, Q9V5T1_Dro,
Q9W025_Dro and Q9W027_Dro, branch out from that
of TRFR_Hum and might form a separate family of recep-
tors binding to novel neuropeptide ligands. Supporting
our analysis, Q9W025_Dro and Q9W027_DRo were
reported as first receptors specific for Drosophila myosup-
pressins (Drome-MS) [32] and Q9W4H3_Dro was
reported as neuropeptide proctolin binding receptor [33].
Q9VT27_Dro is very closely related to Q9W4H3_Dro and

might bind to proctolin or similar neuropeptide ligands
for its activation.

Cluster 6 consists of peptide hormone receptors binding
arginine vasopressin (AVP) or growth hormone releasing
hormone or oxytocin or gonadotropin-releasing hormone
II or crustacean cardioactive peptide (CCAP) or corazonin
or adipokinetic hormone (AKH) (Park et al. 2002).
GP19_Hum is related to Drosophila CCAP receptor
(Q8ITD2_Dro) that is activated by CCAP and AKH, but
not by AVP. Thus, CCAP and AKH might as well bind to
GP19_Hum for its activation. Drosophila gonadotropin-
releasing hormone and/or corazonin receptor
(GRHR_Dro) and putative corazonin (GRHR II) receptor
clusters well with human counterparts (GRHR_Hum and
GRR2_Hum) suggesting early evolution of GRHR recep-
tors. Q8NGU9_Hum forms a separate branch, but shares
sequence similarity with AVP receptors and might bind to
similar neuropeptide ligands.

Cluster 7 comprises leucine-rich repeat-containing G pro-
tein-coupled receptors (LGR) like glycoprotein receptors,
follicle stimulating hormone receptor (FSHR_Hum), thy-
roid-stimulating hormone receptor (TSHR_Hum), lutein-
izing hormone receptor (LSHR_Hum) and receptors
binding to relaxin. These are unique in having a large N-
terminal extracellular (ecto) domain containing leucine-
rich repeats important for interaction with the glycopro-

Phylogenetic trees of class B (secretin) receptors (clusters 25 and 26)Figure 6
Phylogenetic trees of class B (secretin) receptors (clusters 25 and 26). The mode of deriving phylogenetic trees is as 
described in Methods and indications are as in Figure 2.
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tein ligands and are classified into three sub-groups [34].
Our analysis also shows that there are three LGR sub-
families: (i) the glycoprotein hormone receptors
LSHR_Hum, FSHR_Hum, TSHR_Hum, Q8SX01_Dro and
Q9NDI1_Dro (ii) LGR4_Hum LGR5_Hum and
LGR6_Hum (iii) LGR5_Hum, LGR7_Hum and
LGR8_Hum, Q9VBP0_Dro, and Q9VYG0_Dro. Drosophila
orphan receptors Q8SX01_Dro and Q9NDI1_Dro are
closely related to human glycoprotein hormone receptors
and might bind to glycoprotein hormones. Q9VBP0_Dro
and Q9VYG0_Dro are very similar in their overall domain
architecture to LGRs with long N-termini, but their similar
relationship in extracellular domain arrangements are
also evident from this phylogenetic analysis without con-
sidering the N and C termini.

Cluster 8 consists of peptide receptors with known ligands
such as gastrin (GAS), cholecystokinin (CCK), orexin
(OXR) and neuropeptide FF (NFF) or morphine modulat-
ing peptides. GPR103_Hum (Q96P65) is closely related
to neuropeptide FF receptors, as predicted by our phyloge-
netic analysis and previous prediction on human GPCRs

[12]. Subsequently, GPR103 was characterized and a
novel RF-amide peptide, P52 was shown to be its ligand
[35]. Drosophila orphan receptors, Q9VWR3_Dro
(CCKLR-17D1) and Q9VWQ9_Dro (CCKLR-17D3), are
related to each other and branch off from the cholecysto-
kinin (CCK) receptors and might have cholecystokinin as
its natural ligand. Q14439_Hum branch off orexin recep-
tors that bind to two novel neuropeptides, orexin-A and B,
derived from a common prepro-orexin precursor by pro-
teolytic processing [36].

The receptors with known ligands binding to chemotactic
substances (hydrophilic peptides, N-formyl-methionyls
(FML) and anaphylactic complement factors) are part of
cluster 9. These ligands are structurally very diverse but
functionally related peptides. Human orphan receptors,
GP32_Hum and Q8NGA4_Hum branch out early from
FML receptors and may probably bind to smaller
hydrophilic peptides. L4R1_Hum, L4R2_Hum and
Q8TDT2_Hum form a separate branch distant from other
chemotactic peptide receptors with out bootstrap support.
CML1_Hum and GPR1_Hum form a separate branch dis-

Phylogenetic tree of cell adhesion receptors (cluster 27)Figure 7
Phylogenetic tree of cell adhesion receptors (cluster 27). The mode of deriving phylogenetic tree is as described in 
Methods and indications are as in Figure 2.
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tinct from the other branches, and also GPR44_Hum
forming an individual branch. Prediction of ligands for
these receptors is not possible using this phylogenetic tree,
but these receptors may be activated by chemotactic sub-
stances [37].

Mas proto-oncogene, Mas-related genes (MRGs) and sen-
sory neuron-specific G protein-coupled receptors (SNSRs)
form cluster 10. Angiotensin (1–7) has been identified as
an endogenous ligand for the G protein-coupled receptor
Mas [38]. SNSRs are activated by proenkephalin A peptide
fragments, like bovine adrenal medulla peptide 22
(BAM22). Some MRGs and SNSRs are expressed in nocic-
eptive sensory neurons suggesting that they could be
involved in pain sensation or its modulation. Previous
studies also suggest that ligands for MRG receptors may
include neuropeptides that modulate pain sensitivity

[39]. Human orphan receptor Q8NGK7_Hum is closely
related to MRG receptor.

All receptors with known ligands in cluster 11 are neu-
ropeptide receptors. Drosophila tachykinin-like peptide
receptors (TLR1_Dro and TLR2_Dro) and human neurok-
inin receptors (NK1-4R_Hum) form a closely-knit branch.
PKR1_Hum (Q8NFJ7) and PKR2_Hum (Q8NFJ6) form a
separate branch of receptors that bind to prokineticins
[40]. Q9VRM0_Dro is closely related to Drosophila recep-
tor NYR_Dro that bind to neuropeptide Y. Q9VRM0_Dro
might probably bind to similar neuropeptides. Neuropep-
tide Y binding receptors (NY1R_Hum, NY4R_Hum,
NY5R_Hum and NY6R_Hum (Q99463)) form a separate
branch. The human prolactin-releasing peptide (PrRP)
binding GPR10_Hum forms a separate branch in this phy-
logenetic tree [41]. Drosophila orphan receptors,

Phylogenetic trees of class C (glutamate) receptors (clusters 28–31)Figure 8
Phylogenetic trees of class C (glutamate) receptors (clusters 28–31). The mode of deriving phylogenetic trees is as 
described in Methods and indications are as in Figure 2.
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Q9VW75_Dro and Q8SZ35_Dro constitute a separate
branch close to other neuropeptide receptors that might
functionally be activated by neuropeptides. Similarly,
orphan receptor GP72_Hum forms a new branch. Dro-
sophila orphan receptor Q9W189_Dro is a very distantly
related member and was only grouped into this cluster by
blastp results.

Chemokine receptors
Chemokine receptors are phylogenetically represented by
two clusters 12 and 13 (Figure 3). Chemokines are impor-
tant molecules in inflammatory responses, as immu-
nomodulators and they also have critical functions in
lymphopoiesis [42]. There are no Drosophila members
belong to this group of receptors suggesting these recep-
tors might be recent in evolutionary origin. They have
been divided into two subfamilies on the basis of the
arrangement of the two disulphide-bond forming N-ter-
minal cysteine residues, CXC and CC. Many human CXC
chemokines that mainly act on neutrophils are clustered
at chromosome 4q12–13, while many CC chemokines
that mainly act on monocytes are located in another clus-
ter at chromosome 17q11.2. Our phylogenetic analysis
has also divided chemokine receptors into two major clus-
ters, concurrent with that of chemokine classes, suggesting
co-evolution of receptors and ligands [43].

Cluster 12 consists of receptors associated with CC type
chemokines. As reported previously through earlier
approach [12] O75307_Hum (CRAM-A) might bind to

CC-type chemokine ligand. Cluster 13 consists of both
CXC and CC-type receptors. ADMR_Hum and
Q8NE10_Hum (RDC1) form a branch whereas Duff anti-
gen and Q96CH1_Hum are distantly related to
CML2_Hum. These two branches are associated to chem-
okine receptors based on BLASTP similarity at an E-value
significance of 5e-04 and 7e-07, respectively, with other
members of this cluster.

Nucleotide and lipid receptors
Nucleotide and lipid receptors consists of six clusters (Fig-
ure 4), except for cluster 14 (opsins) and cluster 18 (recep-
tors binding ligands are derivatives of arachidonic acid)
there are no counter parts from Drosophila. Opsins are
included in cluster 14 that are activated by isoprenoid lig-
ands. Drosophila opsins show significantly high homology
to human opsins. There is strong conservation of the reti-
nal binding site and other regions suggesting that they are
derived from a common ancestor and diverged thereafter
retaining structural and functional features [44]. Dro-
sophila receptor Q9VTU7_Dro is closely related to OPS3–
5_Dro receptors, which are localized in the inner-cells of
the Drosophila eye (either R7 or R8 cells). This suggests
Q9VTU7_Dro might be localized in the inner cells of Dro-
sophila eye.

Receptors for pyramidine or purine nucleotides, cysteinyl
leukotriene, nicotinic acid (niacin; pellagra preventing
factor) and short, medium and long chain fatty acids
make up cluster 15. Q9BXC0_Hum (GPR81),
Q8TDS5_Hum and GP31_Hum share the branch with
closely related nicotinic acid (HM74_Hum) receptor [45]
and might have similar carboxylic acids as their ligands.
Q8TDQ8_Hum and Q96P68_Hum are related to each
other as well as to P2Y receptors and may bind to P2Y
nucleotides. GP17_Hum and GP82_Hum receptors are
distantly related to other members in this cluster and
might represent potential new subfamilies binding to
nucleotide or lipids.

Cluster 16 is a heterogeneous group of receptors binding
to lipids, nucleotides, modified nucleotides and platelet
activating factor (PAF). Orphan receptor Q8TDU7_Hum
(GPR86) is closely related to platelet ADP-binding recep-
tor (P2YC_Hum). Q96JZ8_Hum (GPR87) is closely
related to UDP-glucose receptor (P2YX_Hum) and might
bind to a modified nucleotide ligand. GPR34_Hum forms
a separate branch which is distantly related to
PAFR_Hum. No prediction of ligands is possible for
GPR34_Hum with this phylogenetic tree.

Cluster 17 consists of lipid receptors (cannabinoids, lyso-
phospholipid sphingosine 1-phosphate (S1P)) and excep-
tionally some of the peptide receptors (melanocortin
peptides derived from processing of pro-opiomelanocor-

Phylogenetic tree of frizzled/smoothened receptors (cluster 32)Figure 9
Phylogenetic tree of frizzled/smoothened receptors 
(cluster 32). The mode of deriving phylogenetic tree is as 
described in Methods and indications are as in Figure 2.
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tin) are represented in different branches. Although they
bind to different ligands, they identify each other during
sequence searches and display 23–29% sequence identity.
The functionally important motifs are fairly conserved
[46] (please see Additional data file 2). Indeed, this unu-
sual branching including peptide and lipid receptors has
been noted earlier by Methner's and Fredicksson's groups
[12,16].

Cluster 18 is composed of receptors binding to prostag-
landins, prostacyclins and thromboxanes. All these lig-
ands are derivatives of arachidonic acid (AA), which
serves as the precursor via the cyclooxygenase (COX)
pathway. Drosophila orphan receptor Q9VVJ1_Dro within
this tree might bind to ligands derived from AA by the
action of COX.

Cluster 19 is also a heterogeneous group of receptors con-
sisting of protease-activated receptors, psychosine recep-
tors, lysophosphatidylcholine and
sphingosylphosphorylcholine. Ovarian cancer G-protein-
coupled receptor 1 (OGR1), previously described as a
receptor for sphingosylphosphorylcholine, acts as a pro-
ton-sensing receptor stimulating inositol phosphate for-
mation [47], whereas GPR4 is also involved in pH
homeostasis, but elicits cyclic AMP formation [48]. OGR1
(GPR68) and GPR4 are different from other sphingosyl-
phosphorylcholine binding endothelial differentiation
gene (EDG) receptors. Orphan P2Y receptors in this clus-
ter are misnomers since they do not cluster with the clas-
sical neuropeptide receptors (cluster 15 and 16) and
instead appear to be co-clustered with members of this
heterogeneous cluster. Either they may have uncommon
nucleotide(s) as natural ligand or despite their structural
similarity to the P2Y family they may not be nucleotide
receptors [49]. GP35_Hum and Q8N580_Hum,
EBI2_Hum and GP18_Hum and GP20_Hum cluster as
separate branches and are distantly related to members of
other branches but probably bind to lipids as their natural
ligands.

Biogenic amine receptors
Biogenic amine receptors consists of five clusters mainly
consisting of trace amine; melatonin; serotonin receptors;
histamines, muscarinic acetylcholine, adenosine and his-
tamine; dopamine, octopamine and adrenaline receptors
(Figure 5). In these clusters fairly good intermixing of
human and Drosophila receptors is observed. This suggests
biogenic amine receptors have ancient evolutionary ori-
gin as they are observed in invertebrates to higher verte-
brates. Cluster 20 is represented mainly by trace amine
(TA) receptors (Figure 5). Trace amines binding these
receptors are believed to play an important role in human
disorders such as depression, attention deficit disorder,
schizophrenia and parkinson's disease [50]. They form a

subfamily of GPCRs, distinct from, but related to serot-
onin (5-HT), Norepinephrine (NE) and dopamine (DA)
receptors. Drosophila orphan receptors Q9VG54_Dro and
Q9VCZ3_Dro are closely related to 5H4_Hum.
Q9P1P4_Hum (GPR57) and Q9P1P5_Hum (GPR58) are
closely related to Q96RJ0_Hum (TA1). Similarly
O14804_Hum, a putative neurotransmitter receptor
(PNR) is closely related to trace amine (Q969N4_Hum,
Q96RI8_Hum, and Q96RI9_Hum) receptors.

Cluster 21 consists of melatonin receptors (ML1A_Hum,
ML1B_Hum and ML1X_Hum) and other related orphan
receptors (O77269_Dro, O77270_Dro, and
Q9NQS5_Hum). Melatonin receptors bind to and are
activated by biogenic amine 5-methoxy-N-acetyltryp-
tamine (melatonin). The melatonin-related receptor
(ML1X_Hum), despite sharing considerable amino acid
sequence identity with other melatonin receptors, does
not bind melatonin [51]. The receptors in this cluster
show considerable sequence similarity to neuropeptide Y
(NPY) receptors than other biogenic amine receptors and
were previously grouped along with NPY receptors [12].

All receptors with known ligands of Cluster 22 consist of
serotonin receptors. These are structurally distinct from
serotonin receptors in cluster 24. Drosophila orphan recep-
tors Q9VEG1_Dro and Q9VEG2_Dro form a separate
branch but are closely related to other serotonin receptors
in this tree and might have similar ligand (s) for its activa-
tion. Q8TDV2_Hum and Q16538_Hum (Protein A-2),
however, are distantly related to other receptors in this
tree and were placed only based on BLASTP similarity.

Receptors of biogenic amines (muscarinic acetylcholine,
adenosine and histamine) and many orphan receptors are
all placed in different branches in cluster 23. Drosophila
orphan receptor Q9VHW1_Dro branch out along with
muscarinic acetylcholine and histamine receptors in this
tree and might bind to acetylcholine or histamines for its
activation. Q9VAA2_Dro is closely related to that of ade-
nosine receptors. Super conserved receptors expressed in
brain (SRB1-3) from vertebrate species form a separate
branch and might represent potential novel subfamily of
GPCRs binding to undiscovered endogenous biogenic
amine ligands [52]. High-affinity lysophosphatidic acid
(LPA) receptor homologs O43898_Hum and
GPR63_Hum form a distinct branch. Similarly, orphan
receptors GP21_Hum and GP51_Hum, GPR62_Hum and
Q8TDV4_Hum, Q8NDV2_Hum (GPR26) and
Q8NGV3_Hum and Q9VMI4_Dro form a distinct branch,
suggesting only distant relationship with other members
of the cluster.

Receptors of biogenic amines (dopamine, histamine,
octopamine and adrenaline), few serotonergic receptors
Page 13 of 20
(page number not for citation purposes)



BMC Genomics 2005, 6:106 http://www.biomedcentral.com/1471-2164/6/106
and many orphan receptors are represented in different
branches in cluster 24. Drosophila dopamine 2-like recep-
tor (DD2R), Q8IS45_Dro, groups well with the human
counterparts suggesting that their evolution extends much
before Drosophila. Interestingly, DOP2_Dro is grouped
with the adrenaline receptors instead with dopaminergic
receptors and shows similar sequence identity (40–48%)
with vertebrate alpha 1-, and beta-adrenergic, and D1-
like, D2-like dopaminergic and serotonergic receptors.
This Drosophila receptor has been discussed as a novel
structural class of dopamine receptors [53]. Drosophila
octopamine receptor isoforms in mushroom bodies
(OAMB) (O97171_Dro and O61730_Dro) branch out
with human alpha 1 adrenergic (A1A (A, B and D) _Hum)
receptors since they share high sequence identity (52–
55%) in TM regions with alpha 1 adrenergic receptors
[54]. Q9VE32_Dro branches out from human alpha 2
adrenergic receptors and may have adrenaline as its ligand
for activation. Orphan striatum-specific G protein-cou-
pled receptor (STRG or Q9GZN0_Hum), though grouped
with biogenic amine receptors, may represent a novel sub-
type of GPCR due to the lack of conservation of key func-
tional residues [55]. Orphan receptors, Q9W3V5_Dro and
Q8TDV5_Hum, Q96P66_Hum and Q8N6U8_Hum,
Q9VHP6_Dro and Q9VBG4_Dro form their own branch
sharing distant relationship with other receptors in this
tree and might represent potential novel subfamilies of
biogenic amine GPCRs.

Class B (secretin) receptors
Class B receptors are represented by two clusters (25 and
26) consisting of classical hormone receptors and Dro-
sophila methuselah (MTH) like proteins (Figure 6). The
ligands for receptors of cluster 25 are structurally related
polypeptide hormones of 27–141 amino-acid residues
(pituitary adenylate cyclase-activating polypeptide
(PACAP), secretin, calcitonin, corticotropin-releasing fac-
tor (CRF), urocortins, growth-hormone-releasing hor-
mone (GHRH), vasoactive intestinal peptide (VIP),
glucagon, glucagon-like peptides (GLP-1, GLP-2) and glu-
cose-dependent insulinotropic polypeptide (GIP). Dro-
sophila orphan receptors, Q9V716_Dro and Q9V6C7_Dro
are closely related to the human receptor for Corticotro-
pin releasing factor receptor (CRF) which binds to uro-
cortins. Q9V6N4_Dro, Q9VYH9_Dro and Q9NEF7_Dro
are related to calcitonin (CALR_Hum) and calcitonin
gene-related peptide type 1 receptors (CGRR_Hum).
Three small accessory proteins, called receptor activity-
modifying proteins (RAMPs), interact with these calci-
tonin receptors and can generate six pharmacologically
distinct receptors. If this phenomenon of RAMP-enabled
receptor diversity exists in other receptors, then it will fur-
ther complicate the ligand-receptor interactions of
GPCRs, assuming they still bind to structurally similar lig-
ands. Human orphan receptor, Q8NHB4_Hum, is very

closely related to PTRR_Hum receptor binding to parath-
yroid hormone and parathyroid hormone-related protein
(PTHrP). Methuselah receptors and its paralogs of Dro-
sophila solely represent cluster 26. The Drosophila mutant
methuselah (MTH) was identified from a screen for single
gene mutations that extended average lifespan of an
organism and also increased resistance to several forms of
stress, including starvation, heat, and oxidative damage
[56]. There are no obvious homologues of these receptors
within human or C. elegans genomes. Drosophila receptors,
Q8INM0_Dro, Q8IPD0_Dro and Q95NU7_Dro, are
closely related to previously identified MTH members and
may be new paralogs of these receptors.

Cell adhesion receptors
Large number of GPCRs with long extracellular N-termini,
containing GPCR proteolytic site (GPS) domain, are rep-
resented in cluster 27 (Figure 7). Several of these receptors
also have one or many functional domains such as epider-
mal growth factor (EGF), leucine rich repeat (LRR), hor-
mone-binding domain (HBD) and immunoglobulin (Ig)
domains [16]. These form several distantly related
branches. Except CD97_Hum, all the receptors in this
cluster are orphans with no known ligands [57]. There are
only four Drosophila sequences representing these
receptors.

Class C (glutamate) receptors
Receptors of Class C are divided mainly into four clusters
(28–31): metabotropic glutamate receptors (MGR), γ-
aminobutryic acid (GABA) receptors, calcium-sensing
receptors (CASR) and retinoic acid-inducible G-protein-
coupled receptors (RAIG) (Figure 8).

Cluster 28 consists of human and Drosophila MGRs.
Human MGRs are sub-grouped into three different
branches: first contains MGR1_Hum and MGR5_Hum
and second contains MGR2_Hum and MGR3_Hum. The
third branch, including MGR4_Hum, 6–8 and Drosophila
MGRs represent a separate subgroup [58]. Drosophila
orphan receptor Q9V4U4_Dro is closely related to
MGR_Dro and might bind to glutamate for its activation.

Calcium-sensing receptor (CASR_Hum) forms cluster 29
along with a set of orphan receptors (Q8NHZ9_Hum,
Q8NGV9_Hum, Q8NGW9_Hum and Q8NGZ7_Hum).
These orphan receptors either may have ligands and/or
function similar to that of CASR_Hum or they may act as
pheromone/olfactory receptors. Phylogenetic tree of most
members (including olfactory, putative pheromone, and
sweet and amino acid taste receptors) of family 3 GPCRs
across different genomes (Catfish (Ictalurus punctatus),
Caenorhabditis elegans, Drosophila melanogaster, Japanese
pufferfish (Fugu rubripes), Goldfish (Carassius auratus),
human (Homo sapiens sapiens), mouse (Mus musculus), rat
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(Rattus norvegicus) and Salmon (Oncorhynchus masou))
have shown CASR_Hum forms a separate branch part of
pheromone/olfactory cluster of class C GPCRs [59]. To
note that olfactory and gustatory/taste receptors are not
considered in this work.

Cluster 30 consists of retinoic acid-inducible G-protein-
coupled receptors (RAIG). RAIGs have short (30–50
amino acids) extracellular amino-terminal domains
(ATDs) as opposed to the other receptors currently
assigned to class C. BOSS_Dro also has short ATD and
branch out very early with the members of RAIGs and may
represent new single member subfamily of class C
receptors.

The GABAB receptors are present in cluster 31. It is repre-
sented by four sub-branches, of which three are GABABR1-
3_Hum type receptors and fourth sub-branch of Dro-
sophila orphan receptors (Q9VKA4 and Q9VR40) related
to that of GABA receptors. GABAB3 is exclusively present in
Drosophila as separate branch whose function is not yet
known. Previous results have only been able to function-
ally characterize D-GABABR1 and R2 when the two sub-
types are co-expressed either in Xenopus laevis oocytes or
mammalian cell lines, whilst D-GABABR3 was inactive in
any combination. This suggests D-GABABR3 requires a
counterpart other than D-GABABR1 and R2 to form a
functional heterodimer [60]. Thus the current clustering
approach suggests that Q9VKA4_Dro or Q9VR40_Dro
may interact with D-GABABR3 and form a functional
heterodimer.

Frizzled/smoothened receptors
Cluster 32 comprises receptors with a long (about 200-
amino acid) N-terminus and conserved cysteine rich
domains (CRD) which are likely to participate in Wnt lig-
and binding (Figure 9). These receptors control the speci-
fication of cell fate, cell adhesion, migration, polarity and
proliferation [61]. This cluster is represented by ten
human (FZD1-10) and four Drosophila (FRZ1-4) frizzled
receptors together with smoothened (SMO_Hum and
SMO_Dro) receptors. The topology of the phylogenetic
tree shows one smoothened and four frizzled branches.
FRZ1_Dro is closely related to human FZD3_Hum and
FZD6_Hum. FRZ2_Dro is related to FZD5_Hum and
FZD8_Hum, whereas FRZ3_Hum and FRZ4_Hum form
separate branches distantly related to other receptors.

Unassociated GPCRs
Thirty one GPCR sequences could not be included in any
cluster with appreciable bootstrap values or BLASTP simi-
larity. This can either be viewed as members of single
member clusters with certain atypical parts of their
sequences that could be a result of chimeric origin of the
receptors or due to evolutionary pressure not shared by

their closest phylogenetic neighbors [62]. We have there-
fore placed these receptors separately as unassociated
GPCRs, although these receptors clearly do not belong to
the same group (see Additional data file 1). Most of the
unassociated receptors remain as orphan receptors.

Conclusion
The phylogenetic analyses performed using human and
Drosophila GPCRs suggest that the sequences can be
divided into 32 clusters and reveals unexpected level of
similarity between human and Drosophila GPCRs. 21 clus-
ters group Drosophila and human GPCRs together suggest-
ing high evolutionary conservation across species for
GPCR sequences. There are 10 clusters, four of nucleotide-
lipid receptors three clusters of peptide receptors and two
clusters of chemokine and one cluster of glutamate recep-
tors that do not contain any representation from Dro-
sophila GPCRs in our current dataset of sequences
considered. Perhaps the immune-related receptors, such
as the chemokine ones, are not either recognized yet or
not present in lower organisms such as Drosophila. If there
is a clear absence of such classes of receptors, this might
also suggest that immune defense is regulated by proteins
other than GPCRs in Drosophila. Interestingly, there is one
cluster of secretin Drosophila receptors where there is no
human representation. These proteins are involved in
aging in Drosophila. Furthermore, in this analysis, we also
notice that out of the 21 clusters that co-cluster human
and Drosophila GPCRs, Drosophila GPCRs remain isolated
sub-clusters in 12 of them leaving behind only nine clus-
ters that allow easy inter-mixing of the two sets of
sequences. This includes 3 clusters each of peptide and
biogenic amine receptors and one cluster each of class B,
C and frizzled receptors.

The current clustering analysis provides ligand class asso-
ciation to 52 Drosophila (Table 2) and 95 human orphan
receptors could be associated with probable ligand classes
using co-clustering principles as earlier observed within
human GPCR sequences alone [12]. Further, similar cellu-
lar localizations have been suggested for Drosophila
orphan receptors that belong to the opsin family (cluster
14). GPCRs with similar extracellular domain architecture
also co-cluster suggesting this similarity is encoded even
within the GPCR domain. Further this analysis also sug-
gests dimerizing partner (Q9VKA4_Dro or Q9VR40_Dro)
for D-GABABR3 that might form a functional het-
erodimer. We have determined the relationship of the
receptors within subgroups of the large GPCR superfamily
by means of a cross-genome phylogenetic clustering
approach. These studies also revealed a higher-level phyl-
ogenetic organization in which clusters with common lig-
and structure or chemistry, or a shared function, are
evident across genomes. We hope that this approach
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Table 2: List of Drosophila orphan receptors

Name Swissprot 
Code

Best match receptor with known 
ligand; % Identity

Cluster Description

Peptide receptors
Q8I943_Dro Q8I943 SSR2_HUMAN; 40.2 2 Somatostatin receptor
Q8ISJ9_Dro Q8ISJ9 SSR5_HUMAN; 45.8 2 Orphan GPCR
Q9V858_Dro Q9V858 GRPR_HUMAN; 40.0 4 CG30106 protein
Q9V9K3_Dro Q9V9K3 BRS3_HUMAN; 36.4 4 CG14593 protein
Q8SWR3_Dro Q8SWR3 5 RE15519p; CG16752 protein
Q9V5T1_Dro Q9V5T1 TRFR_HUMAN; 22.5 5 CG13229 protein; AT19640p
Q9VDC4_Dro Q9VDC4 GHSR_HUMAN; 34.2 5 CG5911 protein
Q9VT27_Dro Q9VT27 TRFR_HUMAN; 38.3 5 CG16726 protein
Q9W025_Dro Q9W025 TRFR_HUMAN; 27.4 5 CG8985 protein
Q9W027_Dro Q9W027 TRFR_HUMAN; 29.3 5 CG13803 protein
GRHRII_Dro GRHRII_Dro GRR2_HUMAN; 34.0 6 Putative corazonin receptor
Q8SX01_Dro Q8SX01 LSHR_HUMAN; 50.0 7 RH44949p
Q9NDI1_Dro Q9NDI1 LSHR_HUMAN; 48.9 7 Glycoprotein hormone receptor II
Q9VBP0_Dro Q9VBP0 LGR8_HUMAN; 35.4 7 CG31096-PA
Q9VYG0_Dro Q9VYG0 LGR8_HUMAN; 40.6 7 CG4187 protein
Q8MKU0_Dro Q8MKU0 NFF2_HUMAN; 31.2 8 CG30340-PA
Q9VWQ9_Dro Q9VWQ9 CCKR_HUMAN; 42.0 8 CG32540 protein
Q9VWR3_Dro Q9VWR3 CCKR_HUMAN; 29.6 8 CG6857 protein
Q8SZ35_Dro Q8SZ35 NY2R_HUMAN; 37.0 11 RE18294p
Q9VRM0_Dro Q9VRM0 NYR_DROME; 37.9 11 CG10626 protein
Q9VW75_Dro Q9VW75 NY1R_HUMAN; 36.6 11 CG7395 protein; GH23382p
Q9W189_Dro Q9W189 NYR_DROME; 29.0 11 CG13575 protein
Nucleotide and lipid receptors
Q9VTU7_Dro Q9VTU7 OPS3_DROME; 38.6 14 CG5638 protein; GH14208p
Q9VVJ1_Dro Q9VVJ1 O00325; 26.9 18 CG7497 protein; GH27361p
Biogenic amine receptors
Q9VCZ3_Dro Q9VCZ3 5H4_HUMAN; 44.3 20 CG6919 protein
Q9VG54_Dro Q9VG54 5H4_HUMAN; 39.9 20 CG6989 protein
O77269_Dro O77269 ML1A_HUMAN; 29.2 21 EG:22E5.10 protein
O77270_Dro O77270 ML1A_HUMAN; 28.1 21 EG:22E5.11 protein
Q9VEG1_Dro Q9VEG1 5H1A_HUMAN; 39.6 22 CG7431 protein
Q9VEG2_Dro Q9VEG2 5HT1_DROME; 19.4 22 CG16766 protein
Q9VAA2_Dro Q9VAA2 AA2A_HUMAN; 39.2 23 CG9753 protein
Q9VHW1_Dro Q9VHW1 ACM3_HUMAN; 36.1 23 CG7918 

protein
Q9VMI4_Dro Q9VMI4 5HT1_DROME; 22.3 23 CG13995 protein; RE05601p
Q9VBG4_Dro Q9VBG4 HH2R_HUMAN; 32.6 24 CG12290 protein; GH12381P
Q9VE32_Dro Q9VE32 A2AA_HUMAN; 39.5 24 CG18208 protein
Q9W3V5_Dro Q9W3V5 Q13675; 30.3 24 CG12796 protein
Class B (secretin) receptors
Q9NEF7_Dro Q9NEF7 CRF2_HUMAN; 37.0 25 EG:BACR25B3.3 protein
Q9V6C7_Dro Q9V6C7 CRF2_HUMAN; 42.8 25 CG12370 protein
Q9V6N4_Dro Q9V6N4 CGRR_HUMAN; 41.1 25 CG17043 protein
Q9V716_Dro Q9V716 CRF2_HUMAN; 42.8 25 CG8422 protein
Q8INM0_Dro Q8INM0 MTH_DROME; 38.2 26 CG31147-PA
Q8IPD0_Dro Q8IPD0 MTHA_DROME; 29.8 26 CG31720-PB
Cell adhesion receptors
Q8SZ78_Dro Q8SZ78 CD97_HUMAN; 27.4 27 RE14222p
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proves valuable for identifying the natural ligands of Dro-
sophila and human orphan receptors.

Methods
Sequence data mining
Human (537) and Drosophila (284) GPCR amino acid
sequences were downloaded from GPCRDB (7.0) [18].
The subset of entries containing the keyword 'olfactory
receptors (OR)' or 'gustatory receptors (GR)' or 'taste
receptors' were extracted by text parsing and were
removed as they were extremely diverse sequences and
inclusion of them affects badly on alignments quality.
Further, we wanted to avoid polymorphism, splice vari-
ants, pseudogenes and duplicates of these receptors and
sequences above 90% sequence identity were removed
from the data set using CD-HIT [63]. This set amounted to
371 human and 113 Drosophila sequences (Additional
data file 1). GPCRs without published ligands in the
NCBI-PubMed http://www.ncbi.nlm.nih.gov/pubmed/
were considered as orphan receptors. The sequences were
renamed to add suffix _Hum and _Dro to refer to human
and Drosophila sequences respectively.

Transmembrane helix predictions
Transmembrane domains were identified using
HMMTOP program [64]. Amino termini upstream of
TMH-1 and carboxyl termini downstream of TMH-7 were
removed as they show extreme variability in these regions.
Sequence comprising of TMH-1 to TMH-7 alone were
considered for the analysis (Figure 2).

Multiple sequence alignments
ClustalX 1.83 [65] was used for multiple sequence align-
ments (MSA) of receptors with a gap penalty of 10, a gap
extension penalty of 0.05 and delay divergent sequences
of 35% and protein weight matrix was BLOSUM series.
The slow-accurate method was used for the initial pair-
wise alignments. The protein weight matrix was Blossom
30. When necessary, alignments were optimized by man-
ual editing (Figure 2).

Phylogenetic analysis
An overall phylogenetic tree was inferred from the multi-
ple sequence alignment using PHYLIP package (V 3.5)
[66]

Sequence bootstrapping
The bootstrapping of multiple sequence alignment was
performed 100 times using SEQBOOT to obtain 100 dif-
ferent alignments. Owing to the limitations in the CON-
SENSE program of Phylip package to handle large
datasets, we restricted to 100 bootstrap replication steps
[16].

Neighbor-joining tree
Protein distances were calculated using PROTDIST from
the PHYLIP package. The trees were calculated using
Neighbor-Joining (NJ) method [67,68] on 100 different
distance matrices using NEIGHBOR from the PHYLIP 3.5
package, resulting in 100 trees. These were analyzed using
CONSENSE from the PHYLIP package to derive a boot-
strapped consensus tree. An unrooted tree was plotted
using TREEVIEW [69]. Sequences with more than 50%
bootstrap support values were confirmed and grouped.

Maximum likelihood trees
MSAs for each of the groups were obtained as described
above and were used for building maximum likelihood
trees [70] using TREE-PUZZLE 5.1 [71]. It is least affected
by sampling errors and robust to many violations of the
assumptions in the evolutionary model [72]. Parameters
were estimated by Quartet sampling and NJ tree; The
jones-taylor-thornton (JTT) substitution model was used
for the calculation with amino acid usage estimated from
data, site-to-site rate variation modeled on a gamma dis-
tribution with eight rate categories plus invariant sites,
and the gamma distribution parameters estimated from
the data. 10,000 quartet puzzling steps were performed to
obtain support values for each internal branch and trees
inferred with the highest likelihood. This method outper-
forms other methods like neighbor joining or parsimony
methods except that it is computationally intensive,

Q8T4B2_Dro Q8T4B2 CD97_HUMAN; 26.6 27 AT07595p
Q9V4V8_Dro Q9V4V8 CD97_HUMAN; 22.6 27 CG8639 protein
STAN_Dro STAN_DROME CD97_HUMAN; 50.8 27 Protocadherin-like wing polarity protein stan 

precursor; Starry night protein; Flamingo 
protein

Class C (glutamate) receptors
Q9V4U4_Dro Q9V4U4 Q8NFS4(MGR7_HUMAN); 41.1 28 CG30361 protein
BOSS_Dro BOSS_DROME O95357(RAIG1); 22.3 30 Bride of sevenless protein precursor
Q9VKA4_Dro Q9VKA4 Q9Y133; 27.2 31 CG31760 protein
Q9VNZ5_Dro Q9VNZ5 MGR_DROME; 32.3 31 CG32447 protein
Q9VR40_Dro Q9VR40 GBR2_HUMAN; 31.4 31 CG31660 protein

Table 2: List of Drosophila orphan receptors (Continued)
Page 17 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q8T4B2
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9V4V8
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=STAN_DROME
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9V4U4
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=BOSS_DROME
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9VKA4
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9VNZ5
http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=Q9VR40


BMC Genomics 2005, 6:106 http://www.biomedcentral.com/1471-2164/6/106
extremely slow and cannot be applied to very large data-
sets. Drosophila 5HTA receptor (5HTA_Dro) of family A
was used as out-group for secretin, glutamate, cell adhe-
sion and frizzled receptors. Human (O75205_Hum or
GPRC5B) receptor of family B was used as out-group for
peptide, chemokine, nucleotide and lipid and biogenic
amine receptors for tree constructions (out-groups not
shown in the figures) using Tree View [69].

BLAST searches
For sequences with lower support values, similarity meas-
ures obtained by searching all against all sequences using
BLASTP [73] were used to associate them to the clusters
identified by PHYLIP and maximum likelihood methods.
Manual inspection of the alignments, bit-score, E-Value,
and length of pairwise alignments were considered as
measures of similarity. Such receptors may be distantly
related to members of the groups but may be sharing high
structural similarity and common functional role, possi-
bly due to convergent evolution [74]. It is also possible
that these sequences are very diverse that the clustering
methods were not sensitive enough to measure these
changes [17].

Authors' contributions
M.R.P. Rao has carried out the work and has written the
first draft of the manuscript. R.S. has initiated the idea and
was involved in discussions and drafting of the final
manuscript.

Additional material

Acknowledgements
R.S. is a recipient of Senior Research Fellowship awarded by the Wellcome 
Trust, UK. M.R.P. Rao is a recipient of Senior Research fellowship awarded 
by Council of Scientific and Industrial Research (CSIR), INDIA. We also 
thank NCBS-TIFR for infrastructural support.

References
1. Christopoulos A: Allosteric binding sites on cell-surface recep-

tors: novel targets for drug discovery.  Nat Rev Drug Discou 2002,
1:198-210.

2. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox
BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M,
Miyano M: Crystal structure of rhodopsin: A G protein-cou-
pled receptor.  Science 2000, 289:739-745.

3. Libert F, Schiffmann SN, Lefort A, Parmentier M, Gerard C, Dumont
JE, Vanderhaeghen JJ, Vassart G: The orphan receptor cDNA
RDC7 encodes an A1 adenosine receptor.  Embo J 1991,
10:1677-1682.

4. Pyne S, Pyne NJ: Sphingosine 1-phosphate signalling in mam-
malian cells.  Biochem J 2000, 349:385-402.

5. Marchese A, George SR, Kolakowski LFJ, Lynch KR, O'Dowd BF:
Novel GPCRs and their endogenous ligands: expanding the
boundaries of physiology and pharmacology.  Trends Pharmacol
Sci 1999, 20:370-375.

6. Civelli O, Nothacker HP, Reinscheid R: Reverse physiology: dis-
covery of the novel neuropeptide, orphanin FQ/nociceptin.
Crit Rev Neurobiol 1998, 12:163-176.

7. Gaulton A, Attwood TK: Bioinformatics approaches for the
classification of G-protein-coupled receptors.  Curr Opin
Pharmacol 2003, 3:114-120.

8. Narumiya S, Sugimoto Y, Ushikubi F: Prostanoid receptors: struc-
tures, properties, and functions.  Physiol Rev 1999, 79:1193-1226.

9. An S, Bleu T, Hallmark OG, Goetzl EJ: Characterization of a novel
subtype of human G protein-coupled receptor for lysophos-
phatidic acid.  J Biol Chem 1998, 273:7906-7910.

10. Im DS, Heise CE, Ancellin N, O'Dowd BF, Shei GJ, Heavens RP, Rigby
MR, Hla T, Mandala S, McAllister G, George SR, Lynch KR: Charac-
terization of a novel sphingosine 1-phosphate receptor, Edg-
8.  J Biol Chem 2000, 275:14281-14286.

11. Szekeres PG, Muir AI, Spinage LD, Miller JE, Butler SI, Smith A, Rennie
GI, Murdock PR, Fitzgerald LR, Wu H, McMillan LJ, Guerrera S, Vaw-
ter L, Elshourbagy NA, Mooney JL, Bergsma DJ, Wilson S, Chambers
JK: Neuromedin U is a potent agonist at the orphan G pro-
tein-coupled receptor FM3.  J Biol Chem 2000, 275:20247-20250.

12. Joost P, Methner A: Phylogenetic analysis of 277 human G-pro-
tein-coupled receptors as a tool for the prediction of orphan
receptor ligands.  Genome Biol 2002, 3:RESEARCH0063.

13. Ignatov A, Lintzel J, Hermans-Borgmeyer I, Kreienkamp HJ, Joost P,
Thomsen S, Methner A, Schaller HC: Role of the G-protein-cou-
pled receptor GPR12 as high-affinity receptor for sphingosyl-
phosphorylcholine and its expression and function in brain
development.  J Neurosci 2003, 23:907-914.

14. Metpally RPR, Sowdhamini R: Genome wide survey of G protein-
coupled receptors in Tetraodon nigroviridis.  BMC Evol Biol
2005, 5:41.

15. Attwood TK, Findlay JB: Fingerprinting G-protein-coupled
receptors.  Protein Eng 1994, 7:195-203.

16. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB: The G-pro-
tein-coupled receptors in the human genome form five main
families. Phylogenetic analysis, paralogon groups, and
fingerprints.  Mol Pharmacol 2003, 63:1256-1272.

17. Josefsson LG: Evidence for kinship between diverse G-protein
coupled receptors.  Gene 1999, 239:333-340.

18. Horn F, Weare J, Beukers MW, Horsch S, Bairoch A, Chen W,
Edvardsen O, Campagne F, Vriend G: GPCRDB: an information
system for G protein-coupled receptors.  Nucleic Acids Res 1998,
26:275-279.

19. Banfi S, Borsani G, Rossi E, Bernard L, Guffanti A, Rubboli F, Marchi-
tiello A, Giglio S, Coluccia E, Zollo M, Zuffardi O, Ballabio A: Identi-
fication and mapping of human cDNAs homologous to
Drosophila mutant genes through EST database searching.
Nat Genet 1996, 13:167-174.

20. Fortini ME, Skupski MP, Boguski MS, Hariharan IK: A survey of
human disease gene counterparts in the Drosophila genome.
J Cell Biol 2000, 150:F23-30.

21. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR,
Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry
JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski
MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D,
Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Gold-
stein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z,
Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK,
Mungall C, O'Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J,
Zhao Q, Zheng XH, Lewis S: Comparative genomics of the
eukaryotes.  Science 2000, 287:2204-2215.

Additional data file 2
Key residues conserved among the members of cluster 17.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-6-106-S2.xls]

Additional data file 1
Table indicating the cluster, accession numbers, swissprot codes, gene 
names and description of the GPCR sequences that have been used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-6-106-S1.xls]
Page 18 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-6-106-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-6-106-S1.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10926528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1646713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1646713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10880336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10880336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10462760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10462760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10462760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12681231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12681231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9525886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10799507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10799507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10799507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10811630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10811630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12429062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12429062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12429062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8170923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8170923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10548735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10548735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8640222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10908582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731134


BMC Genomics 2005, 6:106 http://www.biomedcentral.com/1471-2164/6/106
22. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanati-
des PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis
SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman
JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej
RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G,
Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfann-
koch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L,
Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov
S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis
KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM,
Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A,
Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M,
Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Fer-
raz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS,
Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan
P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck
J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M,
Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE,
Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky
AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod
MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J,
Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nel-
son DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM,
Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert
K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-
Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Sta-
pleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E,
Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM,
Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S,
Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng
L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith
HO, Gibbs RA, Myers EW, Rubin GM, Venter JC: The genome
sequence of Drosophila melanogaster.  Science 2000,
287:2185-2195.

23. Burdett H, van den Heuvel M: Fruits and flies: a genomics per-
spective of an invertebrate model organism.  Brief Funct
Genomic Proteomic 2004, 3:257-266.

24. Davenport AP: Peptide and trace amine orphan receptors:
prospects for new therapeutic targets.  Curr Opin Pharmacol
2003, 3:127-134.

25. Reubi JC: Peptide receptors as molecular targets for cancer
diagnosis and therapy.  Endocr Rev 2003, 24:389-427.

26. Birgul N, Weise C, Kreienkamp HJ, Richter D: Reverse physiology
in Drosophila: identification of a novel allatostatin-like neu-
ropeptide and its cognate receptor structurally related to
the mammalian somatostatin/galanin/opioid receptor
family.  Embo J 1999, 18:5892-5900.

27. Matsumoto M, Kamohara M, Sugimoto T, Hidaka K, Takasaki J, Saito
T, Okada M, Yamaguchi T, Furuichi K: The novel G-protein cou-
pled receptor SALPR shares sequence similarity with soma-
tostatin and angiotensin receptors.  Gene 2000, 248:183-189.

28. Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K,
Yamanaka A, Williams SC, Richardson JA, Tsujino N, Garry MG,
Lerner MR, King DS, O'Dowd BF, Sakurai T, Yanagisawa M: Charac-
terization of a family of endogenous neuropeptide ligands for
the G protein-coupled receptors GPR7 and GPR8.  Proc Natl
Acad Sci U S A 2003, 100:6251-6256.

29. Akeson M, Sainz E, Mantey SA, Jensen RT, Battey JF: Identification
of four amino acids in the gastrin-releasing peptide receptor
that are required for high affinity agonist binding.  J Biol Chem
1997, 272:17405-17409.

30. Sainz E, Akeson M, Mantey SA, Jensen RT, Battey JF: Four amino
acid residues are critical for high affinity binding of neurome-
din B to the neuromedin B receptor.  J Biol Chem 1998,
273:15927-15932.

31. Lin Y, Jian X, Lin Z, Kroog GS, Mantey S, Jensen RT, Battey J, Northup
J: Two amino acids in the sixth transmembrane segment of
the mouse gastrin-releasing peptide receptor are important
for receptor activation.  J Pharmacol Exp Ther 2000,
294:1053-1062.

32. Egerod K, Reynisson E, Hauser F, Cazzamali G, Williamson M, Grim-
melikhuijzen CJ: Molecular cloning and functional expression of
the first two specific insect myosuppressin receptors.  Proc
Natl Acad Sci U S A 2003, 100:9808-9813.

33. Johnson EC, Garczynski SF, Park D, Crim JW, Nassel DR, Taghert PH:
Identification and characterization of a G protein-coupled

receptor for the neuropeptide proctolin in Drosophilamela-
nogaster.  Proc Natl Acad Sci U S A 2003, 100:6198-6203.

34. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ,
van Duin M, Hsueh AJ: The three subfamilies of leucine-rich
repeat-containing G protein-coupled receptors (LGR): iden-
tification of LGR6 and LGR7 and the signaling mechanism
for LGR7.  Mol Endocrinol 2000, 14:1257-1271.

35. Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassil-
eva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M,
Greene J, Monsma FJ, Zhang FL: Identification and characteriza-
tion of a novel RF-amide peptide ligand for orphan G-pro-
tein-coupled receptor SP9155.  J Biol Chem 2003,
278:27652-27657.

36. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H,
Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buck-
ingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS,
Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M: Orexins
and orexin receptors: a family of hypothalamic neuropep-
tides and G protein-coupled receptors that regulate feeding
behavior.  Cell 1998, 92:573-585.

37. Bae YS, Park EY, Kim Y, He R, Ye RD, Kwak JY, Suh PG, Ryu SH:
Novel chemoattractant peptides for human leukocytes.  Bio-
chem Pharmacol 2003, 66:1841-1851.

38. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de
Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes
EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R,
Walther T: Angiotensin-(1-7) is an endogenous ligand for the
G protein-coupled receptor Mas.  Proc Natl Acad Sci U S A 2003,
100:8258-8263.

39. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ: A diverse family
of GPCRs expressed in specific subsets of nociceptive sen-
sory neurons.  Cell 2001, 106:619-632.

40. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY: Identifi-
cation and molecular characterization of two closely related
G protein-coupled receptors activated by prokineticins/
endocrine gland vascular endothelial growth factor.  J Biol
Chem 2002, 277:19276-19280.

41. Langmead CJ, Szekeres PG, Chambers JK, Ratcliffe SJ, Jones DN, Hirst
WD, Price GW, Herdon HJ: Characterization of the binding of
[(125)I]-human prolactin releasing peptide (PrRP) to
GPR10, a novel G protein coupled receptor.  Br J Pharmacol
2000, 131:683-688.

42. Zlotnik A, Yoshie O: Chemokines: a new classification system
and their role in immunity.  Immunity 2000, 12:121-127.

43. Park Y, Kim YJ, Adams ME: Identification of G protein-coupled
receptors for Drosophila PRXamide peptides, CCAP, cora-
zonin, and AKH supports a theory of ligand-receptor
coevolution.  Proc Natl Acad Sci U S A 2002, 99:11423-11428.

44. O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML:
The Drosophila ninaE gene encodes an opsin.  Cell 1985,
40:839-850.

45. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offer-
manns S: PUMA-G and HM74 are receptors for nicotinic acid
and mediate its anti-lipolytic effect.  Nat Med 2003, 9:352-355.

46. Montero C, Campillo NE, Goya P, Paez JA: Homology models of
the cannabinoid CB1 and CB2 receptors. A docking analysis
study.  Eur J Med Chem 2005, 40:75-83.

47. Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y, Damron DS:
Sphingosylphosphorylcholine is a ligand for ovarian cancer
G-protein-coupled receptor 1.  Nat Cell Biol 2000, 2:261-267.

48. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hof-
stetter H, Wolf RM, Seuwen K: Proton-sensing G-protein-cou-
pled receptors.  Nature 2003, 425:93-98.

49. Li Q, Schachter JB, Harden TK, Nicholas RA: The 6H1 orphan
receptor, claimed to be the p2y5 receptor, does not mediate
nucleotide-promoted second messenger responses.  Biochem
Biophys Res Commun 1997, 236:455-460.

50. Branchek TA, Blackburn TP: Trace amine receptors as targets
for novel therapeutics: legend, myth and fact.  Curr Opin
Pharmacol 2003, 3:90-97.

51. Barrett P, Conway S, Morgan PJ: Digging deep--structure-func-
tion relationships in the melatonin receptor family.  J Pineal
Res 2003, 35:221-230.

52. Matsumoto M, Saito T, Takasaki J, Kamohara M, Sugimoto T, Koba-
yashi M, Tadokoro M, Matsumoto S, Ohishi T, Furuichi K: An evolu-
tionarily conserved G-protein coupled receptor family,
Page 19 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12681233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12681233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12920149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12920149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12719537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9211882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10945859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10945859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10945859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12907701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12907701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9491897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9491897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9491897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14563494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11886876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11886876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11886876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11030716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10714678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10714678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12177421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12177421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12177421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2985266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10806476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12955148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12955148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9240460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9240460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9240460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12550748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12550748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14521626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14521626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10833454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10833454


BMC Genomics 2005, 6:106 http://www.biomedcentral.com/1471-2164/6/106
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

SREB, expressed in the central nervous system.  Biochem Bio-
phys Res Commun 2000, 272:576-582.

53. Feng G, Hannan F, Reale V, Hon YY, Kousky CT, Evans PD, Hall LM:
Cloning and functional characterization of a novel dopamine
receptor from Drosophila melanogaster.  J Neurosci 1996,
16:3925-3933.

54. Han KA, Millar NS, Davis RL: A novel octopamine receptor with
preferential expression in Drosophila mushroom bodies.  J
Neurosci 1998, 18:3650-3658.

55. Mizushima K, Miyamoto Y, Tsukahara F, Hirai M, Sakaki Y, Ito T: A
novel G-protein-coupled receptor gene expressed in
striatum.  Genomics 2000, 69:314-321.

56. Lin YJ, Seroude L, Benzer S: Extended life-span and stress resist-
ance in the Drosophila mutant methuselah.  Science 1998,
282:943-946.

57. Foord SM, Jupe S, Holbrook J: Bioinformatics and type II G-pro-
tein-coupled receptors.  Biochem Soc Trans 2002, 30:473-479.

58. Parmentier ML, Galvez T, Acher F, Peyre B, Pellicciari R, Grau Y,
Bockaert J, Pin JP: Conservation of the ligand recognition site
of metabotropic glutamate receptors during evolution.  Neu-
ropharmacology 2000, 39:1119-1131.

59. Pin JP, Galvez T, Prezeau L: Evolution, structure, and activation
mechanism of family 3/C G-protein-coupled receptors.  Phar-
macol Ther 2003, 98:325-354.

60. Mezler M, Muller T, Raming K: Cloning and functional expression
of GABA(B) receptors from Drosophila.  Eur J Neurosci 2001,
13:477-486.

61. Wang HY, Malbon CC: Wnt signaling, Ca2+, and cyclic GMP:
visualizing Frizzled functions.  Science 2003, 300:1529-1530.

62. Fredriksson R, Gloriam DE, Hoglund PJ, Lagerstrom MC, Schioth HB:
There exist at least 30 human G-protein-coupled receptors
with long Ser/Thr-rich N-termini.  Biochem Biophys Res Commun
2003, 301:725-734.

63. Li W, Jaroszewski L, Godzik A: Clustering of highly homologous
sequences to reduce the size of large protein databases.  Bio-
informatics 2001, 17:282-283.

64. Tusnady GE, Simon I: The HMMTOP transmembrane topology
prediction server.  Bioinformatics 2001, 17:849-850.

65. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The
CLUSTAL_X windows interface: flexible strategies for mul-
tiple sequence alignment aided by quality analysis tools.
Nucleic Acids Res 1997, 25:4876-4882.

66. Felsenstein J: PHYLIP, phylogenetic inference package,
Department of Genetics, University of Washington, Seattle,
WA.  2003.

67. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees.  Mol Biol Evol 1987,
4:406-425.

68. Kumar S, Gadagkar SR: Efficiency of the neighbor-joining
method in reconstructing deep and shallow evolutionary
relationships in large phylogenies.  J Mol Evol 2000, 51:544-553.

69. Page RD: TreeView: an application to display phylogenetic
trees on personal computers.  Comput Appl Biosci 1996,
12:357-358.

70. Strimmer K, Haeseler AV: Quartet puzzling: a quartet maxi-
mum-likelihood method for reconstructing tree topologies.
Mol Biol Evol 1996, 13:964-969.

71. Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZ-
ZLE: maximum likelihood phylogenetic analysis using quar-
tets and parallel computing.  Bioinformatics 2002, 18:502-504.

72. Felsenstein J: Phylogenies from molecular sequences: infer-
ence and reliability.  Annu Rev Genet 1988, 22:521-565.

73. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25:3389-3402.

74. Donnelly D, Findlay JB, Blundell TL: The evolution and structure
of aminergic G protein-coupled receptors.  Receptors Channels
1994, 2:61-78.
Page 20 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10833454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8656286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9570796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12196118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12196118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11168554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12791979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12791979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12565841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12565841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12565841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11294794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11294794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9396791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9396791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3071258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3071258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8081733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8081733
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Peptide receptors
	Chemokine receptors
	Nucleotide and lipid receptors
	Biogenic amine receptors
	Class B (secretin) receptors
	Cell adhesion receptors
	Class C (glutamate) receptors
	Frizzled/smoothened receptors
	Unassociated GPCRs

	Conclusion
	Methods
	Sequence data mining
	Transmembrane helix predictions
	Multiple sequence alignments
	Phylogenetic analysis
	Sequence bootstrapping
	Neighbor-joining tree
	Maximum likelihood trees
	BLAST searches

	Authors' contributions
	Additional material
	Acknowledgements
	References

