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In the present work, the flow pattern in pipe flows has been simulated for drag reducing fluids using a
low Reynolds number k–εεεεε model. The model uses a non-linear molecular viscosity and damping function
to account for near wall effects. The comparison between the predictions and the experimental profiles
of axial velocity and kinetic energy are in good agreement. A systematic study has been undertaken to
investigate the effect of rheological parameters and to consider the modification to the flow that arises in
the presence of a fluid yield stress.

Introduction

The flow of non-Newtonian fluids and slurries in
pipes occurs in a wide range of practical applications
in the process industries. Most flows of engineering
importance are turbulent and viscosities must be high
before a laminar flow predominates. When viscosities
are high the fluids are often non-Newtonian in charac-
ter. Thus, in the field of the non-Newtonian flow, the
laminar flow tends to predominate. However, there are
still many instances in which the turbulent flow of non-
Newtonian fluids is encountered. This non-Newtonian
behavior may be an inherent property of the material
or may have resulted from the use of additives to
achieve particular rheological characteristics. The ad-
dition of very small concentrations of high polymeric
substances can reduce the frictional resistance in the
turbulent flow to as low as one-quarter that of the pure
solvent. This phenomenon, drag reduction, can occur
both with fluids which exhibit Newtonian and non-
Newtonian viscous characteristics.

Extensive experimental and theoretical studies of
turbulent non-Newtonian pipe flows were carried out
by Metzner and co-workers during the 1950s (Metzner
and Reed, 1955; Metzner, 1957; Dodge and Metzner,
1959). These workers indicated how the friction fac-
tor f varies with a generalized Reynolds number Re
(Metzner and Reed, 1955) in the laminar, transitional
and turbulent regimes. For the fully-developed turbu-
lent flow of power-law fluids, Dodge and Metzner
(1959) developed a semi-theoretical expression for the
mean velocity profile together with a correlation for f
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versus Re. The study revealed that a decreasing n
slightly delays transition to higher Re, and that fric-
tion factors reduce with decreasing values of n. Hartnett
and Kostic (1990) examined the available turbulent
friction-factor correlations, and found that the Dodge
and Metzner correlation (1959) produced the best
agreement with the available measurements. The tran-
sition regime has been considered by Reed and
Pilehvari (1993) who developed a procedure to calcu-
late transitional friction factors by combining the
laminar and turbulent friction factors of Dodge and
Metzner (1959).

Mohammed et al. (1975) developed a method for
calculating the fully-developed friction factor and mean
velocity profile by numerical integration of the mean-
momentum equation. The Reynolds stresses were
modeled by analogy with the power-law model, and
by use of Prandtl’s hypothesis (Schlichting, 1968).
Their calculations showed fairly good agreement with
the measurements of Bogue (1959) over a wide range
of Re and n, although the model coefficients were
evaluated by reference to this data. The planar turbu-
lent flow of a power-law fluid through a film bearing
was calculated numerically by Pierre and Boudet
(1985), but no comparisons were made with experi-
mental data. These workers also closed the Reynolds
stresses by analogy with the power-law model, but the
eddy viscosity was determined using the low Reynolds
number two-equation k–ε turbulence model of Lam and
Bremhorst (LB) (1981).

Malin (1997) developed a low Reynolds number
k–ε turbulence model exclusively for purely viscous
power law fluids. His model was based on the Lam
and Bremhorst (1981) damping function which he
modified empirically by including the power index n
but he gave no account of any effects of the non-linear
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non-Newtonian viscosity on the turbulence model, ex-
cept for the consideration of the power viscosity law
for molecular diffusion terms. Malin’s model only
works for purely viscous fluids.

Cruz and Pinho (2003) developed a low Reynolds
number model for predicting turbulent pipe flows of
various polymer solutions. Their model was based on
the Newtonian model of Nagano and Hishida (1987)
with new viscous damping functions and one constant.
The flow predictions compare favorably with the re-
sults from the experiment for mean velocity, but the
kinetic energy predictions were not in agreement with
the experimental data. A fairly complete review of the
low Reynolds number k–ε model of the turbulent shear
flows has been given by Patel et al. (1985), Hrenya et
al. (1995) and Thakre and Joshi (2000, 2002). Thakre
and Joshi (2000) have analyzed twelve different low
Reynolds number k–ε models for the case of a single-
phase pipe flow. For this purpose, they have used four
criteria; accurate prediction of the radial variation of
axial velocity, the turbulent kinetic energy and the eddy
diffusivity (compared with the experimental data of
Durst et al. (1995)). The fourth criterion was rather
stringent and stipulated the necessary condition of the
overall energy balance, i.e., the volume integral of ε
must be equal to the energy-input rate (the pressure
drop multiplied by the volumetric flow rate). All these
four criteria were found to be satisfied by Lai and So
(1990) (LSO) as shown by Thakre and Joshi (2000).
In the present work, it was thought desirable to extend
the work of Lai and So (1990) using Lai and So model.
The aim of the work is to undertake a systematic study
to investigate the effect of rheological parameters and
to consider the modification to the flow that arises in
the presence of a fluid yield stress. Further, it deals
with the pipeline flow of time-independent viscous flu-
ids described by the power-law rheological model,
which relates the shear stress to the strain rate via the
consistency index K and the power-law index n. For
values of n < 1, the fluid is pseudoplastic (shear thin-
ning), and for values of n > l, it is dilatant (shear thick-
ening). If n = 1 the fluid is Newtonian.

1. Mathematical Model

1.1 The transport equations
For steady, isothermal, incompressible, fully de-

veloped turbulent pipe flow, the set of governing equa-
tions for the flow are given as follows:

Momentum equation:
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Transport equation for the turbulent kinetic energy (k)
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rate (ε) where,
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Since the viscosity is a non-linear function of fluctuat-
ing kinematics tensors it also fluctuates and this leads
to the definition of average and fluctuating viscosities.
An expression for the time averaged molecular viscos-
ity at a high Re number was derived by Cruz and Pinho
(2003) which is in a closed form once k and ε are known
and given by
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The expression (Eq. (6)) was derived from arguments
of high Reynolds number turbulence, the true average
molecular viscosity is different near walls and at low
Reynolds numbers. At a wall there are no velocity fluc-
tuations, the flow is uni-directional, and the average
viscosity must reduce to the pure viscometric form,
i.e., without any extensional effect. To take this into
account µh  must be reduced by an appropriate mo-
lecular viscosity damping function f

v
. Hence, the final

expression for the average molecular viscosity

µ µ η= + −( ) ( )f fv h v v1 7
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The role of f
v
 is akin to that of the damping function

for the eddy viscosity fµ and it was decided to make
f

v
 = fµ after an extensive series of tests analyzed both

the effects of f
v
 > fµ and f

v
 < fµ onto the predictions of

the turbulence model. However, note that fµ is not given
by the standard Newtonian expression as it is affected
by the new fluid rheology.

For Newtonian fluids there are many low Reynolds
number k–ε models, which differ in the form of the
extra terms and damping functions. Dhotre and Joshi
(2004) have successfully extended this model to pre-
dict a heat transfer coefficient in low as well as high
Prandtl number fluids. The model proposed by Lai and
So (1990) has been chosen for its good performance in
the Newtonian pipe flow. In Lai and So (1990)’s model
the various extra terms and damping functions are:
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For our purpose, these four equations are all modified,
with the average molecular kinematic viscosity-taking
place of a constant kinematic viscosity. The damping
function fµ used by Lai and So (1990) is given by the
following expression:

f yµ = − −( ) ( )+1 0 0115 11exp .

Where, in the low Reynolds number k–ε model, the
function f

2
 is introduced primarily to incorporate the

low Reynolds effect in the destruction term of ε. The
important criterion for the function f

2
 is that, it should

force the dissipation term in the ε equation to vanish
at the wall. In the high Reynolds number flows, re-
mote from the wall, the function f

1
 asymptotes to the

value of one in accordance with the high Reynolds
number form of the model. The k–ε model param-
eters are: Cµ = 0.09, Cε1

 = 1.35, Cε2
 = 1.8, σ

k
 = 1 and

σε = 1.3.
1.1.1 Viscosity damping functions            All the low
Re models adopt a damping function fµ to account for

the direct effect of molecular viscosity on the shear
stress near the wall (viscous sub-layer and buffer zone).
It may be noted that the wall functions used in connec-
tion with the standard k–ε model (fµ = 1) are usually
applied in a region y+ > 30. The damping function re-
duces the influence of the Reynolds shear stress on the
total stress as the wall is approached, thus enhancing
the influence of the molecular viscosity. In the wall
region, the purely viscous stress contribution dominates
the total stress in the momentum balance. The func-
tion fµ should be modified for consistency with the
adopted rheological equation and for that the Cruz and
Pinho (2003)’s expression has been incorporated in the
present work. To modify fµ accounting the different
fluid rheology, they used philosophy used by van Dri-
est (1956) and derived functions fµv

 (viscometric damp-
ing function) and fµe

 (elongational damping function)
for purely shear-thinning (n < 1) and purely Trouton-
thickening fluids (p > 1), respectively. The damping
function adopted in the present work is the product of
fµv

 and fµe
. Cruz and Pinho (2003) finally came up with

the following expression:
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Where, A+ and C are the constants proposed by Cruz
and Pinho (2003).
1.2 Boundary conditions

Since the flow is axisymmetric, only the bound-
ary conditions at the wall and the symmetry line are
required to be specified:
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Equations (1)–(12), along with the boundary conditions
(Eq. (13)), were solved.
1.3 Method of solution

The solution procedure is to solve the momentum
equations to obtain the mean axial velocity, turbulent
kinetic energy (k), and the turbulent energy dissipa-
tion rate (ε). The governing equations for the k–ε model
are ordinary differential equations, and therefore can
be solved by any iteration scheme for split boundary-
value problems. A set of equations was solved numeri-
cally, which consisted of the following steps: (i) gen-
eration of grids, (ii) conversion of governing equations
into algebraic equations, (iii) selection of discretization
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scheme, (iv) formulation of discretized equations at
every grid location and (v) development of a suit-
able iterative scheme for the use in obtaining a final
solution. The finite control volume technique proposed
by Patankar (1980) was used for solution of differen-
tial equations. Several discretization schemes (upwind,
hybrid, exponential and the power law) were tested.
Out of these, the second order UPWIND scheme was
found to be the best and was used for discretization of
the governing equations. The algebraic equations ob-
tained after discretization were solved by a tri-diago-
nal matrix algorithm (TDMA). The grid generation is
one of the important aspects of the numerical simula-
tion. The robustness of any numerical code depends
on effectiveness and the stability of the grid-genera-
tion scheme employed for the investigations. Thakre
and Joshi (2001) have investigated the effect of the
grid size in the range of 70–175. They have observed
no effect when the grid size being beyond 100, and
therefore, the same number was taken in this work. In
the present work, non-uniform grids (in the range of
70–175) have been employed and more than half of
the points have been located in the range of r/R > 0.9.
The predictions obtained from this technique were
found to be insensitive to the grids, since doubling the
number of grid points changed the solution profiles by
less than 1%. The numerical details have been given
in the Table 1.

2. Results and Discussion

2.1 Comparison of numerical predictions with the
experimental data
As a first step, it is important to establish the va-

lidity of the model for a Newtonian flow. Therefore,
comparison has been made with the experimental data
of Durst et al. (1995), Schildknecht et al. (1979),
Eggels (1994) and details are given in Thakre and Joshi
(2002). An excellent comparison result was obtained
between the model predictions and the experimental
data. For instance, Figure 1 shows a typical case of
such comparison for axial mean velocity and shear
stress. The agreement between the predicted and the
experimental data of Durst et al. (1995) seems excel-
lent for the region 0.5 < y+ <100. This Newtonian pre-

diction was obtained with the same model and code by
setting n and p equal to 1. This confirms the generality
of the proposed turbulence model. In order to validate
the low Reynolds number k–ε model for a different
fluid, fully developed pipe flow measurements for shear
thinning, drag reducing and shear thickening fluids

Reynolds number
[s]

Number of grid points
required (range)

Convergence
criteria

Number of
iteration required

4300 75–85 10–4–10–5 100–150
7442 75–85 10–4–10–5 100–150

16,600 75–85 10–4–10–5 100–200
22,000 85–150 10–4–10–5 200–250
42,900 85–150 10–4–10–5 200–250
45,300 85–150 10–4–10–5 200–250

Table 1 Numerical details

Fig. 1 Comparison of (a) velocity profile predictions and
the experimental data of Durst et al. (1995) (Re =
7442) for universal velocity profile and the present
CFD model; (b) stress profile with the experimen-
tal data of Eggels et al. (1994)
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were chosen. In the present work, the experimental data
of Escudier et al. (1998) and Presti (2000) for the drag
reducing fluids have been used for validation. Their
fluids were aqueous solutions of polyacrylamide
(PAA), xanthan gum (XG), carboxymethyl cellulose
(CMC) and a blend of XG and CMC at various weight
concentrations. The corresponding parameters of vis-
cosity laws are listed in Table 2.

2.2 Drag reducing fluids
Numerous studies have been undertaken to char-

acterize drag reducing phenomena in polymer solu-
tions. In fact addition of very low concentrations of
dissolved polymers can reduce frictional resistance in
the turbulent flow to as low as one quarter of that of
the pure solvent, making the phenomena potentially
very important. In view of this, simulations have been

Fluid KV [Pa sn] n Ke
p

0.25% CMC 0.2639 0.6174 2.0760 1.2678
0.3% CMC 0.2748 0.6377 2.7485 1.2214
0.4% CMC 0.2528 0.6177 0.9283 1.3982
0.09/0.09% CMC/XG 0.1518 0.5783 2.1833 1.1638
0.2% XG 0.2701 0.4409 3.8519 1.2592
0.125% PAA 0.2491 0.4250 8.2500 1.4796
0.2% PAA 0.7849 0.4075 9.8650 1.3175

Table 2 Parameters of viscosity law Eqs. (3)–(7) used to fit the viscosity
data

Fig. 2 Comparison of velocity profiles between CFD predictions and the experimental data of Escudier et al. (1998) for
(a) 0.3% CMC solution (Re

W
 = 4300); (b) 0.25% CMC solution (Re

W
 =16,600); (c) 0.125% PAA (Re

W
 = 42,900);

(d) 0.09/0.09% CMC/XG solution (Re
W

 = 45,300): (1) and (2), Virk’s (1975) ultimate DR asymptote; (3), present
CFD model
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carried out for drag reducing fluids. Figures 2(a)–(d)
shows a comparison between CFD predictions and the
experimental velocity profile by Escudier et al. (1998)
for different drag reducing fluids.

Figure 2(a) shows a comparison between CFD
predictions under Re = 4300 for the 0.3%CMC solu-
tion with the experimental data. Figure 2(b) shows
comparison between CFD prediction for Re = 16,600
for the 0.25% CMC solution with experimental data.
Figure 2(c) shows comparison between CFD predic-
tion for Re = 42,900 for the 0.125% PAA solution with
the experimental data. Figure 2(d) shows compari-
son between CFD prediction for Re = 45,300 for
0.09/0.09% CMC/XG solution with the experimental
data. All these figures include the CFD predictions,
the experimental data and Virk’s (1975) ultimate DR
asymptote. It can be seen that the model predictions
are in fairly good agreement with the experimental data.

The CFD predictions of turbulent kinetic energy
have been given in Figures 3(a) and (b) with the ex-
perimental data of Presti (2000) when Re = 16,600 for
a blend of 0.259% CMC and when Re = 45,300 for a
blend of 0.09/0.09% CMC/XG, respectively. The char-
acteristic turbulent kinetic energy profile for a
Newtonian fluid consists of a rapid increase from zero
on the wall to a maximum peak located in the region
y+ = 20 followed by a progressive decay down to the
centre of the pipe. The experiments show that the peak
turbulence for a drag reducing fluid is always higher
than that for a Newtonian fluids but it is located far-
ther away from the wall. It can also be noted that in
the ineterial layer the turbulent kinetic energy is well
predicted by the Lai and So model as compared to Cruz
and Pinho (2003) model.

Fig. 3 Comparison of predicted kinetic energy with the
experimental data of Presti (2000) for (a) 0.25%
CMC solution (Re

W
 = 16,600); (b) 0.09/0.09%

CMC/XG (Re
W

 = 45,300)
Fig. 4 Effect of shear behavior exponent n on (a) turbu-

lent mean velocity profiles for Re = 7442; (b) tur-
bulent kinetic energy profiles for Re = 22,000
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Fig. 5 Effect of Trouton ratio hardening exponent p on
predictions of the velocity profile for constant shear
viscosity fluids (n = 1) Re

W
 = 40,000: (1) p = 1.8;

(2) p = 1.6; (3) p = 1.4; (4) p = 1.2; (5) p = 1.0

2.3 Shear thinning and shear thickening fluids
Figures 4(a) and (b) shows the effect of n on the

velocity profile and the turbulent kinetic energy pro-
file when Re = 7442, respectively. It can be seen from
Figure 4(a) that the thickness of the viscous sub-layer
reduces with decreasing n and the velocity profiles be-
come progressively flatter owing to the increase in
apparent viscosity, and hence the turbulence diminishes
over the entire pipe cross section. It can be observed
that as the index n increases, the profiles for the power
law fluid approach the Newtonian profile as expected.
The results for n  = 0.5 fall sufficiently for the
Newtonian profile to suggest that this flow might be
transitional. For n = 1 the CFD predictions agree with
the data from the literature for Newtonian fluids and
model becomes identical to Lai and So’s (1990) low
Reynolds number model. Figure 4(b) shows the effect
of the power-law index on the turbulence kinetic en-
ergy profiles at Re = 7442. It can be seen that in addi-
tion to narrowing of the viscous sub layer, there is also
pronounced attenuation of the turbulence with a de-
creasing power-law index.

Figure 5 shows the effect of strain-hardening of
the extensional viscosity on predictions of the veloc-
ity profile for constant shear viscosity fluids. It can be
observed that as p increases the velocity profile shifts
from the Newtonian behavior and it exceeds further as
for p = 1.8, the data of which are close to that for a
laminar flow.

Conclusions

1. Difficulties encountered in experimentation as a
result of using polymer solutions for approxima-

tion idealized rheologies can cause problems in
interpretation and understanding. Application of
the CFD to flows of non-Newtonian fluids with a
rheological certainty under study has a potential
to correctly quantify and understand the effect of
different rheological parameters.

2. The modified version of Lai and So (1990) low
Reynolds number k–ε model has been used to pre-
dict the liquid velocities and the turbulent viscos-
ity for the drag reducing fluid, a non-Newtonian
fluid. The comparison between the predictions and
the experimental profiles of axial velocity and tur-
bulent kinetic energy are in good agreement. The
model also establishes a good energy balance.

Nomenclature
A+ = constant used in Eq. (12) [—]
CFD = computational fluid dynamics [—]
C = constant in Eq. (12) [—]
Cµ, Cε1

, Cε2
= turbulence parameters in the k–ε model [—]

C
P

= specific heat at a constant pressure [kJ kg–1 °C–1]
D = term contained in the k equation
(dp/dz)

c
= constant axial pressure gradient [—]

E = term contained in the ε equation
f = friction factor [—]
fµ, f1

, f
2

= damping functions used in low Reynolds number
k–ε and Reynolds stress models [—]

K
e

= viscosity consistency index of Trouton ratio
behavior [—]

K
v

= viscosity consistency index of shear behavior[—]
k = turbulent kinetic energy [m2 s–2]
k+ = normalised turbulent kinetic energy, =k/uτ

2 [—]
m = parameter defined in Eq. (6) [—]
n = viscosity power index of shear behaviour [—]
p = viscosity power index of Trouton ratio behaviour

[—]
r = radial component [m]
R = radius of a pipe [m]
Re = Reynolds number based on mean velocity, =2Ru/ν

[—]
Re* = Reynolds number based on friction velocity,

=Ruτ/ν [—]
R

T
= turbulent Reynolds number, =k2/νε [—]

R
y

= turbulent Reynolds number based on y, = k y/ν
[—]

Re
W

= wall Reynolds number, =Ruτ/νW
[—]

u = axial velocity [m s–1]
u+ = normalised mean axial fluid velocity, =u/uτ [—]
u

b
= bulk mean axial velocity of fluid [m s–1]

uτ = friction velocity, = − ( ) ( )R p zd d
c

2ρ [m s–1]
y = normal distance from the wall, =R – r [m]
y+ = dimensionless wall distance, =yuτ/ν [—]
z = axial co-ordinate [m]

ε = turbulent energy dissipation rate [m2 s–3]
ε

w
= turbulent energy dissipation rate on the wall

[m2 s–3]
µ = molecular viscosity of a fluid [kg m–1 s–1]

= time averaged molecular viscosity due to high
Reynolds number [kg m–1 s–1]

µ
t

= turbulent viscosity of a fluid [kg m–1 s–1]
ρ = density of liquid [kg m–3]
ν = molecular kinematic viscosity of a liquid [m2 s–1]

= average kinematic viscosity [m2 s–1]
ν

T
= eddy diffusivity of liquid [m2 s–1]

µ
h

ν
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σ
k

= turbulent Prandtl number for k [—]
σε = turbulent Prandtl number for ε [—]
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