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Chaogates: Morphing logic gates that exploit dynamical patterns
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Chaotic systems can yield a wide variety of patterns. Here we use this feature to generate all
possible fundamental logic gate functions. This forms the basis of the design of a dynamical
computing device, a chaogate, that can be rapidly morphed to become any desired logic gate. Here
we review the basic concepts underlying this and present an extension of the formalism to include
asymmetric logic functions. © 2010 American Institute of Physics. [doi:10.1063/1.3489889]

The patterns of chaos are used to encode and to manipu-
late inputs so as to produce a desired output. This is ac-
complished by selecting out desired patterns from the in-
finite variety offered by a chaotic system. A subset of
these patterns is then used to map the system inputs (or
initial conditions) to the desired outputs. So this process
offers a method to exploit the richness inherent in non-
linear dynamics in order to design computing devices
with the capacity to reconfigure into a range of logic
gates. The resultant morphing gates are termed cha-
ogates. Arrays of such morphing chaotic logic gates can
then be programmed to perform higher order functions
and to rapidly switch between such functions. So this ca-
pacity for reconfigurability will conceivably give us the
flexibility of programmable hardware, as well as enable
us to obtain the optimization and speed of application
specific hardware, within the same computer architec-
ture. Here we briefly review the basic tenets of this com-
puting paradigm and also provide extensions of the idea
to obtain asymmetric logic gates.

I. INTRODUCTION

Chaotic systems are renowned for the richness of their
dynamics. Whether one describes this richness as a sensitiv-
ity to perturbations or as a amalgamation of an infinite num-
ber of instabilities, even low-dimensional chaotic systems
can express a stunning variety of different behaviors as a
function of time, of their initial conditions, or of their param-
eters.

Here we review an emerging computing paradigm which
exploits this pattern generating ability of chaotic dynamics.
In 1998 it was noted that chaotic systems may be utilized to
design computing devices.' In the early years the focus was
on proof-of-principle schemes that demonstrated the capabil-
ity of chaotic elements to do universal computing.19 In sub-
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sequent years there has been much research activity to ex-
tend this paradigm.'_I7

One of the most promising directions of this computing
paradigm is its ability to reconﬁgure a single chaotic element
as different logic gates *In contrast to a conventional field
programmable gate array element,'® where reconfiguration is
achieved by switching between multiple single-purpose
gates, reconfigurable chaotic logic gates (RCLGs) are com-
prised of chaotic elements that morph (or reconfigure)
through the control of the pattern inherent in their constitu-
tive nonlinear element. Two input RCLGs have recently been
built and shown to be capable of reconfiguring between all
logic gates in discrete circuitry.4’6 Additionally such RCLGs
have been realized in prototype very large scale integrated
circuits (VLSI) [0.13 wm complementary metal-oxide-
semiconductor (CMOS), 30 MHz clock cycles]. Further, re-
configurable chaotic logic gate arrays, which morph between
higher order functions such as those found in a typical arith-
metic logic unit (ALU), have also been designed.17 Thus
architectures based on such logic implementations may serve
as ingredients of a general-purpose reconfigurable computing
device more powerful and more fault tolerant'® than  stati-
cally wired hardware.

In the following we present the basic concepts underly-
ing chaos computing and describe methods to design nonlin-
ear systems to flexibly yield all fundamental logic functions
by “programming” different dynamical systems. We show
that the patterns produced by varying the initial conditions
and the parameters of a chaotic system, as well as the pat-
terns produced by its time evolution, are amenable to per-
forming computation. By combining both techniques, one
can produce a computational device of immense power and
elegance.

The outline of this article is as follows. In Sec. II we first
recall the implementation of all fundamental logical opera-
tions by a threshold control mechanism.” In Sec. III we de-
scribe the use of time evolution of the nonlinear system to
obtain a wide range of logic responses. In Secs. IV and V we
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TABLE 1. Truth table of the basic logic operations for a pair of inputs:
I;, I, (Ref. 19). The one-input NOT gate is given by NOT(0) is 1; NOT(1)

is 0.
I, 1, NAND NOR XOR AND OR XNOR
0 0 1 1 0 0 0 1
1 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0
1 1 0 0 0 1 1 1

introduce a more general formalism, capable of implement-
ing asymmetric operations that distinguish between the in-
puts, thus extending the earlier formalism for symmetric
gates. We conclude in Sec. VI with a brief discussion of
some on-going technological implementations of these ideas,
specifically, a VSLI implementation of chaotic computing in
a demonstration integrated circuit chip.

Il. GENERAL CONCEPT

The cornerstone of modern computer architecture is bi-
nary digital logic, the logic of the true and the false. Boolean
logic is remarkable for its conceptual simplicity. For in-
stance, it can be rigorously shown that any logic operation
can be realized by adequate connection of NOR and NAND
gates (i.e., any Boolean circuit can be built using NOR/
NAND gates alone). This implies that the capacity for uni-
versal computing can be proven by the implementation of the
fundamental NOR and NAND gates.19

We outline below a theoretical method for obtaining all
basic logic gates with a single nonlinear system. The broad
aim here is to use, in a controlled manner, the rich temporal
patterns comprising a nonlinear time series in order to obtain
a computing device that is flexible and reconfigurable.

Consider the chaotic chip or chaotic processor to be a
one-dimensional system, whose state is represented by x, and
whose dynamics is given by a nonlinear map f(x).

In our scheme all the basic two-input logic gate opera-
tions (NAND, NOR, XOR, AND, OR, and XNOR) involve
the following steps:

(1) The logic inputs I; and I, for two-input logic operations
(see Table I) are encoded by the initial state x, of the
system as follows:

X0 _>xgate+X1 +X2,

where the physical quantity X;(X,) (which could be, for
instance, a voltage) has value 0 when logic input I,(15) is
0, and has value & when logic input I,(l,) is 1, with
being a positive constant. Like X; and X,, x4, is also a
physical entity, such as a voltage, which can be varied to
yield different logic outputs.

(2) Dynamical evolution over n time steps, resulting in the
updated state x— f,(xy), namely, the nth iterate of the
initial state. Specifically we take n=1 here, i.e.,

X=f1 (x0) = flxo).
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TABLE II. Necessary and sufficient conditions, derived from the logic truth
tables, to be satisfied simultaneously by the nonlinear dynamical element, in
order for it to have the capacity to implement the logical operations AND,
OR, XOR, NAND, NOR, and NOT (cf. Table I) with the same chaogate.

Logic Input set Necessary and sufficient
operation (I;,1,) Output condition
AND (0,0) 0 fxanp) <x*
(0,1)/(1,0) 0 fxanpt 6 <x*
(1,1) 1 f(xanp+26) =x"
OR 0,0) 0 Sflxor) <x*
(0,1)/(1,0) 1 fxor+0)=x*
(1,1) 1 fxor+28) =x*
XOR (0,0) 0 Slxxor) <x*
(0,1)/(1,0) 1 Sxxort+0) =x"
(1,1) 0 flxxor+20) <x*
NOR 0,0) 1 Sflxnor) =x*
(0,1)/(1,0) 0 floenor+ 0) <x*
(1,1) 0 Sxnor+26) <x*
NAND (0,0) 1 S(xnanp) =x*
(0,1)/(1,0) 1 Sfxnanpt+6) =x"
(1,1) 0 f(xnanp+26) <x*

(3) Determining the output:

Logic output is 0 if f(xy) = x*

and

Logic output is 1 if f(xy) > x",

where x* is a prescribed reference threshold.

Since the system is strongly nonlinear, in order to
specify the initial x, accurately, one needs a control mecha-
nism, here a threshold controller’®?! to set the initial Xo-

In order to obtain all the desired input-output responses
of the different gates we need to satisfy the conditions enu-
merated in Table I simultaneously. So given a dynamics f(x)
one must find values of the threshold and initial state satis-
fying the conditions derived from the truth tables (see
Table II).

A representative example is given in Table III, showing
the exact solutions for xy, and the threshold x* that satisfy
the conditions in Table II when the dynamical evolution is
governed by the logistic equation,

fx) =ax(1 -x).

Here we choose the nonlinearity parameter a=4 and constant
=41¢ common to all the logic gates.

This is the essence of chaos computing: for the chaotic

system of interest, one looks for sets of initial conditions and

TABLE III. One specific set of solutions of the conditions in Table II which
yield the logical operations AND, OR, XOR, and NAND with 5:%. Note
that these theoretical solutions have been fully verified in a discrete electri-
cal circuit implementing a logistic map (Ref. 4).

Operation AND OR XOR NAND
Xgate 0 1/8 1/4 3/8
x* 3/4 11/16 3/4 11/16
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TABLE IV. Necessary and sufficient conditions to be satisfied by a nonlinear system in order to implement the
logical operations NAND, AND, NOR, XOR, and OR at different iterations.

Logic NAND AND NOR XOR OR
Tteration n 1 2 3 4 5
Input (0,0) xy=f(xp) >x" Sfle) <x* Sl) >x" ) <x* Sleg) <x*
Input (0,1)/(1,0) x1=flxg+8) >x" Sle) <x* Sle) <x* Sflg)>x" Sleg) >x"
Input (1,1) x=f(xg+28) <x* fx) >x* ) <x* Sfly) <x* flxy) >x*

system parameters that produce a result corresponding to a
desired mathematical or logical operation. A given set of
parameters may produce a result that is their logical OR of
the inputs or the logical AND. These parameters can be
stored and used as a ready “look-up table” for future com-
putations using this system. Other combinations of inputs
and parameters might lead to results that do not produce a
mathematical or logical result. Those initial conditions are
discarded. So setting the parameters to be the ones that gave
the desired functional temporal patterns constitutes program-
ming of the system to give the right output.

Note that it is possible to implement the concept with
any (typical) nonlinear function, and there are proof-of-
principle realizations of chaos computing using circuits
implementing several different nonlinear maps. For instance,
in Ref. 12 two coupled complementary (n-channel and
p-channel) junction field-effect transistors efficiently imple-
ment a nonlinear function of the form x,,,=2x,/(1+x.%),
which is then used for chaos computing.

Contrast this use of nonlinear elements here with the
possible use of linear systems on one hand, and stochastic
systems on the other. It is not possible to extract all the
different logic responses from the same element in the case
of linear components since the temporal patterns are inher-
ently very limited. So linear elements do not offer much
flexibility or versatility. Stochastic elements, on the other
hand, have many different temporal sequences. But they are
not deterministic and so one cannot use them to design com-
ponents. Only nonlinear dynamical systems enjoy both rich-
ness of temporal behavior as well as determinism.

Also note that, while nonlinearity is absolutely necessary
for implementing all the logic gates, chaos may not be al-
ways be necessary. In the representative example of the lo-
gistic map presented in Table III solutions for all the gates
exist only in the limit of a=4 when the chaotic attractor
covers the entire interval. The degree and form of nonlinear-
ity necessary for obtaining all the desired logic responses
will depend on the system at hand and on the specific scheme

employed to obtain the desired input-output mapping. It may
happen that certain nonlinear systems will allow a wide
range of logic responses without actually being chaotic.

Proof-of-principle experiments with electronic circuits
have rigorously verified the above concept.‘l’5 Also note that
the generalization of this concept, described explicitly for
two-input gates here, is easily extended to multiple input
gates.14 These morphing multiple input gates would make
chaogate-based computing machines more power efficient,
and would also serve to increase their performance and to
widen their range of applications.

Lastly contrast this to a conventional field programmable
gate array element,'® where reconfiguration is achieved
through switching between multiple single purpose gates,
rather than using a single element to perform many different
logic functions. This latter is expected to be faster and less
wasteful of space on an integrated circuit.

lll. LOGIC FROM NONLINEAR EVOLUTION:
DYNAMICAL LOGIC OUTPUTS

Now we describe a method for obtaining a logic output
from a nonlinear system using the time evolution of the state
of the system. This concept uses the nonlinear characteris-
tics of the time dependence of the state of the dynamical
system to elicit different responses from the system. The
highlight of this method is that a single system can perform
complicated logic operations very efficiently.

We extend the concept in Sec. II by allowing our system
to evolve further in time. In doing so we might find that the
system can perform an AND operation on its first iteration,
but a NOR operation on the next iteration, etc. Thus we hope
to perform a sequence of mathematical or logical operations
almost as easily as a single operation.

As before encode the inputs via the initial state: x—x
+X;+X,, for two-input logic operations, with X=0 when
logic input /=0 and X= 48 (with §>0) when logic input /=1.

TABLE V. Updated state of chaotic logistic map satisfying the conditions in Table IV in order to implement the
logical operations NAND, AND, NOR, XOR, and OR during different iterations with x,=0.325, 5:%, and

x*=0.6.

Operation NAND AND NOR XOR OR
Iteration n 1 2 3 4 5
State of the system (x,) X X5 X3 X4 X5
Logic input (0,0) x,=0.325 0.88 043 0.98 0.08 0.28
Logic input (0,1)/(1,0) x,=0.575 0.9775 0.088 0.33 0.872 0.45
Logic input (1,1) x,=0.825 0.58 0.98 0.1 0.34 0.9
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5 &
Iterations

FIG. 1. (Color online) Template showing different logic patterns for the
range of x, (0-0.5) vs iteration number n (0<n=10). Here x*=0.75 for
1=n=4 and x*=0.4 for n>4. & is fixed at 0.25 (Ref. 12).

After evolution over n time steps we determine the out-
put using the condition: if f,(x) =<x™ then logic output is 0,
and if f,(x)>x" then logic output is 1, where x* is a refer-
ence threshold.

The principal difference from the earlier approach is the
following: here we vary the time evolution n to obtain dif-
ferent logic relations: i.e., n is “programmed” to yield differ-
ent logic. Unlike the earlier idea where n was held constant
(at n=1 specifically) and x,,, Was tuned to obtain different
logic gate behavior, here we tap the state of the system at a
longer time n to construct various logic combinations.

So the inputs set up the initial state of the nonlinear
system: xo+/;+1,. Then the system evolves over n iterative
time steps to the final state x,,. The evolved state is compared
to a monitoring threshold x* If the state is greater than the
threshold, a logical 1 is the output and, if the state is less than
the threshold, a logical 0 is the output (Table IV). This pro-
cess is repeated for subsequent iterations (see Fig. 1 and
Table V for an example).

A. Implementation of half- and full-adder operations

Combinational logic can also be implemented directly
by the above method. For instance, the ubiquitous bit-by-bit
arithmetic addition (half-adder) involves two logic gate out-
puts: AND (to obtain the carry) and XOR (to obtain first digit
of the sum). Using the scheme above we can obtain this
combinational operation in consecutive iterations, with a
single one-dimensional chaotic element.

Further, the typical full-adder requires two half-adder
circuits and an extra OR gate. So in total, the implementation
of a full-adder requires five different gates (two XOR gates,
two AND gates, and one OR gate). However, using the dy-
namical evolution of a single logistic map, we require only
three iterations to implement the full-adder circuit. So this

Chaos 20, 037107 (2010)

method allows combinational logic to be obtained very effi-
ciently with fewer computational modules and no cascading.

IV. ASYMMETRIC INPUTS

Now we describe an extension of the above formalism to
include asymmetric logic operations. In this method the in-
puts /; and I, of a two-input logic operation are encoded as
follows:

xO=Xga[e+X| +X2,

where x,,, is “programmable” to yield different logic func-
tion types.
With no loss of generality we follow the scheme:

e X;=0 when /;=0 and X;=46 when [,=1.
e X,=0 when /,=0 and X,=26 when [,=1,

where 6 is some positive constant.

Consider four distinct situations:

Case 1: Both I, and I, are O (row 1 in Table I), i.e., the
initial state of the system is xp=Xgse+0+0=xgn.

Case 2: I,=1, I,=0 (row 2 in Table I), i.e., the initial
state 18 xp=Xgye+ O+ 0=Xgye+ 0.

Case 3: 1,=0, I,=1 (row 3 in Table I), i.e., the initial
state 18 xp=Xgae+0+20=X gy +20.

Case 4: Both I, and I, are 1 (row 4 in Table I), i.e., the
initial state iS Xg=Xgye+ O+20=Xgye+36.

This encoding of the inputs is capable of distinguishing
between the input sets (0,1) and (1,0) and therefore can treat
asymmetric logic functions correctly.

As before, the evolved state x;=f(x,) yields the logic
output as described before: logic output=0 if f(x,) =x*, logic
output=1 if f(xo)>x". Here the value of x; (equal to xgy
+1,+1,) is determined by the input set, and varying x,, can
select out different logic functions.

The basic logic gates, which are symmetric [with input
set (0,1) being equivalent to (1,0)], can be obtained as a
specific case of this general formalism. For instance, in order
to obtain all the desired input-output responses of the gates
displayed in Table I, we need to satisfy the conditions enu-
merated in Table VI simultaneously. That is, given a dynam-
ics f(x), one must find values of threshold x*, constant &, and
initial state x, that satisfy the conditions derived from the
truth table to be implemented.

TABLE VI. Necessary and sufficient conditions to be satisfied by a nonlinear system in order to implement the
logical operations AND, OR, XOR, NAND, and NOR consistently on all possible input sets. Considering a=4
in the logistic map function, iteration n=1, threshold level x*=0.95, and 6=0.1, solutions of x, satisfying the
above conditions simultaneously are 0.1, 0.3, 0.35, 0.4, and 0.6, respectively, for AND, OR, XOR, NAND, and

NOR logic operations.

Inputs AND OR XOR NAND NOR

(070) f(xgale) = X* f(xgale) = X* f(xgate) = X* f(xgate) >X* f(xgute) >JC*
(071) f(xgale"'é)SX* f(xgale+5)>X* f(xgale+ 5)>x* f(xgale+ 5)>X* f(xgale"'ﬁ)SX*
(1,0) SRauet20) =x" flrgaet280)>x"  flagaet20)>x"  flrge+29)>x"  flxg +20)=x"
(1,1) S +36) >x" S(Xgae+38)>x" Sxge+30)=x" Sxgpe+30)=x" Sxgpe+30)=x"
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TABLE VII. Necessary and sufficient conditions to be satisfied by a nonlinear system in order to implement the
logical operations AND, XOR, OR, NAND, XNOR, and NOR, with n being the number of evolution steps. For
example, when a=4, x*=0.5, and 6=1, x,=0.005, 0.05, 0.75, 0.3, 0.425, and 0.5 yield AND, XOR, OR, NAND,
XNOR, and NOR logic operations, respectively.

Inputs n AND XOR OR NAND XNOR NOR

(0,0) Lox=fl)=x" x1=f(x)=x" x=f(x0)=x"  x=flx0) >x"  x=flxo) >x"  x=f(xo) >x"
(0,1) 2 n=fl)=x" xn=fr)>x" o=f)>x" n=f0)>x" n=fg)=x" xn=fly)=x
(1,0) 30 xn=f)=x" n=f)>x" Gfn)>x" xnefn)>x" u=fn)=x" x=fn)=x"
(1,1) 4 x=f0)>x" = 0G)=x" x=fn)>x" uEfle) =)t uEfl)>x" x=f0G)=x"

Alternately one can use the iteration value n to encode
the logic inputs,

n—7n+11+12.

This again yields four distinct input conditions:

Case 1: Both I} and I, are O (row 1 in Table I), i.e., the
evolution time is n+0+0=n.

Case 2: I,=1, I,=0 (row 2 in Table I), i.e., the evolu-
tion time is n+ 6+0=n+4.

Case 3: 1,=0, I,=1 (row 3 in Table I), i.e., the evolu-
tion time is n+0+26=n+24.

Case 4: Both I, and I, are 1 (row 4 in Table I), i.e., the
evolution time is n+ 6+26=n+34.

After chaotic updates over n steps, the state of the
evolved system f,(x) yields the desired logic output.

In order to obtain all the desired input-output responses
of all the basic logic gates displayed in Table I, we need to
satisfy all the conditions enumerated in Table VII simulta-
neously.

As a case study, we will next consider the implementa-
tion of bit-by-bit addition and subtraction, thus demonstrat-
ing how complex combinational operations can be directly
achieved by a single system, without necessitating concat-
enation. Significantly, the half-subtractor is an asymmetric
logic operation and so it cannot be obtained by the formal-
ism in Sec. II.

V. IMPLEMENTATION OF BIT-BY-BIT ARITHMETIC
FUNCTIONS

We demonstrate here how one can obtain the very
widely used bit-by-bit arithmetic function involving two

TABLE VIII. Truth table of the half-adder and the necessary and sufficient
conditions that implement the half-adder.

logic gate outputs, in consecutive iterations, using a single
one-dimensional chaotic element.

A. Half-adder operation

A half-adder operates on two inputs, I, and /,, and yields
two outputs, carry and sum. Carry is the AND logic output of
I, and I, [i.e., O,=AND(I,,l,)], and sum is the XOR of I,
and I, [i.e., 0,=XOR(I,,I,)]. A summary of the necessary
and sufficient conditions to be satisfied for the cascaded bit-
by-bit addition operation is given in Table VIII. It is required
to have all the necessary and sufficient conditions tabulated
in Table VIII to be satisfied simultaneously to implement
0,=AND(l,,I;,) and 0,=XOR(/,,l,), since the mapping
from (1,,1,) to (O,,0,) must hold for all combinations of
(I;,1,). Conversely, when these conditions are satisfied,
0,=AND(l,,I,) and O,=XOR(I,,I,) hold. That is, these
conditions are necessary and sufficient for the logic opera-
tions implementing half-adder arithmetic operation. For in-
stance, for x,=0, x*=0.65, §=0.1, and a=4.0, outputs O,
and O, are obtained in iterations n=1 and 2, respectively, for
the logistic map.

B. Half-subtractor operation

A half-subtractor operates on two inputs /; and I, and
yields two outputs, borrow and difference. Borrow is the re-
sult of the AND operation on NOT(/;) and I, [i.e.,
0,=AND(NOT(I,),1,)], and difference is the result of the
XOR operation on I; and I, [i.e., 0,=XOR(/,,1,)]. A sum-
mary of the necessary and sufficient conditions to be satisfied
for the cascaded bit-by-bit subtraction operation is given in
Table IX. It is required that all the necessary and sufficient

TABLE IX. Truth table of half-subtractor and the necessary and sufficient
conditions that implement the half-subtractor.

Necessary Necessary
Logic Input set Logic and sufficient Logic Input set  Logic and sufficient
operation (1;,1,) output Initial state condition operation (1;,1,) output Initial state condition
Carry (0,0) 0 X0 x=f(xp) =x* Difference (0,0) 0 x0=0.525 x3=f(xg) =x*
0,1) 0 (xg+90) X1 =f(xg+8) =x* 0,1) 1 (xo+6)=0.625 X3=f(xg+8) >x*
(1,0) 0 (xg+20) x=f(xp+28) =x* (1,0) 1 (x9+28)=0.725  x3=f(xy+26)>x"
(1,1) 1 (xg+30) x1=f(xg+38) >x* (1,1) 0 (x9+30)=0.825  x3=f(xp+36) =x"
Sum (0,0) 0 X X=f(xg) =x* Borrow (0,0) 0 x0=0.525 x4=f(xp) =x*
0,1) 1 (xg+90) Xy =[x+ 6) >x* 0,1) 1 (xo+0)=0.625 x4=f(xo+6) >x*
(1,0) 1 (xg+20) X =f(xg+28) >x* (1,0) 0 (x9+28)=0.725  x4=f(xy+20) =x*
(1,1) 0 (xg+30) X =f(xp+30) =x* (1,1) 0 (x9+30)=0.825  x,=f(xy+36)=x"
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FIG. 2. (Color online) Simplified schematic of the proof of concept VLSI
implementation of an ALU which can switch between at least two arithmetic
functions and a completely different function such as a small first-in, first-
out memory buffer.

conditions tabulated in Table IX be satisfied simultaneously
to implement O;=AND(NOT(I,),l,) and O,=XOR(l;,1,),
since the mapping from (I,;,1,) to (O;,0,) must hold for all
combinations of (I;,1,). Conversely, when these conditions
are satisfied, 0,=AND(NOT(/,),I,) and O,=XOR(I,,I,)
hold. That is, these conditions are necessary and sufficient
for the logic operations implementing the half-subtractor
arithmetic operation. For instance, with x,=0.525, x*=0.65,
6=0.1, and a=4.0, outputs O, and O, are obtained in itera-
tions n=3 and n=4, respectively, for the logistic map.

So the highlight of this method is the ability of a single
nonlinear system to yield complicated logic outputs. The ba-
sis of this ability is the range of states a nonlinear system
accesses in the course of its evolution. This allows the evo-
lution time to be used as a “knob” to extract different com-
binational logic responses, without necessitating concatena-
tion of many units.

Thus we have presented a design for a computing device
based on the capability of a nonlinear system to implement
all the fundamental computing operations. It does this by
exploiting the nonlinear responses of the system. The main
benefit is its ability to reconfigure a single chaotic element
into different logic gates. Contrast this with a conventional
field programmable gate array element, where reconfigura-
tion is achieved through switching between multiple single
purpose gates. This latter sort of reconfiguration is both slow
and wasteful of space on an integrated circuit.

VI. VLSI IMPLEMENTATION OF CHAOTIC COMPUTING
ARCHITECTURES—PROOF OF CONCEPT

Recently Chaologix, Inc. designed and fabricated a
proof of concept chip that demonstrates the feasibility of
constructing reconfigurable chaotic logic gates, dubbed cha-
ogates, in standard CMOS-based VLSI (0.18 um process
operating at 30 MHz with a 3.1 X 3.1 mm die size and a 1.8
V digital core). The basic building block chaogate is shown
schematically in Fig. 2.

The demonstration chip (Fig. 3) has a parallel read/write
interface to communicate with a microcontroller using stan-
dard logic gates. The read/write interface responds to a range
of addresses to give access to internal registers, and the in-
ternal registers will interface to the demonstration chaotic
computing circuits.
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FIG. 3. (Color online) (Left) Schematic of a two-input, one output mor-
phable chaogate. The gate logic functionality (NOR, NAND, and XOR) is
controlled (morphed) in the current VLSI design by global thresholds con-
nected to VT1, VT2, and VT3 through analog multiplexing circuitry and
(right) a size comparison between the current chaogate circuitry imple-
mented in the ChaoLogix VLSI chaotic computing chip and a typical
NAND gate circuit (courtesy of ChaoLogix, Inc.).

Chaogates were then incorporated into a chaogate array
in the VLSI chip to demonstrate higher order morphing func-
tionality including the following:

(1) A small ALU that morphs between higher order arith-
metic functions (multiplier and adder/accumulator) in
less than one clock cycle. An ALU is a basic building
block of computer architectures.

(2) A communications protocols unit that morphs between
two different complex communications protocols in less
than one clock cycle: serial peripheral interface (a syn-
chronous serial data link) and an inter-integrated circuit
control bus implementation (I2C, a multimaster serial
computer bus).

While the design of the chaogates and chaogate arrays in
this proof of concept VLSI chip was not optimized for per-
formance, it clearly demonstrates that chaogates can be con-
structed and organized into reconfigurable chaotic logic gate
arrays capable of morphing between higher order computa-
tional building blocks. Current efforts are focused upon op-
timizing the design of a single chaogate to levels where it is
comparable to or smaller than a single NAND gate in terms
of power and size, yet is capable of morphing between all
gate functions in less than a single computer clock cycle.
Preliminary designs indicate that this goal is achievable and
that all gates currently used to design computers may be
replaced with chaogates to provide added flexibility and per-
formance. Practical applications may also take a hybrid ap-
proach, combining static hardware with modules of program-
mable hardware.

One should also add the following caveat: programming
chaogates requires the development of new hardware de-
scription languages. The absence of these may pose a bottle-
neck in obtaining the most efficient use of the chaogate. It is
conceivable that ideas from evolutionary algorithms may be
employed to reach optimal configurations of arrays of cha-
ogates. At this point, this is still a completely open problem.
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VIl. CONCLUSIONS

In summary, we have demonstrated the direct and flex-
ible implementation of all the basic logic gates utilizing non-
linear dynamics. The richness of the dynamics allows us to
select out all the different gate responses from the same pro-
cessor by simply setting suitable threshold levels. These
threshold levels are known exactly from theory and are thus
available as a look-up table. Arrays of such logic gates can
conceivably be programmed on the run (for instance, with a
stream of threshold values being sent in by an external pro-
gram) to be optimized for the task at hand. For instance, such
a morphing device may serve flexibly as an arithmetic pro-
cessing unit or a unit of memory and can be swapped as the
need demands to be one or the other. This capacity for re-
configurability may then enable us to achieve the flexibility
of field programmable gate arrays (FPGAs),'® the optimiza-
tion and speed of application specific integrated circuits
(ASIC),* and the general utility of a central processing unit
within the same computer chip architecture.

Finally, regarding the applicability of this idea, nonlinear
systems are abundant in nature, and so embodiments of this
concept are conceivable in many different physical systems,
ranging from fluids to electronics to optics. Thus chaos-
based computing may be implemented not only on conven-
tional CMOS-based VLSI circuitry (as discussed in Sec. VI)
but also on more esoteric platforms. Possible candidates for
physical realization of the method include nonlinear elec-
tronic circuits,”* magneto-based circuitry,23 high speed cha-
otic photonic integrated circuits operating in the gigahertz
frequency range,24 and single electron tunneling junctions25
which are natural piecewise linear maps. Therefore the idea
of exploiting nonlinear dynamics for computation has con-
siderable potential to be realized in a variety of physical
systems, offering an alternate dynamics-based computing de-
vice with capacity for reconfigurability.
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