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Under what kind of parametric fluctuations
is spatiotemporal regularity the most robust?
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Abstract. It was observed that the spatiotemporal chaos in lattices of coupled chaotic
maps was suppressed to a spatiotemporal fixed point when some fractions of the regular
coupling connections were replaced by random links. Here we investigate the effects of
different kinds of parametric fluctuations on the robustness of this spatiotemporal fixed
point regime. In particular we study the spatiotemporal dynamics of the network with
noisy interaction parameters, namely fluctuating fraction of random links and fluctuating
coupling strengths. We consider three types of fluctuations: (i) noisy in time, but homo-
geneous in space; (ii) noisy in space, but fixed in time; (iii) noisy in both space and time.
We find that the effect of different kinds of parametric noise on the dynamics is quite dis-
tinct: quenched spatial fluctuations are the most detrimental to spatiotemporal regularity;
spatiotemporal fluctuations yield phenomena similar to that observed when parameters
are held constant at the mean value, and interestingly, spatiotemporal regularity is most
robust under spatially uniform temporal fluctuations, which in fact yields a larger fixed
point range than that obtained under constant mean-value parameters.
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namics; synchronization.
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1. Introduction

One of the important prototypes of extended complex systems are nonlinear dy-
namical systems with spatially distributed degrees of freedom, or alternately, spatial
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systems composed of large numbers of low-dimensional nonlinear systems. The ba-
sic ingredients of such systems are: (i) creation of local chaos or local instability by a
low-dimensional mechanism and (ii) spatial transmission of energy and information
by coupling connections of varying strengths and underlying topologies.

The coupled map lattice (CML) is such a model, capturing the essential fea-
tures of the nonlinear dynamics of extended systems [1]. A very well-studied cou-
pling form in CMLs is the nearest-neighbour coupling. However, some degree of
randomness in spatial coupling can be closer to physical reality than strict nearest-
neighbour scenarios. In fact, many systems of biological, technological and physical
significance are better described by randomizing some fraction of the regular links
[2,3]. Here we focus on a ring of coupled chaotic maps whose coupling connections
are dynamically rewired to random sites with probability p, namely at any instance
of time, with probability p, a regular link is switched to a random one [4–13].

It has recently been found that such random coupling yields a spatiotemporal
fixed point in a network of chaotic maps [13]. That is, the strongly unstable fixed
point of the local chaotic map is stabilized under increasing randomness in the cou-
pling connections. Thus interestingly, the inherent chaos present in the individual
local units is suppressed by dynamically switched random links, giving rise to a
global spatiotemporal fixed point attractor.

In this paper we study the effect of parametric fluctuations on the synchronization
properties of such networks. We consider different types of noise in the parameters:
(i) spatial, (ii) temporal and (iii) both spatial and temporal. Keeping the local
dynamics always fully chaotic, we focus on parametric noise in the interaction pa-
rameters between the nodes in the network. In particular, we consider fluctuations
in the fraction of random links p in the system, and fluctuations in the coupling
strength of the different links. That is, we study perturbations in both the geome-
try of the network connections, as reflected in noisy p, as well as in the strength of
the links.

The outline of the paper is as follows: we first describe the model in §2. Then
we present numerical results in §3, followed by some analysis in §4. Finally we
conclude with a summary of our results in §5.

2. Model

We consider a network of N coupled logistic maps. The sites are denoted by
integers i = 1, . . . , N , where N is the size of the lattice. On each site is defined
a continuous state variable denoted by xn(i), which corresponds to the physical
variable of interest.

The evolution of this lattice, under interactions with the nearest neighbours, is
given by

xn+1(i) = (1− ε)f(xn(i)) +
ε

2
{xn(i + 1) + xn(i− 1)}. (1)

The strength of the coupling is given by ε. The local on-site map is chosen to be the
fully chaotic logistic map: f(x) = αx(1−x) with α = 4, as this map has widespread
relevance as a prototype of low-dimensional chaos.
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We consider the above system with its coupling connections rewired randomly
with probability p. Namely, at every update we will connect a site with probability
p to randomly chosen sites, and with probability (1 − p) to nearest neighbours,
as in eq. (1). That is, at every instant, a fraction p of randomly chosen nearest-
neighbour links are replaced by random links. The case of p = 0 corresponds to
the usual nearest-neighbour interaction, while p = 1, corresponds to completely
random coupling. This type of connectivity has been observed in a range of natural
and human-engineered systems [3].

In this work, we will focus on the effect of fluctuations in the interaction para-
meters, i.e. noisy coupling strength ε, and fraction of random links p [14–17]. Now,
one can have four distinct scenarios (denoting the relevant parameter as A):

(i) An(i) ≡ A0.

Here the parameter is constant. We will denote this case of zero fluctuations
by C.

(ii) An(i) = A0 ± δAηi ≡ A(i).

Here δA is the strength of the fluctuation in the parameter around mean value
A0 and ηi is a zero-mean random number. So here the parameters are random
in space but remain frozen in time, i.e. the parameters are spatially fluctuating
but temporally invariant. In this case then, we have quenched disorder or a basic
inhomogeneity of the network links. We will denote this case of spatial parametric
fluctuations by S.

(iii) An(i) = A0 ± δAηn ≡ An.

Again, δA is the strength of the fluctuation in the parameter around mean value
A0 and ηn is a zero-mean random number. So the fluctuation is a function of time
but is site-independent, i.e. the noise in the parameter is synchronous for all the
elements, namely parameter A is spatially uniform, though random in time. This
kind of a situation may arise when the system is quite uniform intrinsically, but
is subject to a common perturbation, for instance from a common environmental
influence, like say fluctuations in the ambient temperature. We will denote this
case of temporal parametric fluctuations by T.

(iv) An(i) = A0 ± δAηi
n.

Here the fluctuations are functions of both time and space. Such a scenario de-
scribes a situation where the system is both inhomogeneous in space and noisy
in time. We will denote this case of spatiotemporal parametric fluctuations
by ST.

Here we consider η to be uniformly distributed in the interval [0, 1]. We have
simulated the system, for all the above cases, with fluctuations in coupling strength
(i.e. A ≡ ε) and in the fraction of random links (i.e. A ≡ p). The initial conditions
of the individual elements were randomly chosen in the interval [0, 1], and suffi-
cient transients were removed before looking at the spatiotemporal profile of the
network.
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Figure 1. State of the system with respect to coupling strength ε, under dif-
ferent types of fluctuations in p: (a) constant p = 0.5, (b) spatial fluctuations,
(c) temporal fluctuations and (d) spatiotemporal fluctuations. Here strength
of fluctuations δp = 0.5 in cases (b)–(d), around a mean value of p0 = 0.5.

3. Robustness of the spatiotemporal fixed point under parametric
fluctuations

Figure 1 displays the bifurcation diagrams of the system under different types of
fluctuations in the fraction of random links p, around a mean value of p0. It is
evident that the spatiotemporal fixed point is quite robust under parametric fluc-
tuations in general, as the range of the spatiotemporal fixed point in coupling
parameter space does not reduce much under noisy p. It can also be clearly seen
that the bifurcation profile of the system under spatiotemporal fluctuations in p
(figure 1d) is very similar to the system under constant p = p0 (figure 1a). Fur-
ther, we observe that quenched spatial fluctuations reduce the range of stability of
the spatiotemporal fixed point most significantly (figure 1b). On the other hand,
temporal fluctuations in p do not degrade the stability of the fixed point regime,
and are most conducive to spatiotemporal regularity. In fact, interestingly, the
fixed point range obtained under temporal parametric fluctuations (figure 1c) is
larger than that obtained from the constant case (figure 1a). Qualitatively, similar
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Figure 2. Average synchronization error Z, as a function of coupling
strength, for four different cases: (i) p constant at the mean value p0 = 0.5
denoted by C, (ii) spatial fluctuations in p denoted by S, (iii) temporal fluc-
tuations in p denoted by T and (iv) spatiotemporal fluctuations in p denoted
by ST. Here the strength of fluctuations δp = 0.5 in cases (ii)–(iv), that is,
p is distributed uniformly in the range [0,1]. Observe that T gives (almost)
zero error for the largest range, ST and C give similar trends, while S gives
the smallest range, that is, the least robustness for the spatiotemporal fixed
point.

bifurcation diagrams with respect to p were obtained under fluctuations in the
coupling strength of the different links.

In order to quantify the above observation we calculate the average deviation of
the system from a synchronized state, denoted by Z, and defined as

Z = 〈〈(xn(i)− x̄)2〉〉, (2)

where x̄ is the mean value of x. The averages 〈〈· · ·〉〉 are over all sites i (i = 1, . . . , N)
and over long times n.

Figures 2 and 3 show error Z with respect to coupling strength and the fraction
of random links p, under parametric fluctuations in p and ε respectively. It is clearly
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Figure 3. Average deviation of the system from the spatiotemporal fixed
point, Z, as a function of the fraction of random links p, for four different
cases: (i) ε constant at the mean value ε0 = 0.8 denoted by C, (ii) spatial
fluctuations in ε denoted by S, (iii) temporal fluctuations in ε denoted by T
and (iv) spatiotemporal fluctuations in ε denoted by ST. Here the strength
of fluctuations δε = 0.2 in cases (ii)–(iv), namely ε is distributed uniformly
in the range [0.6,1]. Observe that T gives (almost) zero error for the largest
range, ST and C give similar trends, while S gives the smallest range, that is,
the least robustness for the spatiotemporal fixed point.

evident from both figures that temporal parametric fluctuations (T) give zero error
for the largest range. Spatiotemporal parametric fluctuations (ST) and the case
where the parameter is kept constant at the mean value (C) give completely similar
trends. As observed earlier, the spatial parametric fluctuations (S) give the small-
est range, that is, the spatiotemporal fixed point is least robust under quenched
disorder. Note that this enhanced regularity of the system under spatially uni-
form parametric noise is reminiscent of noise-induced synchronization observed in
nonlinear oscillators under common stochastic forcing, in numerical and laboratory
experiments [15,18].

We also calculate the critical value of coupling strength after which the spa-
tiotemporal fixed point gains stability, denoted by εc, and the critical fraction of
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Figure 4. Range of the spatiotemporal fixed point (1 − εc), where εc is
the critical value of coupling strength after which the spatiotemporal fixed
point gains stability, as a function of the parametric fluctuation strength δp.
Note that fluctuation strength δp implies that the fraction of random links is
distributed uniformly in the range [p0 − δp, p0 + δp], with the mean p0 = 0.5.
Observe that temporal fluctuations of reasonably large strength δp actually
increases the fixed point range, vis-à-vis the case of zero fluctuations δp = 0
(i.e. the constant p0 case).

random links after which the spatiotemporal fixed point is stable, denoted by pc.
The fixed point range in coupling parameter space is then (1− εc), and in the space
of p it is (1− pc).

Figures 4 and 5 show the range of the spatiotemporal fixed point in ε and p
space, for varying strengths of parametric fluctuations. It is clear that the effect
of spatiotemporal fluctuations is quite indistinguishable from the mean field case
(namely the case of p0 and ε0, with δp and δε equal to zero). It is also evident that
quenched disorder reduces the stable range the most, while the fixed point range
is the largest for spatially uniform temporal fluctuations. In fact remarkably, for
temporal fluctuations, the fixed point range for large fluctuation strengths is larger
than that obtained for zero fluctuations. These results re-inforce the conclusions
drawn from the calculations of the error function Z.
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Figure 5. Range of the spatiotemporal fixed point (1 − pc), where pc is the
critical value of p after which the spatiotemporal fixed point gains stability,
as a function of the parametric fluctuation strength δε. Note that fluctuation
strength of δε implies that coupling ε is distributed uniformly in the range
[ε0−δε,ε0+δε], with the mean ε0 = 0.8. Observe that temporal fluctuations of
reasonably large strength δε, actually increases the fixed point range, vis-à-vis
the case of zero fluctuations δε = 0 (i.e. the constant ε0 case).

Lastly, note that similar trends are also observed when the parametric fluctu-
ations are periodic, not random. For instance, consider the case where the frac-
tion of random links p is distributed in a period-2 cycle: p1, p2. For the case of
quenched spatial periodic fluctuations (denoting the value of p at site i as p(i)), we
have p1(1), p2(2), p1(3), p2(4), . . . for all time. For temporal periodic fluctuations
we have p(i) = p1 for all sites i at time n, followed by p(i) = p2 for all sites at time
n + 1, back to p(i) = p1 for all sites at time n + 2 etc. For spatiotemporal periodic
fluctuations we have the parameters varying as a 2-cycle in space and time, namely
p1(1), p2(2), p1(3), p2(4), . . . at time n followed by p2(1), p1(2), p2(3), p1(4), . . . at
time n + 1 etc. For all these cases one obtains the same qualitative behaviour
as the random fluctuation cases, namely quenched spatial periodic fluctuations
are the most detrimental to spatiotemporal regularity; space-time periodic fluctua-
tions yield phenomena similar to that with constant mean-values p0 = (p1 + p2)/2;
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and spatiotemporal regularity is the most robust under spatially uniform periodic
fluctuations.

4. Analysis

We shall now attempt to account for the enhanced stability of the homogeneous
phase under temporal parametric fluctuations vis-à-vis spatial fluctuations. First
we recall the stability analysis for constant parameters p and ε, following the treat-
ment in [13]. Then we discuss the effects of parametric noise on the stability, by
gauging the effects of fluctuating p (or ε) on the linear stability conditions.

Now, there exists only one solution for a spatiotemporally synchronized state,
namely one with all xn(i) = x∗, where x∗ = f(x∗) is the fixed point solution of the
local map f(x). For the case of the logistic map here, x∗ = 4x∗(1− x∗) = 3/4.

To calculate the stability of the lattice with all sites at x∗ we will construct an
average probabilistic evolution rule for the sites, which becomes a sort of mean
field version of the dynamics. So we work from the basic premise that all sites have
probability p of being coupled to random sites, and probability (1 − p) of being
wired to nearest neighbours. Then the averaged evolution equation of a site j is

xn+1(j) = (1− ε)f(xn(j)) + (1− p)
ε

2
{xn(j + 1) + xn(j − 1)}

+ p
ε

2
{xn(ξ) + xn(η)} , (3)

where ξ and η are random integers between 1 and N .
To calculate the stability of the coherent state, we perform the usual linearization.

Replacing xn(j) = x∗ + hn(j), and expanding to first order gives

hn+1(j) = (1− ε)f ′(x∗)hn(j) + (1− p)
ε

2
{hn(j + 1) + hn(j − 1)}

+ p
ε

2
{hn(ξ) + hn(η)}

≈ (1− ε)f ′(x∗)hn(j) + (1− p)
ε

2
{hn(j + 1) + hn(j − 1)} . (4)

Above, to a first approximation, one considers the sum over the fluctuations of the
random neighbours to be completely uncorrelated, thus summing up to zero in the
time-averaged picture in eq. (4).

Effectively, this approach is equivalent to considering the interactive term to have
a local part weighted by (1 − p) and a ‘global’ (or averaged) part weighted by p
arising from the random connections [19], namely,

xn+1(j) = (1− ε)f(xn(j)) +
ε

2
(1− p) {xn(j + 1) + xn(j − 1)}+

ε

2
p〈x〉.

(5)

Linear stability considerations of the above formulation, in the limit of N → ∞,
also give rise to eq. (4).
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For stability considerations one can diagonalize the expression in eq. (4) using a
Fourier transform (hn(j) =

∑
q φn(q) exp(ijq), where q is the wave number and j

is the site index), which finally leads us to the following growth equation:

φn+1

φn
= f ′(x∗)(1− ε) + ε(1− p) cos q (6)

with q going from 0 to π. Considering the fully chaotic logistic map with f ′(x∗) =
−2, one finds that the growth coefficient that appears in this formula is smaller
than one in magnitude if and only if [13]

1
1 + p

< ε < 1, (7)

i.e. εc = 1/(1 + p). So the range of stability R is

R = 1− 1
1 + p

=
p

1 + p
. (8)

The above expression is in very good agreement with numerical results.
Now, when the quantity p is spatially uniform, but fluctuates in time, the above

picture remains quite valid. Note that at any instant of time n, the value of pn is
the same for all sites. So the symmetry of the Jacobian is preserved, and it is clear
that the time-averaged evolution equation is

hn+1(j) = (1− ε)f ′(x∗)hn(j) + (1− 〈p〉) ε

2
{hn(j + 1) + hn(j − 1)} (9)

which is the same as eq. (4), as 〈p〉 = p. So the basic analysis in the case of spatially
uniform fluctuating p remains the same as that for eq. (4).

This analysis also helps us to understand why the behaviour of a system period-
ically cycling over two values p1, p2, is similar to that of a system with p equal to
the average 〈p〉 = (p1 + p2)/2.

The same reasoning holds for fluctuations in coupling strength, in which case one
has

hn+1(j) = (1− 〈ε〉)f ′(x∗)hn(j) + (1− p)
〈ε〉
2
{hn(j + 1) + hn(j − 1)} ,

(10)

where 〈ε〉 = ε.
The effect of spatiotemporal fluctuations is likely to be described reasonably by

the above analysis as well, since temporal averaging will again yield 〈p〉 ∼ p in
the effective time-averaged dynamical equations above. However, while the space-
uniform temporal fluctuations strictly maintain the symmetry of the dynamical
equations of the sites, for spatiotemporal fluctuations the symmetry of the instan-
taneous dynamical equations of the sites, is broken, though on an average the
equations are identical to that of temporal fluctuations. So one expects the sta-
bility of the system under spatiotemporal fluctuations to be somewhat diminished
compared to the spatially uniform case, for strong fluctuations.
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Now we consider the case of fluctuations that are frozen in time but distributed
in space. Here the symmetry of the sites is broken, even on an average, namely the
individual sites no longer have the same time-averaged probabilistic equation. In
general terms, it may be argued, that spatial disorder does not average out in time,
and so the time-averaged description of the system in eq. (4) does not capture the
stability accurately.

We attempt to understand this case as follows: one can consider, in the limit of
large N , the effective dynamics to be governed by the analysis with 〈p〉 = p given
above, plus a random matrix term in the Jacobian, weighted by ε/2. The largest
eigenvalue of the random matrix part scales as NCσ2, where C is the connectivity
of the random matrix. Since the random parametric fluctuations give rise to two
non-zero entries per row, C of the random matrix arising from spatially fluctuating
p is ∼2N/N2∼2/N . So the largest eigenvalue of the system with quenched disorder
will increase by an amount that scales approximately as εσ2 where σ2 is the variance
of the spatial fluctuations about the mean 〈p〉 = p. So, unlike the case of temporal
fluctuations, the stable range will decrease under spatial inhomogeneity.

5. Conclusions

In summary, it was observed that lattices of coupled chaotic maps, with coupling
connections dynamically rewired to random sites with probability p > 0, gave rise
to a window of spatiotemporal fixed points in coupling parameter space. Here we
investigate the effects of different kinds of parametric fluctuations on the robustness
of this spatiotemporal fixed point regime. In particular we study the spatiotem-
poral dynamics of the network with fluctuating rewiring probabilities and coupling
strengths, with the fluctuations being (i) noisy in time, homogeneous in space,
as applicable for intrinsically homogeneous systems under common environmental
noise; (ii) noisy in space, and fixed in time, namely quenched disorder and (iii)
noisy in both space and time.

We find that static spatial inhomogeneity, namely quenched disorder, degrades
spatiotemporal regularity most significantly. Spatiotemporal fluctuations yield dy-
namical properties almost identical to networks with the parameters held constant
at the mean values. Interestingly, spatiotemporal regularity is most robust under
spatially uniform temporal fluctuations. Such space-invariant temporal parametric
noise actually yields a regular range that is larger than that obtained for systems
with the parameters held constant at mean value.

So the effect of different kinds of parametric noise on spatiotemporal regularity is
quite distinct: quenched spatial fluctuations are the most detrimental to spatiotem-
poral regularity; spatiotemporal fluctuations yield phenomena similar to that with
constant mean values; and spatiotemporal regularity is most robust under spatially
uniform temporal fluctuations.

Acknowledgements

One of the authors, MDS, acknowledges the hospitality and facilities at the Institute
of Mathematical Sciences, Chennai during his visit under associateship, and DST,
India for financial support.

Pramana – J. Phys., Vol. 74, No. 6, June 2010 905



Manish Dev Shrimali, Swarup Poria and Sudeshna Sinha

References

[1] K Kaneko, Theory and applications of coupled map lattices (Wiley, New York, 1993)
[2] R Albert and A-L Barabasi, Rev. Mod. Phys. 74, 47 (2002)
[3] D J Watts and S H Strogatz, Nature (London) 393, 440 (1998)
[4] P M Gade and C-K Hu, Phys. Rev. E62, 6409 (2000)
[5] M Barahona and L Pecora, Phys. Rev. Lett. 89, 054101 (2002)
[6] J Jost and M P Joy, Phys. Rev. E65, 016201 (2002)
[7] M G Cosenza and K Tucci, Phys. Rev. E65, 0326223 (2002)
[8] P M Gade and S Sinha, Int. J. Bifurcat. Chaos 16, 2767 (2006)
[9] M P K Jampa et al, Phys. Rev. E75, 026215 (2007)

[10] F Radicchi and H Meyer-Ortmanns, Phys. Rev. E74, 026203 (2006)
[11] T Gross, C J D’Lima and B Blasius, Phys. Rev. Lett. 96, 208701 (2006)
[12] S Rajesh et al, Phys. Rev. E75, 011906 (2007)
[13] S Sinha, Phys. Rev. E66, 016209 (2002)
[14] There are some studies on uncoupled and globally coupled chaotic maps under the

influence of fluctuations in the local nonlinearity parameter. See for instance [15–17]
[15] S Sinha, Phys. Rev. Lett. 69, 3306 (1992)
[16] G Perez and H A Cerdeira, Phys. Rev. E49, 15 (1994)
[17] S Sinha, Phys. Lett. A245, 393 (1998)
[18] A Maritan and J R Banavar, Phys. Rev. Lett. 72, 1451 (1994)

C-H Lai and C Zhou, Europhys. Lett. 43, 376 (1998)
A Uchida, R McAllister and R Roy, Phys. Rev. Lett. 93, 244102 (2004)
J M Cruz, A Hernandez-Gomez and P Parmananda, Phys. Rev. E75, 055202 (2007)

[19] S A Pandit and R E Amritkar, Phys. Rev. E63, 041104 (2001)
P M Gade and C K-Hu, Phys. Rev. E73, 036212 (2006)

906 Pramana – J. Phys., Vol. 74, No. 6, June 2010


