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Abstract

We study the transition to phase synchronization in a model for the
spread of infection defined on a small world network. It was shown ( Phys.
Rev. Lett. 86 (2001) 2909 ) that the transition occurs at a finite degree
of disorder p, unlike equilibrium models where systems behave as random
networks even at infinitesimal p in the infinite size limit. We examine
this system under variation of a parameter determining the driving rate,
and show that the transition point decreases as we drive the system more
slowly. Thus it appears that the transition moves to p = 0 in the very
slow driving limit, just as in the equilibrium case.

PACS: 89.75Hc,87.19Xx,64.60.-i

1 Introduction

Dynamics of spatially extended systems has been very well studied in past two
decades. On the other hand, in the recent past, the importance of studying
networks, their structure and properties has been realized, and researchers from
fields ranging from neurodynamics and ecology to social sciences have been
extensively working in this area [1, 2, 3, 4]. In particular, small world networks
[2] have been studied in many different contexts. This model is defined in
following way: One starts with a structure on a lattice, for instance k regular
nearest neighbour connections. Each site is now linked with 2k of its nearest
neighbors on either side. Then each link from a site to its nearest neighbor
is rewired randomly with probability p, i.e. the site is connected to another
randomly chosen lattice site. This model is proposed to mimic real life situations
in which non-local connections exist along with predominantly local.

It has been observed in these systems, that starting from a one dimensional
chain at p = 0, one obtains long-range order at any finite rewiring probability
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with same critical exponents as in the mean-field case. Newman and Moore
recover critical exponents for percolation on small world lattices which are the
same as for the Bethe lattice, i.e. an infinite dimensional case [5]. For XY model,
Medvedyeva et al conjecture that critical exponents are same as for the mean
field case[6]. They have confirmed it for p ≥ 0.03 and there is good reason to
believe that it is true for any p > 0 (The obvious difficulty is that one needs to
simulate larger and larger lattices at small p.) Similar conclusions are reached
for the Ising model on a small world network. [7]. This strongly suggests that
the behavior for any p 6= 0 is the same as the behavior for p = 1 for these
models.

Dynamical systems are nonequilibrium systems, and in general it would not
be very surprising if they have different behavior. In fact for dynamic tran-
sitions in non-equilibrium models there is evidence of transitions at finite p.
For instance, the transition to self-sustained oscillations evident in a model of
infection spreading occured at finite p [8].

Here we will try to identify the conditions under which we could expect the

behavior of nonequilibrium or dynamical systems to be similar to that observed

in equilibrium models. As a case study we use the model of infection spreading
showing finite p transitions, mentioned above. First we discuss the model in
detail in Section 2. Then in Section 3 we study the model with respect to a
parameter determining the driving rate of the system. We show how very slow
driving leads to transitions at p → 0, as in equilibrium models. We conclude in
Section 4 with discussions.

2 Model of infection spreading

We consider the SIRS model of infection spreading on a lattice. We take a graph
of N vertices. Each vertex has 2k connections. Each site i is assigned value τi(t)
at time t. The variable τi(t) can take values from 0 to τ0. If τi(t) = 0, the site
i is considered susceptible at time t. If τI ≥ τi(t) ≥ 1, it is considered infected
and if τi(t) > τI it is considered to be in the refractory stage at time t. For sites
which are not susceptible, i.e. τi(t) 6= 0, dynamics is simple:

τi(t + 1) = τi(t) + 1 if 1 ≤ τit(t) ≤ τ0 − 1

and
τi(t + 1) = 0 if τi(t) = τ0 − 1

The dynamics does not depend on the neighbors if the site is not suscep-
tible. Neighbors come into question only while infecting the susceptible site.
The model assumes that only infected sites infect their neighbors. Thus a site
susceptible at time t, will be infected at time t + 1 with probability propor-
tional to the fraction of infected sites in its neighborhood. In other words, if
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τi(t) = 0, τi(t+1) = 1 with the probability pi = kinf/ki where ki are total num-
ber of neighbors of site i, of which kinf are infected. With probability 1 − pi,
susceptible site does not change state. The dynamics for the infected sites is
deterministic. The infected sites slowly become refractory and then eventually
become susceptible again.

Kuperman and Abramson simulated the above model on a small world lat-
tice [8]. They observe that the fraction of infected sites at a given time t shows
oscillations in time for a large value of p. One can view the system as sum of
many interacting clusters and at large values of p, these clusters get synchro-
nized to each other giving collective oscillations. It was reported in [8] that
this transition to synchronization indeed occurs at a finite value of p, and the
transition becomes sharper in the thermodynamic limit.

We note the following fact about phase synchronized oscillations. If all of
them become truly synchronized, they will reach value zero at the same time
and since there are no infected sites in the lattice, infection will die down. We
want to avoid this, and hence we make a small change in the model. We add
quenched disorder or sources of infection. We choose 1% of the total number
of sites and keep them in the infectious state forever i.e. τi(t) = τi(0) for all
these sites for all times and τi(0) = 1. This guards system against falling into
fully synchronized state where there is no further evolution[10]. The results in
the Section below are obtained from our modified SIRS model with quenched
disorder.

3 Results

Specifically we study the behaviour of the infected sites with respect to τI +τR ≡
τ0, which determines the rate of driving in this model. We see pronounced fluc-
tuations in the number of infected sites as a function of time. These fluctuations
are periodic with the natural period τ0, which is the timescale for a susceptible
site, if infected, to become susceptible again.

Fig. 1 shows the time evolution of the fraction of infected elements, for
p = 0.1, for a particular realization after discarding a long transient. The figure
displays four cases with varying values of τ0 (keeping the ratio τI/τR fixed).
Time has been scaled by the natural timescale τ0 so that results from different
choices of τ0 can be easily compared. It is clear as τ0 increases the collective
oscillations get more pronounced. These oscillations essentially indicate the
presence of cycles in the outbreak of disease.

For a small fraction of nonlocal connections p, these oscillations are seen
only if τ0, i.e natural timescale for the disease, is fairly large. On the other
hand, for a higher p, even smaller τ0 yield collective oscillations in the number
of infected individuals at a given time. An intuitive reasoning could be given as
follows. For larger τ0 the information that a given site is infected can propagate
more, since the site stays infected for a longer time. A similar role is played
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by large p, as the information that a given site is infected spreads over several
sites in a very small time if one has a lot of nonlocal connections. This sharing
of information leads to collective phenomena like periodic excitations appearing
spontaneously in the system. Since higher τ0 and p play similar roles, one can
expect that for higher τ0, we will start seeing collective oscillations even at small
p.

As an illustrative example of the similar roles played by high p and high
τ0 consider the following: the number of nonlocal connections are certainly
important in the spread of disease, as the outbreaks can affect locations far
apart geographically; but timescales also play a role. For instance, Ebola is far
more deadly virus than HIV and kills the host much faster as it has a much
shorter incubation period. However, due to the very fact that it kills so swiftly,
Ebola outbreaks are contained very soon. The people infected by Ebola die
very quickly, and so the virus has less time to jump to a new host and spread
the disease. If no new victims come in contact with the body fluids of infected
people in their short lifetime, the epidemic stops. On the other hand, HIV
remains a problem worldwide since victim lives longer and has longer time to
infect others [11].

To see this quantitatively, we study the synchronization parameter, which is
the relevant order parameter here. This is defined as

σ(t) = |
1

N
ΣN

j=1 expiφj(t) | (1)

where φj = 2π(τj − 1)/τ0 is a geometrical phase corresponding to τj . The
states τ = 0 are left out of the sum [8]. As mentioned above, 1% of the sites
are quenched in the infectious state during time evolution. We choose initial
conditions in which 10% of the total sites are in the infected state. The sites
which are not quenched, evolve according to the rule mentioned above. We
average over 120 configurations for N = 104 and compute the above order
parameter after waiting for 2.5 × 104 timesteps.

When the system is not synchronized, the phases are widely distributed and
the value of expiφ is spread widely over the unit circle. This leads to small
σ. On the other hand, when the elements are synchronized, σ is large. If all
elements are strictly synchronized, σ will be 1.

Fig. 2 shows the synchronization parameter σ obtained as a time average of
σ(t) over 1000 time steps. Subsequently we also average over different realiza-
tions of the system. The different curves are obtained for different values of τ0.
A transition in synchronization can be observed as p runs from 0 to 1. This
transition occurs at values closer to 0 as τ0 increases. We must mention that we
also carried out the same calculation for N = 105 where we averaged over 20
configurations and waited for 9 × 104 timesteps. As in case of original system,
we observe that there is no qualitative change as we do simulations for larger
system size, except that the transition becomes sharper.
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The original authors postulated that transition to collective oscillations in
infected individuals could be related to the following behavior that emerges as
one increases p. Unlike average path length, the clusterization decreases slowly
as a function of p and there is an intermediate regime where there is a low
average clusterization C(p) for a given p though the distribution of clusterization
at element level ci(p) is rather broad. They find that this is precisely the regime
when the onset of collective oscillations occurs. However, in this work, we
studied the dynamics of the system for different values of τ0. This change does
not alter topology of underlying network and hence does not affect C(p) or
dispersion around it. But the transition is certainly affected. The fact that the
transition can be seen without changing topology of underlying network suggests
that timescales also play an important role in this transition apart from structure

of the network on which dynamics is taking place.

4 Conclusions

We studied the transition to phase synchronization in a model for the spread
of infection defined on a small world network. It was shown in [8] that the
transition occurs at a finite degree of disorder p, unlike equilibrium models
where systems behave as random networks even at infinitesimal p in the infinite
size limit. We examined this system under variation of a parameter determining
the driving rate, and show that the transition point decreases as we drive the
system more slowly. Thus it appears that the transition moves to p = 0 in the
very slow driving limit, just as one expects in the equilibrium case.

Some earlier studies may also be interpreted in this light. For instance, it was
observed that the transition point of the finite p transitions to synchronization
in coupled chaotic maps decreases to p = 0 as the chaoticity of the local map
(which determines the time scales of information loss) decreases [9]. This can
be seen to reflect the fact that a transition at p → 0 is obtained when the
rate of lyapunov exponent 1/λ tends to zero. The characteristic time scale for
information loss in a chaotic system varies as 1/λ. So as the time scale reaches
infinity, the transition point goes to zero. We also note Fig. 2 in our previous
paper [12]. There we have plotted the power spectra of the collective field
for small world lattices at different values of p. We note that high frequency
(i.e. short timescale) peaks are seen only at large values of p, while small
frequency (large timescale) peaks are seen even at small p. Thus there is a clear
interplay between the probability of nonlocal connections p and the timescales
in the system. This suggests that in an extended parameter space one can find
dynamic transitions at infinitesimal p, as in the equilibrium case, in the very
slow driving parameter limit.
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Figure 1: Fraction of infected sites vs t/τ0 for a system of size 10000, for (a)
τR = 144, τI = 64, τ0 = 208 (b) τR = 72, τI = 32, τ0 = 104 (c) τR = 36,
τI = 16, τ0 = 52 (d) τR = 9, τI = 4 τ0 = 13. The value of p is 0.1.
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Figure 2: Order Parameter (defined in Eqn. 1) vs p for a system of size 10000,
for (a) τR = 144, τI = 64, τ0 = 208 (b) τR = 72, τI = 32, τ0 = 104 (c) τR = 36,
τI = 16, τ0 = 52 (d) τR = 18, τI = 8, τ0 = 26 (e) τR = 9, τI = 4, τ0 = 13.
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