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Experimental realization of chaos control by thresholding
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We report the experimental verification of thresholding as a versatile tool for efficient and flexible chaos
control. The strategy here simply involves monitoring a single state variable and resetting it when it exceeds a
threshold. We demonstrate the success of the technique in rapidly controlling different chaotic electrical
circuits, including a hyperchaotic circuit, onto stable fixed points and limit cycles of different periods, by
thresholding just one variable. The simplicity of this controller entailing no run-time computation, and the ease
and rapidity of switching between different targets it offers, suggests a potent tool for chaos based applications.
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I. INTRODUCTION

Control mechanisms that enable a system to mainta
fixed activity ~the ‘‘goal’’ or ‘‘target’’ ! even when intrinsi-
cally chaotic has many applications in situations rang
from biology to engineering@1,2#. It is thus of considerable
interest and potential utility, to devise control algorithms c
pable of achieving the desired type of behavior in stron
nonlinear systems. In recent years, there has been int
research activity devoted to the design of effective con
techniques@1,2#. A large body of work derives from the Ot
Grebogi, and Yorke~OGY! idea @1#, which seeks to use
small perturbations to place chaotic orbits onto unstable
riodic orbits. In this paper, we will experimentally demo
strate an alternate control strategy: the simple and ea
implementable threshold mechanism. This strategy does
involve adjusting any parameter in the system, but only
volves the occasional resetting of one state variable. We
first introduce the general formalism and then focus on
perimental implementation on a range of systems, includ
the challenging task of controlling a hyperchaotic system@3#.

Threshold formalism for multidimensional systems. Con-
sider a generalN-dimensional dynamical system, describ
by the evolution equation ẋ5F(x;t) where x
[(x1 ,x2 ,...,xN) are the state variables, and variablexi is
chosen to be monitored and threshold controlled. The p
scription for threshold control in this system is as follow
control will be triggered whenever the value of the mo
tored variable exceeds a critical thresholdx* ~i.e., whenxi
.x* ) and the variablexi will then be reset tox* @4–6#. The
dynamics continues till the next occurrence ofxi exceeding
the threshold, when control resets its value tox* again.

No run-time knowledge ofF(x) is involved, and no com-
putation is needed to obtain the necessary control.
method only involves monitoring a single variable and
parameters are perturbed in the original system. The theo
ical basis of the method does not involve stabilizing unsta
periodic orbits, but rather involves clipping desired time s
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quences~symbol sequences in maps! and enforcing a period-
icity on the sequence through the thresholding action wh
acts as a resetting of initial conditions. The effect of th
scheme is to limit the dynamic range slightly, i.e., ‘‘snip’’ o
small portions of the available phase space, and this sm
controlling action is effective in yielding a range of stab
behaviors. In fact, chaos is advantageous here, as itpossesses
a rich range of temporal patterns which can be clipped
different behaviors. This immense variety is not availabl
from thresholding regular systems.

It can be shown analytically for one-dimensional ma
and numerically for multidimensional systems that t
threshold mechanism yields stable orbits of all orders
simply varying the threshold level@4–6#. But so far there
had been no direct experimental verification of this cont
scheme. To the best of our knowledge, this work is the fi
such attempt. Now to experimentally demonstrate the ra
and efficacy of the method, we implement it on three diff
ent chaotic electrical circuits, including a hyperchaotic o
The results from our experiments are presented in deta
the sections below.

II. CONTROLLING A CIRCUIT REALIZATION
OF NONLINEAR THIRD-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

The first experimental setup is a realization of nonline
third-order ordinary differential equations~ODE!, a form
known in literature as Jerk equations:

d3x

dt3
1A

d2x

dt2
1

dx

dt
5G~x!, ~1!

whereG(x) is a piecewise linear function:G(x)5Buxu2C
with B51.0, C52.0, andA50.6 @7#. The circuit realization
of the above uses resistors, capacitors, diodes, and op
tional amplifiers as shown in Fig. 1. The implementati
involves three successive active integrators to gene
d2x/dt2, dx/dt, andx from d3z/dt3, coupled with a nonlin-
ear element that generatesG(x) and feeds it back to
d3x/dt3.
©2003 The American Physical Society10-1
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FIG. 1. A general circuit for
solving Eq.~1! using a nonlinear
feedback element G(x)5Buxu
2C. The precision clipping con-
trol circuit is shown in the dotted
box. Here,VT corresponds to the
threshold controlled signal.
bl

is
e

e

s
o
ue
t

m
ri

mi-
can

he

for
par-
be-
ble
ble

ely,

als
6-
r

tic
Now we implement the threshold mechanism on varia
x, i.e., wheneverx.x* , x is clipped tox* . A precision clip-
ping circuit @8# as depicted in the dotted box in Fig. 1
employed for threshold control. We have chosen compon
values for the control circuit to be@opamp5mA741, diode
5IN4148, load resistor51 kV, and threshold referenc
voltage5V, which setsx* ].

Figure 2~a! displays the uncontrolled attractor and Fig
2~b!–2~d! show some representative results of the thresh
action on this chaotic system for a range of threshold val
x* (x* ,2.4). It is clear that the mechanism manages
yield cycles of varying periodicities. Further, a detailed co
parison shows thecomplete agreement between our expe
mental results and our numerical simulation results.

So the single threshold variablex has the ability to drag

FIG. 2. Attractors in thex- ẋ plane:~a! the uncontrolled chaotic
system obtained from the circuit realization of Eq.~1! ~upper left
box!; ~b! period 1 cycle obtained whenx* 51 V ~upper right box!;
~c! period 2 cycle obtained whenx* 52 V ~lower left box!; and~d!
period 4 cycle obtained whenx* 52.1 V ~lower right box!.
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the rest of this three-dimensional system to regular dyna
cal behavior. The characteristics of the controlled states
be easily varied by just changing the thresholdx* ~see Table
I!. Also note that simply setting the threshold beyond t
bounds of the attractor gives back the original dynamics.

The control transience is very short here~typically of the
order of 1023 times the controlled cycle!. This makes the
control practically instantaneous. The underlying reason
this is that the system does not have to be close to any
ticular unstable fixed point, as in OGY based schemes,
fore implementing control. Once a specified state varia
exceeds the threshold, it is caught immediately in a sta
orbit.

The changes in state effected by thresholding, nam
(x2x* ) whenx.x* , are typically small~as adjustments are
made just afterx crossesx* ). Further, for higher periods, the
controlling action is infrequent and occurs for short interv
in every controlled cycle. For instance, to control to a 1
cycle with x* 52.327, the thresholding is operational fo
only ;0.22 msec in an interval of 50 msec.

III. CONTROLLING CHUA’S CIRCUIT

Now we consider a realization of the double scroll chao
Chua’s attractor given by the following set of~rescaled! three
coupled ODEs@9#

ẋ5a@y2x2g~x!#, ~2!

TABLE I. Threshold ranges~in V! vs periodicity of the con-
trolled cycle, for the chaotic system given by Eq.~1!.

Threshold for system Nature of controlled orbit

x* ,22.00 Fixed point
22.00,x* ,1.477 Period 1 cycle
1.477,x* ,2.242 Period 2 cycle
2.242,x* ,2.321 Period 4 cycle
2.321,x* ,2.325 Period 8 cycle
2.325,x* ,2.331 Period 16 cycle
0-2
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EXPERIMENTAL REALIZATION OF CHAOS CONTROL . . . PHYSICAL REVIEW E 68, 016210 ~2003!
ẏ5x2y1z, ~3!

ż52by, ~4!

wherea510 andb514.87 and the piecewise linear functio
g(x)5bx11/2(a2b)(ux11u2ux21u) with a521.27 and
b520.68. The corresponding circuit component values
@L518 mH, R51710 V, C1510 nF, C25100 nF, R1
5220V, R25220V, R352.2 kV, R4522 kV, R5522 kV,
R353.3 kV, D5IN4148, B1 ,B25Buffers, OA1–0A3:
opampmA741#. Note that the circuit of Fig. 3 is the ring

FIG. 3. Chua’s chaotic circuit with threshold level controllin
circuit ~shown in the dotted box!. Here,VT is the threshold con-
trolled signal.

FIG. 4. Attractors in theV1-V2 plane, corresponding to thex-y
plane of Eqs.~2!–~4!. ~a! Uncontrolled chaotic attractor~upper left
box!; ~b! fixed point obtained whenx* 51.8 V ~upper right box!;
~c! period 2 cycle obtained whenx* 52.7 V ~lower left box!; and
~d! period 4 cycle obtained whenx* 52.71 V ~lower right box!.
01621
e

structure configuration of the classic Chua’s circuit@9,10#.
The uncontrolled attractor from this system is displayed
Fig. 4~a!.

Now we implement an even more minimal thresholdin
Instead of demanding that thex variable be reset tox* if it
exceedsx* , we only demand this in Eq.~3!. This has very
easy implementation, as it avoids modifying the value ofx in
the nonlinear elementg(x), which is harder to do. So the
all we do is to implementẏ5x* 2y1z instead of Eq.~3!,
whenx.x* , and there is no controlling action ifx<x* . In
the circuit, the voltageVT corresponds tox* . The resulting
controlled orbits with respect to thresholdx* is given in
Figs. 4~b!–4~d! (x* ,2.7). So the threshold control work
on the system rapidly and can control to a wide range
temporal behaviors~see Table II!.

IV. CONTROLLING HYPERCHAOS

Now we demonstrate the method on a hyperchaotic e
trical circuit. This constitutes a stringent test of the cont
method since the system posseses more than one po
Lyapunov exponent, and so more than one unstable eige
rection has to be reigned in by thresholding a single varia
In particular, we consider the realization of four coupl
nonlinear ~rescaled! ordinary differential equations of the
form

ẋ15~k22!x12x22G~x12x3!, ~5!

ẋ25~k21!x12x2 , ~6!

ẋ352x41G~x12x3!, ~7!

ẋ45bx3 , ~8!

where

G~x12x3!5 1
2 b@ ux12x321u1~x12x321!#

with k53.85,b588, andb518 @11#. The circuit realization
of the above is displayed in Fig. 5, with component valu
@L518 mH,C2568 nF,R51.8 kV, C568 nF,R152.8 kV,
R251 kV, andD15IN4148]. Figure 6~a! displays the~un-
controlled! hyperchaotic attractor resulting from this circu
and it is characterized by two maximal positive Lyapun
exponentsl150.13 andl250.05.

Again we implement apartial thresholding on variable
x3 : wheneverx3.x* in the system,G(x12x3) in Eq. ~5!

TABLE II. Threshold ranges~in V! vs periodicity of the con-
trolled cycle, for the chaotic system given by Eqs.~2–4!.

Threshold for system Nature of controlled orbit

x* ,1.84375 Fixed point
1.84375,x* ,2.235 Period 1 cycle
2.235,x* ,2.258 Period 2 cycle
2.258,x* ,2.264 Period 4 cycle
2.264,x* ,2.265 Period 8 cycle
2.265,x* ,2.2653 Period 16 cycle
0-3
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FIG. 5. Circuit implementation
of Eqs.~5!–~8!, with the precision
clipping control circuit in the dot-
ted box.VT is the threshold con-
trolled signal.
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becomes G(x12x* ), i.e., we have ẋ15(k22)x12x2
2G(x12x* ), while Eqs.~6!–~8! are unchanged. Whenx3
<x* , there is no action at all. A precision clipping circuit@8#
as depicted in the dotted box in Fig. 5 is employed for
above scheme, which is even simpler to implement th
thresholdingx3 throughout the system. We have chosen co
ponent values for the control circuit to be@opamp
5mA741, diode (D)5IN4148 or IN34A, series resisto
Rs51 kV and threshold reference voltage5V, which sets
the x* ].

Both our experiments and our numerical simulatio
~which are in complete agreement! show that this scheme
successfully yields regular stable cycles under a very w
range of thresholds. A representative example with thresh
set at 0 V is displayed in Fig. 6~b!, which shows the con-
trolled cycle in theV12V2 plane, which corresponds to th
rescaledx12x3 plane of Eqs.~5!–~8!.

So it is evident that asingle thresholded variable has th
ability to clip the full four-dimensional hyperchaotic syste
to regular dynamical behavior~see Figs. 7 and 8 for som
examples of the geometries of the controlled orbits!. Thus,
the period and geometry of the controlled states can be e
varied by settingx* in different windows. For instance
thresholding at 0 V yields a 1 T attractor~with respect to the
x1 variable!, while thresholding at 0.3 V yields period 3 T
0.32 V yields period 8 T, 0.33 V yields period 5 T, and 0.
V yields period 13 T.

Note that this technique has a certain similarity with im
pulse methods@13#, in that they are both stroboscopic
operation and act only on state variables, not on parame
The difference lies primarily in that thresholding actsonly
when the system is above threshold and thus can be
infrequent. Impulse methods, on the other hand, act at fi
intervals. Further, the control action here is a simple reset
of one variable, while the periodic pulse method involves
additive ~negative or positive! or multiplicative pulse to one
or more variables. It also appears that pulse methods nee
implement more controlling action than thresholding. For
stance, in the example in Ref.@14# a three-dimensional~3D!
system needs pulsing on two variables for control, while h
even a four-dimensional hyperchaotic system needs only
01621
e
n
-

s

e
ld

ily

rs.

ry
d
g
n

to
-

e
ne

variable to be thresholded. A further advantage of the thre
olding method is that exact analytical results are available
thresholding 1D chaotic maps@5#, and these indicate a theo
retical basis for the success of the method.

FIG. 6. ~a! Uncontrolled hyperchaotic attractor,~b! controlled
attractor for threshold50 V, in the V1-V2 plane, corresponding to
the x1-x3 plane of Eqs.~5!–~8!.
0-4
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FIG. 7. Controlled attractors in
thex1-x3 plane, obtained from the
hyperchaotic system by threshold
ing thex3 variable in Eq.~5! with
threshold values:~i! x* 50.1, ~ii !
x* 50.2, ~iii ! x* 50.3, ~iv! x*
50.7, ~v! x* 50.8, and ~vi! x*
51.0.

FIG. 8. Controlled attractors in
thex1-x3 plane, obtained from the
hyperchaotic system by threshold
ing thex3 variable in Eq.~5!, with
threshold values:~i! x* 51.2, ~ii !
x* 51.5, ~iii ! x* 51.7, ~iv! x*
52.0, ~v! x* 52.5, and ~vi! x*
52.84.
016210-5
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Lastly, note a few limitations of this method. In mo
systems, very high-order periods are usually obtained in
row windows of threshold values. So these targets are q
susceptible to noise, and consequently they are harder to
tain, as one needs very accurate threshold level determ
tion. Also, high thresholds acting at the edges of attrac
are less robust and more susceptible to fluctuations.

Further, while threshold control will always yield som
regular orbit, it is not clear at the outset the full range
dynamic behaviors that can be obtained by thresholding
one needs an initial exploratory run over threshold param
space to map out the dynamic possibilities for differe
thresholds. Such a run clearly lays out the scope of
threshold mechanism in a specific system. The more c
plex is the time series of a system, the greater is the diver
of controlled orbits, e.g., in the hyperchaotic example abo
the variety of orbits that may be obtained is very wide
deed. As noted before, chaos, especially hyperchaos, is
ticularly interesting in this context, as it possesses a r
re

ao

ion

ng
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range of temporal patterns which can be clipped to ma
different behaviors.

V. CONCLUSIONS

In summary, it is clearly evident from these experimen
that the technique is powerful, efficient, and robust, and
have applied it successfully to obtain a wide range of regu
behaviors. The method involves no adjustment of para
eters, but merely the manipulation ofonestate variable, even
in hyperchaotic systems possessing more than one uns
eigendirection. A significant motivation in verifying the effi
cacy of this strategy in experiments was the possible ap
cations of such a scheme to technical applications such
chaos computing@12# and communications@15#. Such appli-
cations require swift control with no run time computation
i.e., a nonfeedback control which can be employed a
look-up table@16#. This is exactly what thresholding offers
Further, the controller is very simple and flexible, and th
has clear cost benefits in any attempts to exploit the richn
of chaos.
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