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Random Coupling of Chaotic Maps leads to
Spatiotemporal Synchronisation
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Abstract

We investigate the spatiotemporal dynamics of a network of coupled

chaotic maps, with varying degrees of randomness in coupling connec-

tions. While strictly nearest neighbour coupling never allows spatiotem-

poral synchronization in our system, randomly rewiring some of those

connections stabilises entire networks at x
∗, where x

∗ is the strongly un-

stable fixed point solution of the local chaotic map. In fact, the smallest

degree of randomness in spatial connections opens up a window of stability

for the synchronised fixed point in coupling parameter space. Further, the

coupling ǫbifr at which the onset of spatiotemporal synchronisation occurs,

scales with the fraction of rewired sites p as a power law, for 0.1 < p < 1.

We also show that the regularising effect of random connections can be

understood from stability analysis of the probabilistic evolution equation

for the system, and approximate analytical expressions for the range and

ǫbifr are obtained.

1 Introduction

The Coupled Map Lattice (CML) was introduced as a simple model captur-
ing the essential features of nonlinear dynamics of extended systems [1]. Over
the past decade research centred around CML has yielded suggestive conceptual
models of spatiotemporal phenomena, in fields ranging from biology to engineer-
ing. In particular, this class of systems is of considerable interest in modelling
phenomena as diverse as josephson junction arrays, multimode lasers, vortex
dynamics, and even evolutionary biology. The ubiquity of distributed complex
systems has made the CML a focus of sustained research interest.

A very well-studied coupling form in CMLs is nearest neighbour coupling.
While this regular network is the chosen topology of innumerable studies, there
are strong reasons to re-visit this fundamental issue in the light of the fact that
some degree of randomness in spatial coupling can be closer to physical reality
than strict nearest neighbour scenarios. In fact many systems of biological,
technological and physical significance are better described by randomising some
fraction of the regular links [2-7]. So here we will study the spatiotemporal
dynamics of CMLs with some of its coupling connections rewired randomly, i.e.
an extended system comprised of a collection of elemental dynamical units with
varying degrees of randomness in its spatial connections.
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Specifically we consider a one-dimensional ring of coupled logistic maps.
The sites are denoted by integers i = 1, . . . , N , where N is the linear size of the
lattice. On each site is defined a continuous state variable denoted by xn(i),
which corresponds to the physical variable of interest. The evolution of this
lattice, under standard nearest neighbour interactions, in discrete time n is
given by

xn+1(i) = (1 − ǫ)f(xn(i)) +
ǫ

2
{xn(i + 1) + xn(i − 1)} (1)

The strength of coupling is given by ǫ. The local on-site map is chosen to be the
fully chaotic logistic map: f(x) = 4x(1−x). This map has widespread relevance
as a prototype of low dimensional chaos.

Now we will consider the above system with its coupling connections rewired
randomly in varying degrees, and try to determine what dynamical properties
are significantly affected by the way connections are made between elements.
In our study, at every update we will connect a fraction p of randomly chosen
sites in the lattice, to 2 other random sites, instead of their nearest neighbours
as in Eqn. 1. That is, we will replace a fraction p of nearest neighbour links
by random connections. The case of p = 0 corresponds to the usual nearest
neighbour interaction, while p = 1, corresponds to completely random coupling
[2-7].

This scenario is much like small world networks at low p, namely p ∼ 0.01.
Note however that we explore the full range of p here. In our work 0 ≤ p ≤ 1.
So the study is inclusive of, but not confined to, small world networks.

2 Numerical Results

We will now present numerical evidence that random rewiring has a pronounced
effect on spatiotemporal synchronisation. The numerical results here have been
obtained by sampling a large set of random initial conditions (∼ 104), and with
lattice sizes ranging from 10 to 1000.

Figs. 1 and 2 display the state of the network, xn(i), i = 1, . . .N , with respect
to coupling strength ǫ, for the limiting cases of nearest neighbour interactions
(i.e. p = 0) and completely random coupling (i.e. p = 1). It is clearly seen that
the standard nearest neighbour coupling does not yield a spatiotemporal fixed
point anywhere in the entire coupling range 0 ≤ ǫ ≤ 1 [8].

Now the effect of introducing some random connections, i.e. p > 0, is to
create windows in parameter space where a spatiotemporal fixed point state gains

stability, i.e. where one finds all lattice sites synchronised at xn(i) = x∗ = 3/4,
for all sites i and at all times n. Note that x∗ = f(x∗) is the fixed point
solution of the individual chaotic maps, and is strongly unstable in the local
chaotic map. We then have for all p > 0, a stable region of synchronised fixed
points in the parameter interval: ǫbifr ≤ ǫ ≤ 1.0. The value of ǫbifr, where the
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spatiotemporally invariant state onsets, is dependent on p. It is evident from
Fig. 2 that ǫbifr for completely random coupling p = 1 is around 0.62.

The relationship between the fraction of rewired connections p and the range,
R = (1 − ǫbifr), within which spatiotemporal homogeniety is obtained, is dis-
played in Fig. 3. It is clearly evident that unlike nearest neighbour coupling,
random coupling leads to large parameter regimes of regular homogeneous be-
haviour, with all lattice sites synchronised exactly at x(i) = x∗ = 0.75. Fur-
thermore the synchronised spatiotemporal fixed point gains stability over some
finite parameter range under any finite p, i.e. whenever p > 0, however small,
we have R > 0. In that sense strictly nearest neighbour coupling is singular as it
does not support spatiotemporal synchronisation anywhere in coupling param-
eter space, whereas any degree of randomness in spatial coupling connections
opens up a synchronised fixed point window. Thus random connections yield
spatiotemporal homogeneity here, while completely regular connections never
do.

The relationship between ǫbifr, the point of onset of the spatiotemporal fixed
phase, and p is shown in Fig. 4. Note that for p < 0.1 random rewiring does
not affect ǫbifr much. Only after p ∼ 0.1 does ǫbifr fall appreciably. Further, it
is clearly evident that for 0.1 < p ≤ 1 the lower end of the stability range falls
with increasing p as a well defined power law. Note that lattice size has very
little effect on ǫbifr, and the numerically obtained ǫbifr for ensembles of initial
random initial conditions over a range of lattice sizes N = 10, 50, 100 and 500
fall quite indistinguishably around each other.

The robust spatiotemporal fixed point supported by random coupling may
have significant ramifications. It has immediate relevance to the important prob-
lem of controlling/synchronising extended chaotic systems [10, 11]. Obtaining
spatiotemporal synchronisation by introducing some random spatial connections
may have practical utility in the control of large interactive systems. The regu-
larising effect of random coupling may then help to devise control methods for
spatially extended interactive systems, as well as suggest natural regularising
mechanisms in physical and biological systems.

3 Analytical Results

We shall now analyse this system to account for the much enhanced stability of
the homogeneous phase under random connections. The only possible solution
for a spatiotemporally synchronized state here is one where all xn(i) = x∗, and
x∗ = f(x∗) is the fixed point solution of the local map. For the case of the
logistic map x∗ = 4x∗(1 − x∗) = 3/4.

To calculate the stability of the lattice with all sites at x∗ we will construct
an average probabilistic evolution rule for the sites, which becomes a sort of
mean field version of the dynamics. Some effects due to fluctuations are lost,
but as a first approximation we have found this approach qualitatively right,
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and quantitatively close to to the numerical results as well.
We take into account the following: all sites have probability p of being

coupled to random sites, and probability (1−p) of being wired to nearest neigh-
bours. Then the averaged evolution equation of a site j is

xn+1(j) = (1−ǫ)f(xn(j))+(1−p)
ǫ

2
{xn(j + 1) + xn(j − 1)}+p

ǫ

2
{xn(ξ) + xn(η)}

(2)
where ξ and η are random integers between 1 and N .

To calculate the stability of the coherent state, we perform the usual lin-
earization. Replacing xn(j) = x∗ + hn(j), and expanding to first order gives

hn+1(j) = (1 − ǫ)f ′(x∗)hn(j) + (1 − p)
ǫ

2
{hn(j + 1) + hn(j − 1)} (3)

+ p
ǫ

2
{hn(ξ) + hn(η)}

≈ (1 − ǫ)f ′(x∗)hn(j) + (1 − p)
ǫ

2
{hn(j + 1) + hn(j − 1)}

as to a first approximation one can consider the sum over the fluctuations of
the random neighbours to be zero. This approximation is clearly more valid for
small p.

For stability considerations one can diagonalize the above expression using a
Fourier transform (hn(j) =

∑
q φn(q) exp(ijq), where q is the wavenumber and

j is the site index), which finally leads us to the following growth equation:

φn+1

φn

= f ′(x∗)(1 − ǫ) + ǫ(1 − p) cos q (4)

with q going from 0 to π. Clearly the stabilisation condition will depend on the
nature of the local map f(x) through the term f ′(x) in Eqn. 4. Considering the
fully chaotic logistic map with f ′(x∗) = −2, one finds that the growth coefficient
that appears in this formula is smaller than one in magnitude if and only if

1

1 + p
< ǫ < 1 (5)

i.e.

ǫbifr =
1

1 + p
(6)

and the range of stability R is

R = 1 −
1

1 + p
=

p

1 + p
(7)

For small p (p << 1) standard expansion gives

R ∼ p (8)
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The usual case of regular nearest neighbour couplings, p = 0, gives a null
range, as the upper and lower limits of the range coincide. When all connections
are random, i.e. p = 1 the largest stable range is obtained, and the lower end of
the stable window ǫbifr is minimum, with ǫbifr = 1/2. So stability analysis also
clearly dictates that enhanced stability of the homogeneous phase must occur
under random connections, just as numerical evidence shows.

Fig. 3 exhibits both the analytical expression of Eq.(7) and the numerically
obtained points for comparison. It is clear that for small p the numerically
obtained R ∼ p is in complete agreement with the analytical formula. But
for higher p some deviation is discernable, as the ignored effect of the fluctu-
ating contributions from random neighbours is weighted by p, and hence more
pronounced for large p. Here the numerically obtained result goes as

ǫbifr ∼ p−φ (9)

for 0.1 < p ≤ 1, with φ ∼ 0.2 (see Figs. 4 and 7).
Note that when p < 0.1 the effect on ǫbifr is not significant. Only when

0.1 < p ≤ 1 does ǫbifr fall appreciably. So connecting elements in a small world
network is not sufficient to make much difference to the onset of the stable
spatiotemporally synchronised state [9].

4 Results from Other Models

In order to examine the range of applicability of this phenomena we have ex-
amined coupled tent maps and coupled sine circle maps as well. In the case of
coupled tent maps the local map in Eqn. 1 is given as

f(x) = 1 − 2|x − 1/2| (10)

The tent map has an unstable fixed point at x∗ = 2/3, with local slope f ′(x∗) =
−2. For coupled circle map networks the local map in Eqn. 1 is given as

f = x + Ω −
K

2π
sin(2πx) (11)

and Eqn. 1 is taken mod 1. In the representative example chosen here the pa-
rameters of the circle map are Ω = 0, K = 3. Here too the local map has a
strongly unstable fixed point at x∗ = 1

2π
sin−1(Ω/K), with f ′(x∗) = −2. Nu-

merics very clearly show that both these systems yield the same phenomena as
logistic maps, namely, one obtains a stable range for spatiotemporal synchroni-
sation on random rewiring (see Figs. 5 and 6 for the limiting cases of p = 0 and
p = 1 in coupled circle maps).

Since the f ′(x∗) of both the tent map and the circle map above is −2, we
expect from our analysis (Eqn. 4) that their ǫbifr and R will be the same as
for logistic maps. This is indeed exactly true, as is evident from Fig. 7 which
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displays the point of onset of spatiotemporal synchronisation for all three cases.
In fact the numerically obtained ǫbifr values for ensembles of coupled tent, circle
and logistic maps fall indistinguishably around each other, even for high p where
Eqn. 4 is expected to be less accurate.

Additionally one can infer from the stability analysis above, how strongly
unstable the local maps can possibly be while still allowing random connections
to stabilise the spatiotemporal fixed point. From Eqn. 4 it follows that the onset
of spatiotemporal regularity is governed by the condition

|f ′(x∗)| <
1 − ǫ + ǫp

1 − ǫ
= 1 +

ǫp

1 − ǫ
(12)

Clearly then, locally unstable maps with |f ′(x∗)| > 1 can be stabilised by any
finite p, i.e. by any degree of randomness in the coupling connections. As cou-
pling strength ǫ and fraction of rewiring p increases, maps with increasingly
unstable fixed points can be synchronised stably by random rewiring. For regu-
lar coupling (p = 0) on the other hand the local instability can only be as large
as 1, i.e. if and only if the local components possess stable fixed points can their
network be stabilised at spatiotemporal fixed points, as numerics have already
shown.

Lastly, in certain contexts, especially neuronal scenarios, the randomness in
coupling may be static. In the presence of such quenched randomness in the
couplings, once again one obtains a stable range R for spatiotemporal synchro-
nisation. But unlike dynamical rewiring where the R is independent of the size
and initial preparation of the lattice and its connections, here there is a spread
in the values of R obtained from different (static) realisations of the random
connections. Futhermore, this distribution of R is dependent on the size of net-
work. For instance, on an average, networks of size N = 10 with fully random
static connections (p = 1) yield ǫbifr ∼ 0.75 and those of size N = 100 yield
ǫbifr ∼ 0.85, as opposed to ǫbifr ∼ 0.62 obtained for all N for dynamically
updated random connections. Fig. 8 displays the average range < R > with
respect to network size N , indicative of clear scaling behaviour:

< R >∼ N−ν (13)

with ν ∼ 0.24. This suggests that the range narrows slowly with increasing
network size. So, while in the limit of infinite lattices there will be no spa-
tiotemporal synchronisation, for finite networks static randomness will lead to
stable windows of spatiotemporal synchronisation.

This behaviour can be understood by a examining the linear stability of the
homogeneous solution: xn(j) = x∗ for all sites j at all times n. For instance for
the case of fully random static connections p = 1, considering the dynamics of
small perturbations over the network one obtains the transfer matrix connecting
the perturbation vectors at successive times to be a sum of a N × N diagonal
matrix, with entries (1 − ǫ)f ′(x∗), and ǫ/2 × C where C is a N × N sparse
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non-symmetric matrix with two random entries of 1 on each row. Now the
minimum of the real part of the eigenvalues of C, λmin, crucially governs the
stability. Typically ǫbifr = 2/{λmin + 4} when f ′(x∗) = −2. Now the values
of λmin obtained from different static realisations of the connectivity matrix C

are distributed differently for different sizes N . For small N this distribution
is broad and has less negative averages (∼ −1). On the other hand for large
N the distribution gets narrower and tends towards the limiting value of −2.
This results in a larger range of stability, and greater spread in ǫbifr for small
networks. In fact for small N , certain static realisations yield a larger range of
stability (R ∼ 1/2) than dynamic rewiring.

5 Conclusions

In summary then, we have shown that random rewiring of spatial connections
has a pronounced effect on spatiotemporal synchronisation. In fact strictly near-
est neighbour coupling is not generic, in that it does not support any spatiotem-
poral fixed point phase, while the smallest degree of random rewiring has the
effect of creating a window of spatiotemporal invariance in coupling parameter
space. Further the regularising effect of random connections can be understood
from stability analysis of the probabilistic evolution equation for the system,
and approximate analytical expressions for the range and onset of spatiotem-
poral synchronisation have been obtained. The key observation that random

coupling regularises may then help to devise control methods for spatially ex-
tended interactive systems, as well as suggest natural regularising mechanisms
in physical and biological systems.

Acknowledgements: I would like to thank Neelima Gupte for many stimu-
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Figure 1: Bifurcation diagram showing values of xn(i) with respect to coupling
strength ǫ, for coupled logistic maps with strictly regular nearest neighbour
connections. Here the linear size of the lattice is N = 100 and in the figure we
plot xn(i) (i = 1, . . . , 100) over n = 1, . . . 5 iterations (after a transience time of
1000) for 5 different initial conditions.
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Figure 2: Bifurcation diagram showing values of xn(i) with respect to coupling
strength ǫ, for coupled logistic maps with completely random connections. Here
the linear size of the lattice is N = 100 and in the figure we plot xn(i) (i =
1, . . . , 100) over n = 1, . . . 5 iterations (after a transience time of 1000) for 5
different initial conditions.
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Figure 3: The stable range R with respect to the fraction of randomly rewired
sites p (0.001 ≤ p ≤ 1) : the solid line displays the analytical result of Eqn. 7,
and the different points are obtained from numerical simulations over several
different initial conditions, for 4 different lattice sizes, namely N = 10, 50, 100
and 500. The dotted line shows R = p, and it is clear that for a large range of
p the approximation holds.
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Figure 4: The ǫbifr (i.e. the value of coupling at which the onset of spatiotem-
poral synchronization occurs) with respect to fraction of randomly rewired sites
p (0.001 ≤ p ≤ 1) : the solid line displays the analytical result of Eqn. 6, and
the points are obtained from numerical simulations over several different initial
conditions, for 4 different lattice sizes, namely N = 10, 50, 100 and 500. The
inset box shows a blow-up of 0.1 < p ≤ 1. Here the numerically obtained ǫbifr

deviates from the mean field results. The dashed line is the best fit straight line
for the numerically obtained points in that region.
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Figure 5: Bifurcation diagram showing values of xn(i) with respect to coupling
strength ǫ, for coupled sine circle maps with strictly regular nearest neighbour
connections. Here the linear size of the lattice is N = 100 and in the figure we
plot xn(i) (i = 1, . . . , 100) over n = 1, . . . 5 iterations (after a transience time of
1000) for 5 different initial conditions.
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Figure 6: Bifurcation diagram showing values of xn(i) with respect to coupling
strength ǫ, for coupled sine circle maps with completely random connections.
Here the linear size of the lattice is N = 100 and in the figure we plot xn(i)
(i = 1, . . . , 100) over n = 1, . . . 5 iterations (after a transience time of 1000) for
5 different initial conditions.
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Figure 7: Plot of ǫbifr (i.e. the value of coupling at which the onset of spatiotem-
poral synchronization occurs) with respect to fraction of randomly rewired sites
p (0.2 ≤ p ≤ 1). The points are obtained from numerical simulations over
several different initial conditions, for lattice size N = 50, for the case of (a)
coupled tent maps (open squares) (b) coupled circle maps (open triangles) and
(c) coupled logistic maps (open circles). The solid line displays the best fit
straight line for the numerically obtained points.
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Figure 8: Plot of the average stable range < R > of spatiotemporal synchroni-
sation obtained in the case of static random connections with respect to network
size N , for rewired fraction p = 1. Here we average R over 104 different realisa-
tions of static random connections. The solid line shows the best fit line to the
numerically obtained data, indicating clear scaling.
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