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The spectrum of instantaneous normal mode~INM ! frequencies of finite Lennard-Jones clusters is
studied as a function of the extent of quantum delocalization. Configurations are sampled from the
equilibrium distribution by a Fourier path integral Monte Carlo procedure. The INM spectra,
average force constants and Einstein frequencies are shown to be interesting dynamical markers for
the quantum delocalization-induced cluster solid–liquid transition. Comparisons are made with
INM spectra of quantum and classical Lennard-Jones liquids. The methodology used here suggests
a general strategy to obtain quantal analogs of various classical dynamical quantities. ©1997
American Institute of Physics.@S0021-9606~97!51712-0#
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I. INTRODUCTION

Path integral Monte Carlo~PIMC! methods have bee
used extensively to simulate atomic and molecular syst
to obtain canonical ensemble averages for equilibrium pr
erties of nonfermionic systems that are, in princip
exact.1–6 However, a computational method for simulatin
quantum many-body dynamics is still an elusive goal. Giv
this methodological bottleneck, serious efforts have b
made to extract dynamical information from equilibriu
Monte Carlo simulations, which have largely been fruitle
except in certain special situations e.g., the study of r
processes such as electron and proton transfer.7 Some prom-
ise of progress in this direction is held out by the instan
neous normal mode~INM ! approach8 for classical liquids
and clusters. From the normal modes associated with c
figurations sampled from an equilibrium distribution, d
namical quantities such as the velocity autocorrelation fu
tion can be calculated with fair accuracy.9–13 Thus the INM
spectrum itself is an equilibrium property of the system t
can be defined in any ensemble and from which one
hope to infer significant dynamical information.

The success of the INM approach for classical liqu
suggests that it would be worthwhile to explore the con
quences of treating a quantum liquid or cluster as a col
tion of quantum harmonic oscillators. In this article we i
vestigate the instantaneous normal mode spectra of qua
clusters simulated through PIMC calculations. In particu
we attempt to understand the dynamical changes assoc
with the quantum delocalization induced cluster solid–liqu
transition.5,6

As is by now well-known, classical clusters have seve
phase-dependent dynamical characteristics.14 The largest
Lyapunov exponent has a characteristic variation with
ergy or temperature at the cluster solid–liquid transit
~CSLT!.15,16 The power spectrum of energy fluctuations
classical Lennard-Jones~LJ! clusters also shows distinctiv
qualitative changes during thermal melting.15,17 These dy-

a!Author to whom correspondence should be addressed.
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namical changes are reflected in classical INM spectra—
fraction of imaginary frequencies increases as the cluster
comes more liquidlike and is able to access metasta
minima.9,11

Quantum effects have been shown tolower the melting
and freezing temperatures of clusters.2–5 More recently, it
has been shown that quantum delocalization effects can
duce a cluster solid–liquid transition~QCSLT! analogous to
the thermal melting of classical clusters.6 One would expect
clusters to undergo dynamical changes during a quan
fluctuation-induced CSLT that are somewhat similar to tho
seen during a thermally induced CSLT. Dynamical chan
associated with the QCSLT can be detected by calcula
INM spectra of quantum clusters at a fixed temperature w
increasing the degree of quantum delocalization by reduc
the atomic mass.

A quantal instantaneous normal mode theory of liqu
has recently been proposed by Cao and Voth13 who use the
path centroid probability distribution to sample liquid co
figurations. A variational procedure is used to obtain a se
centroid frequencies for each configuration; this includ
quantum effects within a quadratic approximation. Wh
their results for liquid Ar and Ne are encouraging, it is n
clear how adequate this procedure is for systems where
quantum effects are more pronounced.

The present technique to obtain quantum INM spectr
based on the PIMC procedure, and is described in the
lowing section, where we also briefly review the classic
INM methodology. Application is made to the case of qua
tum clusters, and the relevant computational details are g
in Sec. III. The results of our simulations are presented
Sec. IV, and this is followed by a brief summary and discu
sion.

II. INSTANTANEOUS NORMAL MODES—CLASSICAL
AND QUANTAL

The essence of the INM concept is to approximate
total potentialV at each instant as a quadratic function of t
coordinates,
106(13)/5564/5/$10.00 © 1997 American Institute of Physics
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V~Rt!'V~R0!2F•~Rt2R0!1 1
2~Rt2R0!•D•~Rt2R0!,

~1!

whereRt is the configuration at timet with R0 as the refer-
ence configuration,F is the instantaneous force andD is the
Hessian, i.e., the second-derivative matrix of the many-b
potential energy surface~PES!, V~R!. The eigenvalues ofD,
$v1

2,v2
2, . . . ,vN

2 % are the squares of the normal mode fr
quencies,N being the number of degrees of freedom of t
system. Thus the INM spectrum can be obtained by calcu
ing the distribution of the frequencies along a trajectoryRt in
a molecular dynamics simulation with HamiltonianH5P2/2
1V~R! whereP is the ~appropriately mass-scaled! momen-
tum conjugate toR. It is more common and more conve
nient, however, to get the INM spectra from configuratio
sampled from an equilibrium distribution in a MC
simulation.8

The short-time dynamics of a liquid is expected to
governed by the dynamics of the instantaneous nor
modes. The real portion of the INM spectra can be deco
posed into translational, rotational, and vibrational com
nents for a liquid. For a cluster, translational frequencies
always zero and the contribution due to the overall clus
rotations must be discarded from the INM spectra to obt
an accurate picture of intracluster dynamics.

The imaginary frequencies in INM spectra, arising fro
the negative eigenvalues ofD, are related to the instanta
neous~real! rates of divergence in the phase space, as ca
easily seen from the following. The phase space@Z[~P,R!#
is of dimension 2N, and the evolution of a vector in th
tangent space is determined by

d~dZ!

dt
5J ~Z!dZ, ~2!

with

J5S 0 2D

I 0 D , ~3!

whereO and I are null and unit matrices of orderN3N.
Note that the Lyapunov exponents,l1,l2,...,l2N are given
as18

~2l1,2l2,...,2l2N!

5 lim
n→`

H magnitude of the eigenvalues of

)
t50

n

exp@J ~Zt!dt# J 1/n

, ~4!

with the Jacobian matrixJ being evaluated atn steps along
a trajectory,dt being the time interval. The eigenvalues$z1,
z2,...,z2N% of J are related to those of the Hessian, thev’s as

z2k5A2vk
2, z2k2152A2vk

2, k51,2,...,N. ~5!

The positive realz’s are local rates of divergence which me
sure the local instability of trajectories@n51 in Eq. ~4!
above# which correlate with theimaginaryINM frequencies.
We note that Eq.~4! provides a method to define and eval
J. Chem. Phys., Vol. 106
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ate the spectrum of Lyapunov exponents for a system
equilibrium, if Zt ~with n sufficiently large! is sampled from
an equilibrium distribution.

The imaginary frequencies in INM spectra measure
extent to which the dynamics samples regions of nega
curvature in the PES,8 and these have been shown to
related to the nonzero self-diffusion constants of liquids.10

The normal modes associated with an equilibrium dis
bution for a quantum liquid or cluster can be used to co
struct an INM spectrum. The quantum many-body syst
can then be represented as a collection of quantum harm
oscillators with frequencies distributed according to the IN
spectrum. Clearly the INM spectrum for the quantum syst
in the limit \→0 or particle massm→` must coincide with
the classical INM spectrum. This instance of the corresp
dence principle suggests a novel technique for obtain
quantal analogues of classical dynamical quantities~as for
example the Lyapunov spectra! which will be explored in
future work.

III. COMPUTATIONAL DETAILS

Thirteen atom Lennard-Jones clusters were studied u
the Fourier path integral Monte Carlo technique which h
been described in detail earlier.4–6 For the particle masse
and temperatures used in this study, identical particle
change is unimportant. The LJ parameters were chosen t
e534.2 K ands52.96 Å; this choice ofe ands provides a
reasonably accurate model of~p-H2!13 and ~o-D2!13 clusters
for particle massm of 2 and 4 amu, respectively. The qua
tum LJ clusters were studied at reduced temperatu
T*5kBT/e, of 0.1, 0.15, and 0.2. The particle massm was
varied from 1645 to 1.5 amu corresponding to a variation
the de Boer parameter,L5\/sAme, from 0.01 to 0.323.
Each FPIMC run contained 2.5 to 53106 configurations,
from which 5000 configurations were sampled and the as
ciated normal modes were determined by diagonalizing
corresponding Hessian. The three zero-frequency tran
tional modes could be readily identified and removed. S
rious rotational modes of the cluster were removed by
procedure used in Ref. 9. Each sampled configuration
used as the starting point for a conjugate gradient minim
tion to determine the nearest local minimum. The avera
root mean-square width of quantum paths,l, sampled during
the course of the FPIMC simulation was also monitored.
a measure of the ‘‘average force constant’’ of the cluster,
Einstein frequency,vE , was calculated such that

vE
25E v2p~v!dv, ~6!

wherep~v! is the normalised INM spectrum.vE can be de-
composed into real,vR , and imaginary,vI , components
such that

vE
25~12Fi !vR

21Fiv I
2, ~7!

whereFi is the fraction of imaginary frequencies. It shou
be noted thatvE

25^V9&/m(3N26) where^V9& is the MC
average of the trace of the HessianD; thus ^V9& can be in-
, No. 13, 1 April 1997
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terpreted as the average force constant of the cluster.
INM spectra were found to be well converged for the M
run lengths used here. Error estimates for various struct
and thermodynamic quantities are discussed in Ref. 6.

While the focus of our study is primarily on cluster me
ing, quantum, and classical simulations of Lennard-Jones
uids were carried out at a reduced temperatureT*51.123~40
K! and reduced densityr*50.68 for comparison with previ-
ous work.13 The Lennard-Jones parameters were appropr
for Neon~e535.6 K,s52.75 Å!. Quantum simulations were
carried out in a cubic cell of size 5.415s with 108 atoms, for
particle masses of 20 and 5 amu.

IV. RESULTS

Previous simulation results for~LJ!13 and~LJ!19 clusters
show that the onset of melting can be characterized by th
Boer parameter value,Lf , for which the cluster starts to
access metastable minima. Moreover, the melting transi
is most abrupt and well defined in theL50 andT50 limits.
For an ~LJ!13 cluster atT*50.1, Lf is approximately 0.19,
corresponding tom54.560.5 amu for thee, s values used
here.6 Lf values forT*50.15 andT*50.2 are approximately
0.152~m57 amu! and 0.104~m515 amu!.

The connection between the probability of occupancy
the global minimum,PG , and the Lindemann index,d, has
been amply demonstrated in previous work. To correlate
behavior of these CSLT indicators with the fraction of ima
nary frequencies,Fi , Fig. 1 showsl, PG , d, andFi as a
function ofL atT*50.1. Classical MC results are shown f
L50. Notice thatl is a nearly linear function of the de Boe
parameter, indicating that the latter is indeed a good in
for the degree of quantum delocalization.Fi for the classical
~LJ!13 cluster atkT/e50.1 is zero to within the statistica
error of62%, once the rotational frequencies are remov
However, even for quasiclassical clusters when the cluste
unambiguously localized in the global minimum,Fi varies
from 10% to 30%; this presumably reflects the ability of t
cluster to sample a much wider and more anharmonic reg

FIG. 1. Markers for the quantum cluster solid–liquid transition as a funct
of the de Boer parameterL: the probability of occupancy of the globa
minimum,PG , the Lindemann index,d, and the fraction of imaginary fre-
quencies in the INM spectra,Fi . Also shown is the average root mea
square width of quantum paths,l, in atomic units.
J. Chem. Phys., Vol. 106
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of the PES around the global minimum. There is no shar
increase inFi with the onset of cluster melting when
Fi50.57. Similar results atT*50.15 andT*50.2 would in-
dicate thatFi by itself does not provide a useful criterion for
the CSLT. The overall variation inPG , d, andFi with L for
the QCSLT is qualitatively similar to that observed in the
thermal melting of classical clusters.6,9

Figure 2 compares INM spectra for clusters with differ-
ent degrees of quantum delocalization atT*50.1. Imaginary
frequencies are plotted on the negative axis. The classic
INM spectrum form540 amu atkT/e50.1, shown in Fig.
2~a!, has a characteristic high frequency secondary peak
'36 cm21 which coincides with the position of the longitu-
dinal mode peak in the phonon spectrum of the bulk soli
and has virtually zero probability for imaginary frequencies
This may be compared with the quantum INM spectrum fo
the same value ofm shown in Fig. 2~b! which has a signifi-

n

FIG. 2. INM spectra atkT/e50.1 of ~a! classical~LJ!13 cluster withm540
amu and 13-particle quantum~LJ!13 clusters with particle masses~in amu!
of: ~b! m540 ~L50.064! ~c! m52 ~L50.284!. Frequencies are in cm21 and
probabilities are normalized to unity.
, No. 13, 1 April 1997
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cant peak in the imaginary portion and a broad peak in th
real portion obscuring the secondary peak at 36 cm21. De-
creasing particle mass enhances and broadens the peak in
imaginary frequencies and the real portion of the spectru
acquires a sharp low frequency peak and a slowly decayi
high frequency tail; these features are prominent in the IN
spectrum for them52 amu case shown in Fig. 2~c!. This is
due to both enhanced quantum delocalization and the 1/Am-
type dependence of the frequencies on particle mass.

Figures 3~a! and 3~b! show the averaged force constan
and the Einstein frequency, respectively, as a function ofL.
From Fig. 3~a!, it is obvious that the rigidity of the cluster
decreases with increasing quantum delocalization and t
rate of decrease is enhanced with the occupancy of me
stable minima. The Einstein frequency,vE , has a mass-

FIG. 3. ~a! The average force constant,^V9&/1022, in atomic units, as a
function ofL. ~b! The Einstein frequency,vE ~in cm21!, and its real,vR ,
and imaginary components,uvI u, are plotted as a function ofL. All frequen-
cies are in units of cm21. Errors invE are of the order of62 cm21. ~c! The
Einstein frequency,vE ~in cm21!, as a function ofL for T*50.1, 0.15, and
0.2. All frequencies are in units of cm21. Errors invE are of the order of62
cm21.
J. Chem. Phys., Vol. 106
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dependence in the classical limit; since in the present w
theL→` limit coincides with them→` limit, the classical
value of vE is shown as zero. In this context, for pure
classical clusters,vE would have a linear dependence onL
~or on 1/Am!. For a given value of particle mass, introductio
of quantum effects lowersvE from its classical value be
cause of decreasing cluster rigidity. ThevE~L! curve shows
a clear maximum very close toLf . To understand the shap
of thevE~L! curve, the real,vR , and imaginary,vI , compo-
nents are also shown in Fig. 3~b!. The magnitude of bothvR

andvI increases withL. The increase inuvI u must originate
from enhanced sampling of low-frequency anharmonic
gions. vR as a function ofL is virtually identical to the
classical Einstein frequency untilL5Lf ; therefore the in-
crease invR can be largely attributed to a simple mass effe
The high proportion of barrier crossing motions in the li
uidlike cluster forL.Lf results in decreasing cluster rigid
ity, a levelling off in thevR~L! value and a relatively rapid
rise of thevI~L! curve. Alternatively, we can explain th
maximum invE as a consequence of two competing effec
~a! an increase invE with decreasingm or increasingL due
to a 1/Am dependence of the frequencies and~b! a decrease
in the average force constant of the cluster with increas
quantum delocalization. Once the occupancy of the me
stable minima becomes significant, the second effect
comes the dominant one and the slope of thev~L! curve
becomes negative. However, oncePG becomes very nearly
zero and the cluster is in a liquidlike state, the slope of
vE curve may change or become nearly zero. Figure 3~c!
compares thevE~L! curves atT*50.1, 0.15, and 0.2. The
maximum in thevE~L! is most clearly marked atT*50.1
and broadens with increasing temperature. This is to be
pected since thermal fluctuations will tend to make the on
of the QCSLT less abrupt. However, the qualitative simil
ity in the shape of the three curves is notable.

Figure 4 shows the classical INM spectra for liquid ne
atT*51.123 andr*50.68 and compares it with the quantu
INM spectra form520 ~neon! andm55 amu. The quantum
and classical INM spectra for liquid Ne at this temperatu
shown in Fig. 4~a!, are virtually identical. Whenm is re-
duced to 5 amu@see Fig. 4~b!#, quantum effects result in a
slight enhancement of the imaginary portion of the spectru
as expected on the basis of our results for quantum clus
The fraction of imaginary frequencies (Fi) for the quantum
liquid is 0.38, as compared to 0.35 for the classical syst
Our results are also consistent with the well-known dev
tions from the classical principle of corresponding states
to quantum effects.19 For example, Ar has a melting point o
83.8 K ~T*50.702 for e5119.4 K!. From the principle of
corresponding states, the melting point of Neon is predic
to be 24.98 K fore535.6 K. This is in good accord with the
actual melting point of Neon, namely 24.5 K, confirming th
quantum effects in liquid Neon near the melting temperat
are small. As mentioned in Sec. III, thep-H2 system can be
treated as a psuedo-atomic system at low temperature
e534.2 K ands52.96 K. The predicted value of the meltin
temperature forp-H2 would then be 24 K which is much
higher than the experimental value of 13.9 K. This indica
, No. 13, 1 April 1997
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that enhanced quantum effects will result in a promotion
spatial delocalization and a consequent lowering of melti
temperature; an expectation that is unequivocally suppor
by our simulation studies as well as previous work.1–6

A comparison should be made at this point with the r
sults of Cao and Voth,13 whose calculations show that quan
tum effectsreducethe fraction of imaginary frequencies in
the INM spectra of liquid neon. In light of the above discu
sion, this conclusion appears counterintuitive and sugge
that the correspondence between observables calcul
within the centroid path formalism and within the PIMC
framework needs to be explored further. We should point o
that PIMC methods have been extensively tested, in ma
cases against experimental results, for a variety of quant
liquid and solid systems. For quasiclassical systems l
Neon, there is every reason to expect quantitative accur
~within the limits of the accuracy of the pair potential an
statistical error! from PIMC simulations.

V. CONCLUSIONS

We have presented a technique for obtaining quan
INM spectra for clusters using PIMC simulations. Our stud
shows that the dynamical changes accompanying the QCS
have characteristic signatures in the INM spectrum. T
INM spectra acquire an increasing fraction of imaginary fr
quencies as the QCSLT progresses; simultaneously,

FIG. 4. Classical and quantum INM spectra for a Lennard-Jones liquid
T*51.123 andr*50.68 for particle mass of~a! 20 amu and~b! 5 amu.
Frequencies are in cm21 and probabilities are normalized to unity.
J. Chem. Phys., Vol. 106
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lower mass results in an enhanced high frequency tail.
overall cluster rigidity, as measured by the thermally av
aged trace of the Hessian, decreases with increasing qua
delocalization. The Einstein frequency,vE , as a function of
the particle mass, shows a maximum for parameter va
corresponding to the onset of cluster melting.

Several studies in the literature have shown the qua
tive similarity in behavior of various structural, thermod
namic and dynamical observables for magic number qu
tum and classical Lennard-Jones~or similar pair-potential!
clusters of different sizes. We therefore expect the conc
sions of this study, which are based on both cluster as we
liquid-state simulations, to have much wider validity. Mor
over, the methodology used to extract quantum INM spec
may prove very useful in defining quantal analogues of ot
classical dynamical quantities of interest.
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