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Local-to-global coupling in chaotic maps
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We study coupled systems whose elements are chaotic maps, with the coupling ranging from “local”
(with the interaction spreading over K neighbors) to “global” (mean-field-type coupling). We find that
well-defined peaks emerge in the power spectrum of the mean field, indicating a subtle coherence among
the elements, as the extent of coupling, i.e., K, is increased. We observe that the significant quantity here
is not the ratio of the number of elements coupled K, to lattice size N, but the magnitude of K. After a
critical value of K equal to K., the coupling takes on a “global” character, and is practically indistin-
guishable from mean-field interaction. Interestingly, the value of K. =~N,, where N, is the critical lattice
size after which the power spectra in globally coupled systems saturate. We also find that the mean-
square deviation of the mean field grows linearly with coupling strength, up to K,.

PACS number(s): 05.45.+b, 05.90.+m, 87.10.+¢

Global coupling in dynamical systems yields a host of
very novel features. This class of complex systems is of
considerable importance in modeling phenomena as
diverse as Josephson junction arrays, multimode lasers,
vortex dynamics in fluids, and even evolutionary dynam-
ics, biological information processing, and neurodynam-
ics [1]. The ubiquity of globally coupled phenomena has
thus made it a focus of much recent research activity
[2-6].

A coupled map (CM) is a dynamical system of N ele-
ments evolving according to local mappings, and a cou-
pling term, involving neighboring elements. A globally
coupled map (GCM) is one where the interaction term is
of a “mean-field” type, through which the global infor-
mation influences the individual elements. It is thus
analogous to a mean-field version of coupled-map lattices
[2]. The simplest form of a GCM is

x, (D=f(x,(i))+eH, , (1)

where n is a discrete time step, i is the index of the ele-
ments (i =1,2, ..., N; N is the system size), € is the cou-
pling parameter, and the mean field H, is given as

1 X .
H,,—Yv—jglf(x,,(j)) .

It has been noticed that one-dimensional GCM’s (for
example, globally coupled logistic maps) have two
conflicting trends: destruction of coherence due to the
chaotic divergences of the individual elements, and a syn-
chronizing force through global averaging [2]. This
means that as a function of the coupling €, the dynamics
can go from a phase of completely incoherent chaotic
motion, through phases of partial synchronization, to a
phase of global synchronization, where the synchronized
motion can be chaotic or regular. A very surprising re-
sult was found by Kaneko [3]: in the fully “turbulent”
phase, where coherence is destroyed by chaos in the indi-
vidual maps and there is no explicit manifestation of
correlation among the elements, a subtle collective behav-
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ior emerges. This is reflected in the development of
significant peaks in the power spectrum of the mean field,
which clearly indicates a collective “beating” pattern,
and hence a partial order in the dynamics. Further, if all
the state variables took quasirandom values almost in-
dependently, one would expect the mean field to obey the
central-limit theorem and the law of large numbers. If
this were true, the mean-square deviation (MSD)
(=(H?)—(H)?) would decrease as N !, where N is the
number of elements coupled, and the mean field would
converge to a fixed value as N-— . Examination of the
above expectation in one-dimensional maps showed that
the mean field violated the law of large numbers [3]. In
fact, the MSD stopped decreasing after a critical value of
N, equal to N,. This result, too, then, indicates the emer-
gence of a certain coherence in the system.

In this paper we study a coupled map with different de-
grees of coupling. The model we introduce is a set of N
logistic maps displaying chaos, where each local map is
coupled to K elements. First, we discuss the model and
then examine phenomenologically the dynamics of the
mean field, with respect to K and N. Our motivation in
studying this system is to examine the transition from
“local” to “‘global” interaction.

The CM, in general terms, is given as

X, 4 (D=f(x,(i))+en i), )
where the local map is
f(x)=1—ax? (3)
and the coupling interaction is
nEi=—1 ST fxiivan, @)
K+1, Tk,

with the i’s arranged cyclically. The extent of interaction
is given by the number of neighboring elements K that
are coupled to each individual element, and the system
goes over to a GCM in the limit K +1 equal to N.

We have simulated Eqgs. (2) and (3) with the parameters
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a =1.99 and €=0.1 at different values of K and N. The First, we examine the power spectra of the mean field.
single map at this value of a is located in the region of =~ We find that the mean field reveals the emergence of or-
completely chaotic behavior. In all cases considered, we der as the number of elements coupled, K, is increased.

have checked to see that the coupled dynamics is not syn- In Figs. 1(a)-1(e), we have plotted the power spectrum
chronized. for different coupling interactions. It is clear that the
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FIG. 1. Power spectra of the mean field for a lattice of size 1000, with the number of elements coupled K equal to (a) 10, (b) 20, (c)
100, (d) 500, and (e) GCM. Here we average over eight runs of length 1024 each. Notice that the peaks have almost saturated in the

last two figures.
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spectra develop some very prominent peaks as K is in-
creased [7]. We also find that the spectra saturate after a
critical value of coupling, K. <N. This suggests that
“beats” in the mean field, characteristic of global cou-
pling, emerge as the degree of coupling increases, and in-
terestingly, these features are evident well before K is of
the order of N. That is, the coupling is effectively “glo-
bal” even when the interaction is less than the mean field.

Another interesting observation regards the relevant
quantity that governs local to global transitions. What
determines the local or global nature of the coupling in-
teraction is not the ratio of the number of elements cou-
pled to lattice size, i.e., K /N, but rather the magnitude of
K. After a critical value of K equal to K. [8], the cou-
pling becomes predominantly global in nature and the
collective beating patterns characteristic of globally cou-
pled systems emerge. Figures 2(a) and 2(b) show the
power spectra of the mean field of two different CM’s
with the same fraction K /N, but different values of K
{and N). Clearly, the spectra are drastically different,
with the spectrum corresponding to K =K. displaying
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FIG. 2. Power spectra of the mean field for two systems, with
1dentical ratios of number of elements coupled K to lattice size
N: (a) N=5000, K=200; (b) N=1000, K=40 (K/N=0.04).
Here we average over eight runs of length 1024 each.
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prominent peaks, and the spectrum corresponding to
K << K, showing only mild humps. So the significant
quantity here, clearly, is the magnitude of K. This obser-
vation ties in nicely with the limiting case of K =N (i.e.,
GCM), where we know that the behavior of the system is
crucially dependent of the magnitude of N [2-6].

Another feature of the development of peaks in the
mean field with increasing coupling strength K is that it
bears a striking resemblance to the development of peaks
in globally coupled systems with increasing lattice size
[5]. In both cases, the spectrum first shows one broad
peak, which later resolves into various components
(namely, two major peaks). This again is consistent with
the observation that the magnitude of coupling (i.e., the
absolute value of K, not K /N) governs the nature of the
coupled map. That is, the mean field of a GCM of lattice
size N shows similar beating pattern as a CM with cou-
pling strength equal to N.

We have also looked at the power spectra of the time
series of hX(i) for different elements i. The result for
representative cases of i =250 and 500, in a lattice of size
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FIG. 3. Power spectrum of the coupling hX(i) for K =40,
with i equal to (a) 250 and (b) 500. Here we average over eight
runs of length 1024 each. (Lattice size, N =1000.)



46 LOCAL-TO-GLOBAL COUPLING IN CHAOTIC MAPS

1000, are displayed in Figs. 3 and 4 for two values of K.
Clearly, the power spectra are practically indistinguish-
able for large K. This indicates that for extensive cou-
pling, the dynamics of the coupling interactions of the
different lattice elements have identical periodicities. For
small K, the spectra of the coupling terms display only
very mild humps, but here, too, the positions of these
humps are quite similar for the different elements. We
may then conclude that the periodicities (rough or pro-
nounced, as the case may be) of h,,K(i), is similar for all i,
and this in turn is similar (as is expected) to that of the
mean field. Furthermore, with increasing K, the beating
patterns of the individual couplings become more prom-
inent and virtually identical.

When K is small, the spectrum does not change in
sharpness as lattice size N is increased (see Fig. 5). This
indicates that when the coupling is spread over a small
number of elements, the interaction is very local in char-
acter, and global information, such as lattice size, does
not influence the mean field. On the other hand, when K
is closer to K, the sharpness of the mean-field power
spectrum varies significantly with lattice size. This is evi-
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FIG. 4. Power spectrum of the coupling 4X(i) for K =500
with i equal to (a) 250 and (b) 500. Here we average over eight
runs of length 1024 each. (Lattice size, N=1000.)
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FIG. 5. Power spectra of the mean field for a lattice of size
equal to (a) 200 and (b) 1000. Here the number of elements cou-
pled K is 40. Note that the peaks are qualitatively the same for
the two widely different lattice sizes. (We average over eight
runs of length 1024 each.)

dent from Fig. 6, which shows the spectrum at two
different values of N, for larger K. (Note that while the
sharpness of the peaks changes, the positions occur at
identical frequencies.) So the dependence of the sharp-
ness of the spectra of the mean field with respect to lat-
tice size is a good indicator of how “‘global” the interac-
tion is.

Finally, we have calculated the mean-square deviation
o of the mean field

T
o=1 3 (H,—(H)? 5)
Tn=1

as a function of coupling strength K and lattice size N.
Here H, is the mean field obtained at iteration n, and
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FIG. 6. Power spectra of the mean field for a lattice of size
equal to (a) 200 and (b) 1000. Here the number of elements cou-
pled K is 200. Note that the spectrum is significantly sharper

for the larger lattice. (We average over eight runs of length
1024 each.)
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(H ) is the average obtained over the very large number
of iterations 7. We find (for K not too small) that the o
of the mean field grows linearly with the coupling
strength K up to K =K [9]. That is,

o(K)~K .

This is clearly evident from Fig. 7, where o is plotted
against K for a lattice of size 1000. Further, we examine
the behavior of the o with respect to lattice size for fixed
K. We do not observe any deviation of this o from 1/N
up to the K and N values scanned (K <K, N ~2000). So
the manifestation of nonstatistical behavior in the o is
not coincident with the development of broad periodici-
ties in the mean field, as the o does not indicate any obvi-
ous nonstatistical trends even when the peaks have
developed in the mean-field power spectrum. One ex-
pects, though, from the approximately linear growth of o
with K, that the o will vary as N ¢ a <1, with a de-
creasing as K goes from small coupling to mean-field in-
teraction. However, the deviation from 1/N may be ap-
parent only for large lattice sizes and extensive coupling.
Due to computational limitations we are unable to check
this out.

In summary, here we have investigated various aspects
of the dynamics of a coupled system of chaotic logistic
maps, with varying interactions, ranging from local to
global. An interesting result that emerges from this
study is that the coupling takes on a global character
(characterized by collective ‘“beats” in the mean field)
well before the interactive term in the CM is mean field.
Surprisingly, the relevant quantity in the transition from
local to global is not the ratio of number of neighbors
coupled to the lattice size, i.e., K /N, but rather the mag-
nitude of K. After a critical number of neighbors cou-
pled, K, the effects of the coupling and mean-field in-
teraction are practically indistinguishable. The value of
K. is approximately the same as the critical lattice size
N., at which saturation of the peaks in the spectrum of
the mean field occur in globally coupled systems [3].
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FIG. 7. Mean-square deviation ¢ of the mean field vs cou-
pling strength K for a lattice of size 1000. In all cases we have
used 8000 iterations. Here 50 <K =400.

Another earlier result [5] that seems to lend support to
the above observations is that the partials sums defined as

1 m

S, (n)=— 3 x,(i)

= 3,

also show rough periodicities, with the periodicities get-
ting sharper with increasing m, and then saturating after
a critical m [S]. Here our coupling interaction involving
K neighbors is somewhat like a partial sum Sg. So it
stands to reason that the interaction approximates global

mean-field-type interaction after a critical value of K.

One of us (S.S.) would like to thank Gabriel Perez for
stimulating discussions, and the Theoretical Physics
Division, BARC, for supporting this work.

[1] K. Kaneko, Prog. Theor. Phys. 72, 480 (1984); 74, 1033
(1985); Prog. Theor. Phys. (Suppl.) 99, 263 (1989); J.
Crutchfield and K. Kaneko, in Direction in Chaos, edited
by B.-L. Hao (World Scientific, Singapore, 1987); P. Al-
strom and R. K. Ritala, Phys. Rev. A 35, 300 (1987); P.
Hadley and K. Wiesenfeld, Phys. Rev. Lett. 62, 1335
(1989); R. V. Sole and J. Valls, Phys. Lett. A 153, 330
(1991); C. Bracikowski and R. Roy, Phys. Rev. A 43, 6455
(1991).

[2] K. Kaneko, Phys. Rev. Lett. 63, 219 (1989); Physica 41 D,
137 (1990).

[3] K. Kaneko, Phys. Rev. Lett. 65, 1391 (1990).

[4] K. Kaneko (unpublished).

[5] G. Perez, S, Sinha, and H. A. Cerdeira, Physica D (to be
published).

[6] G. Perez, C. Pando-L., S. Sinha, and H. A. Cerdeira, Phys.
Rev. A 45, 5469 (1992).

[7] Surprisingly, the power spectrum of the mean field for
K =500 is a little sharper than that for the globally cou-
pled case. The dominant frequencies occur at identical
positions though [see Figs. 1(d) and 1(e)].

[8] The value of K, for this system of coupled logistic maps is
approximately 500.

[9] The growth of o(K) with respect to K for K > K, seems to
be a little faster than linear.



