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ABSTRACT

We study a realistic coupled map system, modelling an p - i - n diode structure. As

we vary the parameter corresponding to the (scaled) external potential in the model, the dynam-

ics goes through a flip bifurcation and then a Hopf bifurcation, and as the parameter is increased

further, we find evidence of a sequence of mode locked windows embedded in the quasipericxiic

motion, with periodic attractors whose winding numbers p - p/q, are given by a Farey series. The

interesting thing about this Farey sequence is that it is generated between two parent attractors with

p = 2 / 7 and 2 / 8 , where 2 / 8 implies two distinct coexisting attractors with p - 1 /4 , and the

correct series is obtained only when we use parent winding number 2 / 8 and not I / 4 . So unlike a

regular Farey tree, p and q need not be relatively prime here, p = | ^ is permissible, where such

attractors are actually comprised of two coexisting attractors with p - p/q. We also checked that

the positions and widths of these windows exhibit well defined power law scaling. When the poten-

tial is increased further, the Farey windows stilt provide a "skeleton" for the dynamics, and within

euch window there is a host of other interesting dynamical features, including multiple forward and

reverse Feigenbaum trees.
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Coupled maps (CM), as models of many component nonlinear physi-

cal, chemical and biological systems, have been the focus of much research

interest. For instance, realistic models of convection in conducting fluids,

ae-driveri de SQUIDS, instabilities in solids, neurodynamics and polyatomic

molecules interacting with strong IR radiation fields such as COj lasers, in-

volve coupled oscillatory processes'"9. Extensive studies have mostly been

devoted to systems of coupled logistic maps. Here we study a very different

kind of coupled map, and elucidate the features of its dynamics.

We consider here a coupled map which describes an interesting physical

problem", namely a device with a p — i n diode structure, consisting of

two oppositely doped silicon regions separated by a layer of intrinsic silicon.

When the p - I'• — n diode is reverse biased the two regions of fixed charges

are separated by their relatively long intrinsic Si region, which acts as an

insulator. The p—i—n diode under consideration is kept at low temperature,

with a reverse bias voltage Vo + V(t), where V{t) is in synchronysin with the

mechanism that produces the change in the density of carriers. The peaks

of V{t) make the field at both junctions slightly above the "critical value"

for an avalanche process to develop. So a slight change in the density of

carriers will trigg" an avalanche. During the lower half cycle of V[t) the

field in subcritical, stopping the avalanche and sweeping away the electron

and liolc charge clouds. Such a tievire will produce a current, wiUi *M
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oscillating component in the following way: a carrier crossing, say, the left

junction will produce two charge clouds, one of which moves to the right.

As it reaches the second junction it will produce two charge clouds, one of

them moving towards the left, and so on. This will produce an oscillation

in the current, whose frequency will depend on the distance between the

junctions, and should be much higher than the bias voltage.

We consider here a simplified one dimensional structure, with two slabs

(representing the junctions), with an electric field applied to them, strong

enough to produce an avalanche, separated by a region where the field

is weak enough so that particles just drift with a constant velocity (the

intrinsic region). Since the behaviour of the density of carriers at a certain

slab end depends linearly on the density of carriers of opposite sign at

the slab end where it bounced before, we may represent these successive

densities as the coupled map":

i e x p T

exp
- 1

\V
(1)

where x and y are the (scaled) densities of the negative and positive carriers

ri.-ip actively, V is the (scaled) potential applied across the junction and

c is a parameter associated with the characteristics of the sample whose

particular dependence is not of interest here. The discrete time variable n

represents* surci'.ssivi1 "Ijimnces" of rlouds of charge1. The important physical
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feature of this system, very different from the usual well known unimodal

maps, is the exponential in Eq. 1, which is typical of the density of a cloud

of charge leaving a junction where a voltage is applied.

We investigate the features of the dynamics as a function of the (scaled)

voltage V, as clearly, it is the parameter we can control externally. Fig.

1 shows the bifurcation diagram for V and it is evident that the variation

of this parameter gives rise to a very rich and interesting repertoire of

phenomena. The dynamics starts with a fixed point behaviour. The fixed

points of the map are %" = y* = 0.0 and x' = y' - V — I/log c. The

Jacobian is given by

J =

- V)

- V) V)
(V-xn)*

(2)

At a fixed point J becomes

F 9 1
q 1 4 q

(3)

where q = x*/(V x')1. The absolute values of the eigenvalues of J then

are, 0 and I, for i* = y" = 0, and so the stability of this fixed point is always

marginal10. The eigenvalues for the fixed point x' --- y' --• V - I/log c, are

A =-•• log e[l - V log c\ + 1/2 ± 0 o g c\\ V log e] + 1/4.

This implies that the stability of this fixed point is dependent on the value

o f V , f o r f i x e d c . It i s e a s y t o s e e t h i i t a l V ju t s t g r e a t e r t h a n 1 / I I I K <" ' h e

A



absolute value of both the above eigenvalues become smaller than 1, and

there is an exchange of stability, or the so-called flip bifurcation'1. So the

fixed point j " = y* = V — l/log c gains stability. This fixed point retains

stability until the absolute value of one of the A's exceed 1. The system

then undergoes a Hopf bifurcation, giving rise to radial attractora. In this

work, we set the value of c = 6.5. For this value of c the two bifurcations

occur at V = 0.534244 and V = 0.819661.

It was observed that the stable phase space at tractors associated with

various values of V after the Hopf bifurcation are one dimensional curves

(see Fig. 2), with the unstable fixed point x' = y* = V - l/log c as the

approximate "center". This diode map then effectively behaves as a "circle"

map12, and can be well described by an angle variable 0 — tan~J(y —

y*)/(x — x'). So this system can be considered as a very non standard

example of a circle map arising from a realistic model of a device.

Note here that the parameters of this system are related to the well

known parameters of the general circle map, (1 and K, in a non obvious

fashion. In fact the tuning of the external potential V, which in this case is

the relevant parameter to be controlled in the experimental context, would

effectively imply traversing the ft - K spare of a conventional circle map, in

»n oblique i-urvo. So, it tuioines of importance to firifl through inirneriial

experiments, I In- phenomenology "f this map with respect to rhiingini; V, in
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order to be able to make contact with experiments. In particular, we would

also like to check phenomenologically what Farey sequences we encounter

(if any) and whether scaling holds, while we cut across the Arnold tongues

in a complicated curve".

We find, that in the segment of parameter space, V — 0.89 - 0.92,

there are several periodic windows, supporting altractors with Farey tree

properties19. The first such, rather wide, window supports an attractor

with winding number, p = 2/7. Between the Hopf bifurcation and this 7

window, only quasiperiodic motion is evident, characterised by limit cycles

(continuous 1- dimensional curves in phase space) whose largest Lyapunov

exponents are zero. After the 7 window there is another wide window with

8 lines. The interesting thing about this 8 window is that it is actually

comprised of two distinct coexisting at tract or a, each with periodicity 4 and

p = 1/4. In the 9 - V space the two attractors making up the 8 w'ndow

appear intercalated. Between these 7 and 8 windows we find a series of

narrower windows whose winding numbers are given by a Farey tree gen-

erated between 2/7 and 2/8. The significant feature to note here is this:

the correct sequence of winding numbers is not generated by the parent

winding number 1/4, but we must use 2/8 as the parent in generating the

tree. So the coexistence of attractors must be. taken into account in thc-

proress nf constructing the Farey sequence. This brings us to an important



distinction between this Farey tree and a regular Farey tree. Here p and

q need not U relatively prime, and p = | |J is permissible. Whenever we

have such a winding number, the window actually supports two coexisting

attractors, each with p = pjq.

The 4/15 window between the basic 2/7 and 2/8 windows is easily seen,

and on closer examination we can find the 6/23 window between the 4/15

and 2/8 windows, and the 6/22 window (which implies two attractors with

p = 3/11) between the 4/15 and 2/7 windows, and so on. We have located

windows over several generations. Fig. 3 shows a series of them, and Fig.

4 shows the 4/15 window in closer view.

The relevant Farey tree is exhibited in the following table, for the first 3

2/8

generations:
2/7

4/15
6/22 6/23

8/29 10/37 10/38 8/31

It is useful to consider sub sets of these windows as "families", whose

members are generated by a running index. For instance, the set of win-

2n
dows with winding numbers equal to • -, whose continued fraction

representation is (3, l,2n - 1), can be considered to be a family with run-

ning index n. This family will then have as members windows with number

of lines equal to 7 + 8 x 1 •- 15, 7 + 8 x 2 = 23, 7 -1 8 x 3 = 31, and so

on. THf family will «w n .-» on at the H wintltiw. Similarly on*
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can think of families which accumulate at the 7 window, for instance those

with winding numbers equal to - -.

We expect the positions of windows of a certain family, accumulating,

say, at the 8 window, to obey the following scaling form:

dn = do n" (4)

where the running index is n, and do is a proportionality constant whose

value depends on the particular family considered, and dn is the distance

of the nth window of the family" from the parent window where this series

accumulates as n -• oo. Note here that different families accumulating

at a certain window, are intercalated in a regular fashion. For instance,

windows with number of lines equal to 7 x 2 + 8 x ('In + 1) always occur

between windows with number of lines equal to 7 + 8 x n. More specifically,

a 14 + 8(2n + 1) window always occurs between windows 7 + 8n and 7 +

8{n •+- 1), where n = 0,1,2.... Now if the different families accumulating at

a certain window scaled differently then there would be mis-matches in the

intercalation. Since such mis-matches are not seen to occur, we expect or

to be independent of the families, as has indeed been observed.

Of course, we have families, that accumulate at the 7 window, and these

should also display similar scaling, but with possibly a different exponent

and will In* given by



where distance dn is the distance of the nth window of the Family from d«j

(that is, practically speaking, its distance from the 7 window).

The scaling was verified through numerical experiments over several gen-

erations. For numerical convenience, we have concentrated on families ac-

cumulating at the 8 window. Fig. 5 shows dn vs n for the family, with

2n
^ 7 + 8 ( n - l j

a = 1.68 ±0.01.

. It is clear that scaling holds very well, and the exponent

We also checked that the widths of the windows scaled with the number

of lines in the window, as a power law, given by

wn - wa n'1 (6)

where wfl is a constant whose value depends on the particular family con-

sidered, and wn is the width of the nth window of the family. Fig. 5 shows

this power law dependence of the widths of the windows, for the family

2n
with winding number equal to We find that the value of ~y is

8 ( n - 1)"

2.701 0.01, that is, 7 as n + 1. The families accumulating at the 7 window,

show faster scaling down of widths, which make them much more difficult

to locate a.s they are extremely narrow15.

The complicated dynamics following this region has one wide window

w h i c h s i i [ i |>or lN <ui a t . l r a r l . u r w i l l i w i n d i n g n u m b e r 2 / ! ) N o w iSie <) w i n d o w

1I;LS I.In- i i i l t l i t i o n . i l c n m j j l r v i l y l l i ; i t r i t r h of t h r ' • b r u n t ln-s <>t t h e i i U r a r l o r
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undergo saddle node bifurcation and we have a region of co-existing 9 at-

tractors. These later disappear and simultaneously another set of 0 lines

appear which undergo a Fiegenbaum period doubling cascade, leading to

chaos. Further, between the 2/8 and 2/9 windows, a 4/17 window can be

seen, and between the 4/17 and 2/8 windows, a 6/25 window. Of course,

in these regions of parameter space, the windows provide only a "skeleton"

for the system, and there are many very complicated dynamical features,

within the windows themselves (see Fig. 6). Most of these additional fea-

tures (if not all) are Feigenbaum trees, manifested as numerous forward and

reverse pitchfork bifurcations (see Fig. 7). This further ties up with the

picture that the coupled map we have here is an effective circle map, and

tuning parameter V is similar to crossing the fl — K space of a conventional

circle map, in a complicated curve.

In summary, we have studied the dynamics of a coupled map system

describing a realistic p- i-n device, with respect to changing the external

potential, which is the relevant parameter from the experimental point of

view. The system undergoes a Flip bifurcation and then a Hopf bifurca-

tion, after which it behaves effectively as a. "circle" map, displaying a Farey

sequence of ill tractors characterised by clearly evident power law scaling

properties. The remarkable thing about this Farcy sequence is that it is

between two periodic windows with winding numbers t'fnml to

10



2/7 and 2/8, where the 2/8 arises from (wo distinct coexisting attractors

with winding numbers equal to t/4. So p - j ^ is permissible, and when-

ever we have such a winding number the window supports two coexisting

at tractors, each with p = pjq. As the potential is increased further, the

Farey windows still provide the "skeleton" of the dynamics, but within the

windows numerous forward and reverse bifurcations can be seen. So tun-

ing the potential is effectively similar to traversing the fl - K space of a

standard circle map in a very complex curve. This system, then, is an

interesting (and non standard) example of a circle map, arising in a. non

obvious way from a realistic physical model, which has the scope of being

checked out experimentally.
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FIGURE CAPTIONS

1. Bifuraction diagram as a function of voltage V, at c = 6.5. 100

random initial conditions, chosen from the range x e [0.05 : 0.75| and

y e [0.1 : 0.8], are plotted here.

2. Stable attractors in phase space (i - y plane) for different values of

V, after the Hopf bifurcation (c = 6.5).

3. Bifurcation diagram of the region of parameter space between the two

basic 2/7 and 2/8 windows, showing the series of narrower windows

whose winding numbers are given by a Farey sequence.

4. Closer view of the 4/15 window.

5. Plot of AV vs n for the family with winding number equal to •
2ti

7 + 8 ( « - 1)

(this family consists of windows with number of lines equal to: 7 +

8 x 1 = 15, 7 + 8 x 2 = 23, and so on) for a) AV LZ dn, the distance of

the nth window from the .8 window, b) AV = u?n> width of the nth

window.

6. Bifurcation diagram of the region of parameter space beyond the 2/8

window, showing the 2/9 window with saddle node bifurcations.

7. Forward and reverse period douMinjJ

dows.

within the h'jirey win-
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