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Abstract. We have investigated the effects of electron–phonon coupling on the current–
voltage characteristics of a one-dimensional molecular wire with odd number of atoms.
The wire has been modelled using the Su–Schreiffer–Heeger (SSH) Hamiltonian and the
current–voltage characteristics have been obtained using the Landauer’s formalism. In
the presence of strong electron–lattice coupling, we find that there are regions of negative
differential resistance (NDR) at some critical bias, due to the degeneracy in the energies of
the frontier molecular orbitals. The presence of the applied bias and the electron–lattice
coupling results in the delocalization of these low-lying molecular states leading to the
NDR behaviour.
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1. Introduction

A molecule attached between two macroscopic electrodes has evinced a lot of inter-
est in the past few years [1]. A large number of experimental and theoretical work
have been performed to understand transport in such systems. Single molecules
attached between electrodes have already been demonstrated to show conducting,
rectifying and switching behaviour [2–7]. A variety of theoretical methods ranging
from semi-empirical to density functional theory (DFT) based methods [8–14] have
been explored to describe transport properties in such nanoscale systems. The prob-
lem, although interesting both from a fundamental point of view and in terms of
device applications in the electronics industry, is quite complex. Most descriptions
until now have been developed within some simple approach neglecting entirely the
inelastic scattering in the molecule [1].

Inelastic processes include electron–electron, electron–phonon and impurity me-
diated scatterings. In this paper, we neglect the scattering due to electron–electron
interactions and consider the transport properties in the presence of underlying
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Figure 1. Variation of the bond-alternation parameter (δi) with bond index,
i, for different values of λ: λ = 0.5 (solid line), λ = 1 (circles) and λ = 1.5
(stars).

lattice distortions, of a one-dimensional molecular wire with odd number of atomic
sites. The wire is described by the SSH Hamiltonian [15], where the electrons
are treated within a tight-binding description and the phonons are treated adia-
batically. The wire–electrode coupling is calculated within the Newns–Anderson
chemisorption [16] model. Since the inelastic interactions included do not result in
a loss of coherence of the tunneling electrons, we employ the Landauer’s scattering
approach to calculate the current–voltage characteristics [17].

2. Computational strategy

The computational method we have employed, has been described in detail else-
where [10]. Here we give only the essential details. The one-dimensional molecular
wire has been modelled as a half-filled polyene chain with odd number of atomic
sites. It is described by the Su–Schreiffer–Heeger (SSH) Hamiltonian which cap-
tures the effect of electron–phonon coupling in a simplistic way. The Hamiltonian
is rewritten from its original form as

H =
∑

i

−(1 + δi)(a
†
iai+1 + hc) +

1
πλ

∑

i

δ2
i , (1)

where the first term describes the hopping of π electrons along the polyene chain
without spin flip. δ is the bond-alternation parameter which renormalizes the elec-
tron hopping strength by the displacement of the underlying atoms and is dependent
on the strength of the electron–phonon coupling. λ is a dimensionless coupling con-
stant defined as λ = 2α2/πKt2 where t is the π electron hopping integral, K and α
are the elastic spring constants associated with the nuclear motion and the electron–
phonon interactions respectively. An expression for δ is obtained by minimizing the
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above Hamiltonian with the constraint that the energy changes associated with the
net displacement about the mean positions should be zero so that the total length
of the wire remains a constant:

δi =
πλ

2
[〈a†iai+1 + hc〉 − 1

N

∑

i

〈a†iai+1 + hc〉], (2)

where N is the total number of bonds. In our calculations, we start with an initial
guess for the δs and solve for the Hamiltonian of the wire in the absence of any
external bias. We then calculate bond orders which essentially gives δ, thus solving
self-consistently until all the bond orders converge. From the eigenenergies of this
relaxed system the Fermi energy (EF) of the electrodes is calculated assuming
that it falls mid-way between the equilibrium HOMO and LUMO energies for the
molecule alone. Assuming this pattern of δs as the equilibrium configuration, we
proceed to study the effect of external bias on the wire. The applied bias is assumed
to be a ramp function. The effect of the electrodes is incorporated using the Newns–
Anderson model for chemisorption between the atoms of the wire and the electrode.
The molecular Hamiltonian gets modified by the self-energies due to the electrodes
as H̄ = H +Σ1 +Σ2 where Σ1 and Σ2 are the self-energies corresponding to the two
electrodes. Once the effective Hamiltonian for the electrode–molecule–electrode is
obtained, the current through the wire is calculated using the Landauer’s formula

I(V ) =
2e

h

∫ EF

EF−eV

dE [Tr(Γ1GΓ2G
†)], (3)

where Γ1,2 are the anti-hermitian parts of the self-energy matrices, Γ1,2 = i(Σ1,2 −
Σ†1,2) which describe the broadening of the energy levels due to coupling to the
electrodes. The Green’s function G is obtained as the inverse of the modified
Hamiltonian, G(E) = 1/(EI −H − Σ1 − Σ2) and hence the current is calculated.

3. Results and discussions

Before we discuss the non-equilibrium results, we give a quantitative idea of the
distortions caused in the system due to the presence of electron–phonon coupling.
Figure 1 shows the bond length distortions, δs, against the bond positions for a
range of dimensionless couplings λ, for a 41-site wire. A noticeable feature is the
kink appearing at the middle of the chain affirming the fact that the ground state
of an odd-site system is a solitonic state. As the coupling strength is increased, the
chain is more and more distorted, however, in this process, the system gains some
additional energy. This is the Peierls dimerization mechanism [18] which causes
the system to open up a gap near the Fermi energy thereby making the system
less conducting. This non-conducting gap increases as the coupling strength is
increased. For λ = 1, we find that the HOMO–LUMO gap is about 0.9 eV. For all
our calculations, we have used this value of the electron–phonon coupling unless
otherwise stated.

Figure 2 shows the equilibrium density of states and transmission for this half-
filled wire, with λ = 1 and λ = 0 (non-interacting case). The peaks in the DOS
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Figure 2. (a) Density of states DOS(E) and (b) transmission T (E) in equi-
librium condition (zero bias), for the non-interacting case (λ = 0, dashed lines)
and with electron–phonon coupling (λ = 1, solid lines).

represent the positions of the energy levels and the presence of a zero energy peak
in the presence of strong electron–phonon coupling, indicating the appearance of
the solitonic level. This state has zero energy because the kink essentially splits
the chain into two halves removing all interactions amongst them. Figure 2b shows
that in the presence of electron–phonon coupling, the Peierls’ gap splits the trans-
mission peaks clearly into two bands about EF. And on either side of the gap, the
transmission shows a band-like picture with maximum transmission at the middle
of each of the bands. The solitonic state also shows negligible transmission along
with the other states around EF indicating that the levels which are most impor-
tant for transport are localized even at zero bias, in the presence of electron–lattice
coupling.

Now we look at the effect of external bias on the non-equilibrium current–voltage
characteristics of the system. As mentioned earlier, the potential profile across the
molecule–electrode system is considered as a ramp function. Figure 3 compares
the I–V of a non-interacting chain (λ = 0) with that in the presence of strong
electron–lattice coupling (λ = 1). In the former case, the current increases by
jumps, well-known as the eigenvalue staircase picture [19], occurring whenever the
Fermi energy of the electrodes crosses the molecular energy levels. It can be seen
that the first jump in current occurs as soon as a small bias is switched on. This is
because for an odd-site wire, the Fermi energy of the electrodes coincides with the
solitonic level which is not localized in the absence of the electron–phonon coupling.
However when the electron–phonon interaction is switched on, the current shows
sharp negative differential resistance (NDR) at some large bias, in the off-resonant
condition. Two such peaks can be seen in the figure, at voltages of around 1.6
V and 2.0 V for this 41-atomic chain. The second peak is noticeably sharper and
interestingly, the value of current at that bias is equal to the non-interacting current.

To understand the nature of this NDR and its origin, we compute the one-electron
Greens function, which determines the magnitude and nature of the current–voltage
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Figure 3. The current–voltage characteristics for a 41-atomic sites wire for
the non-interacting case (λ = 0, circles) and with electron–phonon coupling
(λ = 1, diamonds).

characteristics. The Greens function element, expanded in the basis of molecular
orbitals can be written as G1N =

∑
k

C1kCNk

E−Ek+iη , where the Cmk’s are the kth mole-
cular eigenvector coefficients corresponding to the mth atomic site of the wire, and
Ek is the energy of the kth molecular level. Figure 4a shows the energies of a few
selected molecular orbitals close to the zero of energy as a function of the applied
bias. It can be seen that in general, all the levels decrease linearly with bias at small
bias strength. But at a bias of around 1.6 V, the HOMO and LUMO levels come
very close to the SOMO (singly occupied molecular level or solitonic level) after
which they move farther apart. Then at a bias of around 2.0 V, the HOMO and
HOMO-1 (and due to electron–hole symmetry, the LUMO and LUMO+1) levels
come close to each other. In figure 4b, we have plotted the numerators of the Greens
function, which are the products of the coefficients C1kCNk, for the corresponding
four k states shown in figure 4a. They determine the nature of the current char-
acteristics in the off-resonant condition, regions in the vicinity of the poles of the
Greens function. As can be seen, the numerator values increase at the critical bias
regions where the corresponding energy levels show quasi-degeneracy (see figure 4a).
We have also computed the average inverse participation ratio (IPRav), defined as,
IPRav = 1

D(E)
1
N

∑
k P−1

k δ(E − Ek) where P−1
k is the inverse participation ratio

(IPR) and D(E) is the density of states. IPR is defined as: P−1
k = 1

N

∑
j |ψ(j, k)|4

where the indices k and j correspond to the molecular orbitals and the atomic sites
respectively. IPR defines the extent of localization for a given eigenstate. In figure
4c, we have plotted IPRav as a function of the applied bias for the corresponding
states discussed in figures 4a and 4b. It is very clear that at the bias at which NDR
was observed, there is a dip in IPRav indicating delocalized nature of the states.

Let us discuss these features in some simple form. In the presence of electron–
phonon coupling, the system with odd number of atoms becomes dimerized with a
kink in the middle. This state corresponds to the SOMO. The HOMO and LUMO
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Figure 4. (a) The variation of the Fermi energies of the electrodes (thick
solid lines) and of the HOMO-1 (diamonds), HOMO (circles), SOMO (stars),
LUMO (circles) and LUMO+1 (diamonds) levels, with the external bias (for
λ = 1). Same symbol for different states if they have the same symmetry. The
Fermi energy of one electrode is kept at a constant value and that of the other
electrode is varied with the bias. (b) The numerator of the Greens function
matrix element for the corresponding energy levels shown in (a). The index
k specifies the corresponding molecular orbital and 1 and N are the first and
the last sites of the wire. (c) The average inverse participation ratio for the
SOMO, HOMO and LUMO levels.

are the mirror reflections of each other (in terms of dimerizations) and have the
same parity. One part of the SOMO resembles the HOMO and the other part
resembles the LUMO. When bias is applied, both the HOMO and LUMO approach
each other and the SOMO. At some critical bias (1.6 V), all these three states are
so close in energy that a mixing of the SOMO with HOMO and SOMO with LUMO
occurs (HOMO and LUMO do not mix as they are of the same parity) leading to
a delocalization and hence a rise in current. Beyond this critical bias, since the
HOMO and LUMO states have acquired some characteristics of the SOMO, they
start moving away. This results in localization again and a fall in the magnitude of
current. Interestingly, at around 2.0 V, when the HOMO and HOMO-1 (LUMO and
LUMO+1) levels come close, since they are of opposite parity, they can mix and the
system becomes delocalized with all its bond lengths equal. This is precisely why
the current at this bias is equal to the non-interacting wire current. The main factor
affecting the critical bias is the initial gap of the system which depends directly on
the size of the system and inversely on the strength of the electron–phonon coupling.

In conclusion, we have provided an alternate explanation for NDR that has been
observed in many organic systems. Some of the explanations proposed in literature
vary from charging effects [20,21] and conformational changes [10,22,23] to bias
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induced changes in molecule–electrode coupling [24]. Our explanation for the origin
of NDR is quite general and independent of molecule–electrode coupling strength
and location of the Fermi energy. More work is required to find any common link
among all the theories for a clear understanding of NDR in nanoscale systems.
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