
Modeling Finite Buffer Effects on TCP Traffic

over an IEEE 802.11 Infrastructure WLAN ✩

Onkar Bhardwaj1, G.V.V. Sharma2, Manoj Panda1, Anurag Kumar∗,1

Abstract

The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations
(STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP-controlled
upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to
which the AP is connected. In such a situation, it is well known that because of packet losses due to finite buffers at
the AP, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for
estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the
undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno. The
models are validated in comparison with NS2 simulations.

Key words: TCP over IEEE 802.11 WLANs, TCP unfairness in WLANs, TCP modeling

1. Introduction

We consider a scenario in which several clients or sta-
tions (STAs) are associated with a single Access Point
(AP). The AP has a finite amount of FIFO buffer. For
simplicity, we consider associations only at a single Phys-
ical (PHY) rate3. We are concerned with TCP-controlled
file transfer throughputs when each STA is either down-
loading or uploading a single large file via the AP. The
other endpoint of the transfers, or the “server,” is located
on the high-speed Ethernet connected to the AP4. For such
a situation, it has been reported that, with finite buffers at
the AP, there is unfairness between the upload and down-
load transfers with the upload transfers obtaining larger
throughputs [1], [2]. Our objective is to provide analytical
models that explain this unfairness, thus providing quan-
titative insights into the unfairness, and also predictive

✩This is an expanded version of a paper that appeared in COM-
SNETS 2009 (The First International Conference on COMmunica-
tion Systems and NETworkS), Bangalore, India, January 5-10, 2009.
The research on which this paper is based was supported by the
Department of Information Technology, Government of India, and
Airtight Networks, Pune, India.

∗Corresponding author, anurag@ece.iisc.ernet.in
1Department of Electrical Communication Engineering, Indian

Institute of Science, Bangalore 560012, India
2Department of Electrical Engineering, Indian Institute of Tech-

nology, Bombay, Powai, Mumbai 400076 India
3In IEEE 802.11b, for example, the PHY rates 11 Mbps, 5.5 Mbps

and 2 Mbps are available. In general, STAs can associate with the
AP at different PHY rates depending on the channel conditions.
However, we assume that all STAs are associated with the AP at the
same PHY rate.

4The situation in which the server is located across a wide-area
network will be addressed in the future.

models for network engineering.

Relation to the Literature: Bruno et al. [3] analyzed
the scenario of upload and download TCP-controlled file
transfers in a single cell infrastructure WLAN when there
is no packet loss at the AP. They assumed equal TCP
windows for all connections, that the TCP receivers use
undelayed ACKs, and showed that the total TCP through-
put is independent of the number of STAs in the system;
further the upload and download transfers each obtain an
equal share of the aggregate throughput. A variation of
this approach for modeling TCP transfers, along with a
fixed-point analysis of EDCA, was employed by Sri Har-
sha et al. [4] to provide a combined analytical model for
TCP transfers, CBR packet voice, and streaming video
over an infrastructure WLAN. The delayed ACK case was
analyzed by Kuriakose et al. [5].

It is known that, if there is packet loss at the AP due
to finite buffers, then in a situation of simultaneous upload
and download transfers, the upload transfers each obtain
a larger throughput than any of the download transfers.
Gong et al. [1] provide simulation results validating this
fact. They also show that as the AP’s buffer size increases,
thus reducing packet loss at the AP, the throughput un-
fairness reduces. They also propose queue management
strategies to alleviate the throughput unfairness. Pilosof
et al. [2] analyzed the same problem of unfairness by as-
suming an M/M/1/K model for the finite buffer at the
AP.

In this paper, we do not assume any conventional queue-
ing model for the AP buffer, but we combine the earlier
models for TCP-controlled file transfers in WLANs (i.e.,
[3] and [5]) with a detailed model of TCP window evolu-

Preprint submitted to Elsevier April 6, 2009

Nd Nu

switch
LAN

STAs

AP

server

Figure 1: The network scenario, comprising several STAs associated
with an AP, each uploading (or downloading) a large file to (or from)
a server attached to the high-speed wired LAN.

tion under tail-drop loss at the AP. A detailed modeling
of TCP window evolution quantifying the unfair division
of throughputs among the upload and download transfers
and providing valuable insights is the main contribution of
this paper.

Outline of the Paper: The analytical model comprises
two steps. In the first step (Sections 2 and 3), we use a
simple extension of the analytical model of [3] to obtain
the upload and download throughputs for a given value of
h, the fraction of contention cycles in which the AP con-
tends with a download packet (i.e., a TCP data packet) at
the head-of-the-line (HOL) of its FIFO buffer. In the sec-
ond step (Section 4), we obtain the value of h as a function
of AP buffer size, using a detailed study of TCP window
evolution when the upload connections have a maximum
window limit but the download connections have no such
window limit. We do this for both the undelayed and de-
layed ACK cases for the TCP version in which all loss
recovery is by timeouts. We also provide a bound on h
for the case when all the TCP connections have a maxi-
mum window limit. Simulation results that validate our
analyses are provided in Section 6.

2. Throughputs: Undelayed ACK

Consider an infrastructure mode WLAN with N(= Nd+
Nu) STAs associated with the AP at the same PHY rate.
Among these STAs, Nd STAs each have a single download
TCP connection while each of the remaining Nu STAs have
a single upload connection (see Figure 1). All file trans-
fers are to or from a “server” on the high-speed LAN to
which the AP is connected. We analyze the case where
TCP ACK transmissions on the WLAN use the “Basic
Access” mode whereas TCP data transmissions use the
“RTS-CTS” mode. This is reasonable since TCP ACKs
are small (40 Bytes), but TCP data packets are much
larger (typically, 1 KByte). We remark, however, that

Nd Nu

AP

STAs

ACK
ACK
data

from STA transmissions
immediate feedback

dataACKACK

data
ACK

...

Figure 2: Schematic based on the modeling assumptions discussed
in the text. Since the server is attached to the same high speed LAN
as the AP, we assume immediate “feedback” from the server, due to
packets transmitted by the STAs.

other alternatives can also be easily analyzed within our
framework.

2.1. Observations and Modeling Approximations

1) We assume that there are no packet losses because
of wireless channel errors; such packet losses can be ac-
counted for by extending our analysis. We also do not
model packet capture, i.e., simultaneous attempts on the
medium are assumed to result in a collision. Also, with
the standard DCF parameters, packet drops due to the re-
transmission threshold being exceeded in the DCF CSMA/CA
MAC are known to be rare, and hence, are ignored in our
model.
2) It is now well known (see [3] or [5]) that when carry-
ing TCP-controlled transfers the AP is the bottleneck and
always contends for the channel. This is understood as fol-
lows. Considering the undelayed ACK case, for one packet
sent by each of the STAs, N packets will need to be trans-
mitted by the AP. Since DCF is packet fair, this situation
is sustainable only if a very small number of the STAs con-
tends at any time so that, on the average, half the packets
transmitted are from the AP and the other half from the
STAs. Recalling that we are dealing with the local area
network case (so that the number of packets “in flight”
outside the WLAN can be ignored) it follows that most of
the packets in the TCP windows of the connections reside
in the AP’s queue.
3) Furthermore, as in [5] (for the undelayed ACK case)
we use the approximation that for large N , an STA can
have at most one packet in its queue, with every successful
transmission from the AP resulting in the generation of a
packet at a previously empty STA, thus activating a new
STA. A TCP data packet (resp., TCP ACK) transmitted
by the AP results in a TCP ACK (resp., TCP data packet)
being generated at a previously empty download (resp.
upload) STA.

2

Figure 2 depicts the model described above. Note
that, since the success or failure of a transmission due to
CSMA/CA contention does not depend on the length of
the packet to be transmitted, Assumptions 2 and 3 above
do not depend on the packet lengths and the PHY rates.
Also, Assumptions 2 and 3 do not depend on the specific
values of Nu and Nd as long as N is large.

2.2. The Process (Dk, Uk) and its Analysis

We now develop the stochastic analysis of the number
of contending STAs along lines similar to [3] or [5]. Refer-
ring to Figure 3, let Gk, k = 0, 1, 2, · · · , denote the instants
when a successful transmission ends. According to our as-
sumptions above, the AP always have packets in its queue,
and hence, always contends. Consider the instant Gk. If
the just completed successful transmission is from the AP
then at Gk the number of contending STAs increases by
one (by Assumption 3 in Section 2.1). If the HOL packet
at the AP is a TCP data packet (resp., TCP ACK) then
one more download (resp., upload) STA begins to contend
with a TCP ACK (resp., a TCP data packet). Between
Gk and the next success instant Gk+1 there is no change
in the number of contending STAs. At Gk, let Dk denote
the number of downloading STAs that are nonempty (i.e.,
have a TCP ACK to send), and let Uk denote the number
of uploading STAs that are nonempty (i.e., have a TCP
data packet to send). Since there are no external arrivals,
the process {(Dk, Uk), k ≥ 0} can only change state at the
instants Gk, k ≥ 0.

We call the time interval [Gk, Gk+1) between two con-
secutive success end instants a contention cycle. Each
contention cycle consists of several channel slots. A chan-
nel slot is the time interval between two consecutive at-
tempt opportunities on the channel. Thus, transmission
attempts can occur only at channel slot boundaries. A
channel slot is an idle back-off slot, or a successful trans-
mission, or a collision if 0, or 1, or more than one node(s)
transmit(s) in the beginning of the channel slot. Clearly,
every contention cycle consists of several idle and collision
channel slots and terminates with a success channel slot.

To model the way the DCF CSMA/CA serves pack-
ets from the queues, we assume that when m nodes are
contending, either with TCP data packets or with TCP
ACKs, each node contends with a probability βm, where
βm is the steady-state attempt probability when there are
m saturated nodes contending (see [5]). Note that, βm can
be easily obtained from the analysis provided in [6] or [7].
Also note that, βm includes the effect of all DCF parame-
ters, such as the back-off windows, and the retransmission
threshold. Thus, according to this model, if the state of
the process (Dk, Uk) is (d, u), then, until the next success,
each of the 1+d+u contending nodes attempts with prob-
ability β(1+d+u). The 1 arises from the assumption that
the AP always contends.

Define the process Zk ∈ {0, 1}, embedded at the in-
stants Gk, k ≥ 0, by Zk = 1 if the HOL packet at the

AP at time Gk+ is a TCP data packet (i.e., in the inter-
val [Gk, Gk+1) the AP contends to transmit a TCP data
packet), and by Zk = 0 otherwise. Now define

h = lim
n→∞

1

n

n−1
∑

k=0

Zk , (1)

i.e., h denotes the fraction of contention cycles in which
the HOL packet at the AP is a TCP data packet.
Some observations about h: Let An (resp., Dn) denote the
number of download data packets that arrive at (resp.,
depart from) the AP’s HOL position in the time interval
[0, Gn). Let Vj denote the number of contention cycles
for which the jth download data packet occupies the HOL
position at the AP buffer. Then we can write

1

n

Dn
∑

j=1

Vj ≤
1

n

n−1
∑

k=0

Zk ≤
1

n

An
∑

j=1

Vj (2)

from which it can easily be shown that

h = λ(d)
E(V) , (3)

where

λ(d) = rate of download packets transmitted by

the AP per contention cycle

= lim
n→∞

An

n
= lim

n→∞

Dn

n
, (4)

and

E(V) = Average number of contention cycles

taken to successfully transmit an HOL

packet at the AP

= lim
n→∞

1

Dn

Dn
∑

j=1

Vj = lim
n→∞

1

An

An
∑

j=1

Vj . (5)

Similarly, as the expected number of contention cycles
required to successfully transmit an HOL packet from the
AP is independent of it being a TCP data packet or a TCP
ACK packet, we can also write

1 − h = λ(u)
E(V) , (6)

where λ(u) is the rate of TCP ACK departures from the
AP per channel slot. From equations (3) and (6) we get

h =
λ(d)

λ(d) + λ(u)
. (7)

Thus, as expected, h is also the ratio of the download
throughput from the AP to the total throughput from the
AP.
Remark: In the following analysis we will use both of the
two meanings of h: (i) as defined by (1), i.e., the fraction

3

Back−Offs

k−1 Gk Gk+1 Gk+2������
������
������

������
������
������ AP Successful transmission

���
���
���
���

���
���
���
���

Collision

����
����
����

����
����
����

STA Successful transmission

Xk ������
������
������

������
������
������

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��

��
��
�� Back−Offs Back−OffsBack−Offs

G

Figure 3: Evolution of channel activity: Shown are the random time instants Gk at which successful transmissions end. Xk denotes the
(random) duration of the kth contention cycle [Gk−1, Gk). Each contention cycle consists of one or more back-off period(s) and collision(s).
Each back-off period consists of one or more back-off slot(s). Each contention cycle terminates with a successful transmission.

of contention cycles in which the AP contends with a data
packet at its HOL position, and (ii) the fraction of AP
services that are data packets (a meaning provided by (7)).
Analyzing the process (Dk, Uk): Based on (7), we assume
that after the HOL packet at the AP is transmitted, the
next HOL packet is a data packet with probability h (an
ACK packet with probability 1 − h), independent of any-
thing else. We note that this is an approximation; a more
detailed model will require us to keep track of the entire
queue of packets in the AP. With this modeling assumption
about the HOL packet at the AP, and from the contention
model introduced earlier in this section, it can be seen
that (Dk, Uk) is a discrete time Markov chain (DTMC),
embedded at the instants Gk, taking values in {(d, u) :
d = 0, 1, 2, · · · ; u = 0, 1, 2, · · · }. Note that, in reality, we
have, 0 ≤ d ≤ Nd, and 0 ≤ u ≤ Nu. However, our model-
ing assumption that “every successful transmission by the
AP generates a packet at a previously empty STA” yields
the state space {(d, u) : d = 0, 1, 2, · · · ; u = 0, 1, 2, · · · }.

The DTMC (Dk, Uk) has the following transition prob-
abilities:

Pr ((d, u − 1) / (d, u)) = Pr

„

An upload STA
wins the contention

«

=
u

u + d + 1
(8)

Pr ((d − 1, u) / (d, u)) = Pr

„

A download STA
wins the contention

«

=
d

u + d + 1
(9)

Pr ((d, u + 1) / (d, u)) = Pr

0

@

The AP suceeds and
transmits to an

upload STA

1

A

=
h

u + d + 1
(10)

Pr ((d + 1, u) / (d, u)) = Pr

0

@

The AP suceeds and
transmits to a
download STA

1

A

=
1 − h

u + d + 1
(11)

The transition probability structure of the DTMC (Dk, Uk)
is shown in Figure 4. Let π(d, u), d = 0, 1, 2, · · ·, u = 0, 1, 2, · · ·

h/(u+d+2)

(1−h)/(u+d+2)

(d+1,u)(d,u)

(d,u+1) (d+1)/(u+d+3)
(d+1,u+1)

(u+1)/(u+d+3)

h/(u+d+1)

(d+1)/(u+d+2)

(u+1)/(u+d+2) (1−h)/(u+d+1)

Figure 4: Transition probability diagram of the process (Dk, Uk) for
the case of undelayed ACKs.

denote its stationary distribution. It can be shown that the
DTMC (Dk, Uk) satisfies the Kolmogorov’s criterion for re-
versibility [8]. Using reversibility, the explicit closed-form
expression for π(d, u) can be shown to be (see Appendix
A.1)

π(d, u) =
u + d + 1

2e
×

hd(1 − h)u

d!u!
. (12)

Write the stationary marginal of the random process
(Dk, Uk) by (D, U). Since the number of download STAs
that are contending changes only at the instants Gk, k ≥ 0,
we observe that the time average number of contending
download and upload STAs is given by (see Appendix A.2)

E(D) =
3h

2
, (13)

E(U) =
3(1 − h)

2
. (14)

Thus, the mean number of contending STAs is 3
2 .

2.3. Throughput Analysis

With reference to Figure 3, let Xk := Gk − Gk−1, i.e.,
Xk is the random duration of the kth contention cycle. The
process {((Dk, Uk), Gk), k ≥ 0}, is a Markov renewal pro-
cess with cycle lengths {Xk, k ≥ 1}. We can use Markov
regenerative analysis [9] to obtain performance measures

4

such as the throughput Θ of the AP. For t ≥ 0, let H(t)
denote the total number of AP successes in [0, t]. Let the
number of successful transmissions made by the AP in the
interval (Gk−1, Gk] (i.e., the kth contention cycle) be de-
noted by Hk ∈ {0, 1}. Recall that, each contention cycle
contains a successful transmission. A successful transmis-
sion may belong either to the AP (i.e., Hk = 1) or to one
of the STAs (i.e., Hk = 0). We view Hk as a “reward” as-
sociated with the kth cycle. Then by Markov regenerative
analysis [9] we conclude that

Θ := lim
t→∞

H(t)

t

w.p. 1
=

EH

EX
=

∑

(d,u) π(d, u) 1
u+d+1

∑

(d,u) π(d, u)E(d,u)X
,

(15)
where EH denotes the expected reward per cycle, EX de-
notes the expected duration of a cycle,

∑

(d,u) represents
a double sum over all d ≥ 0, u ≥ 0, and E(d,u)X denotes
the expected duration of a cycle starting in the state (d, u).
The numerator of (15) is also equal to the probability that
the AP succeeds in a randomly chosen cycle. Using the ex-
pression for π(d, u) given by (12), we obtain

EH =
∑

(d,u)

π(d, u)

(

1

u + d + 1

)

=
∑

(d,u)

(u + d + 1)

2e
×

hu(1 − h)d

u!d!

(

1

u + d + 1

)

=
1

2e

∑

(d,u)

hu(1 − h)d

u!d!

=
1

2e
ehe(1−h) =

1

2
. (16)

This is expected for TCP transfers with undelayed ACKs,
as the AP must transmit half the number of total packet
transmissions. Derivation of E(d,u)X in terms of packet
lengths, PHY rates and the attempt probabilities can be
found in Appendix C. Substituting the value of E(d,u)X
and the expression for π(d, u) (from (12)) into (15), we ob-
tain the throughput Θ of the AP in packets/second. Re-
calling (7), the total throughput Θd (resp. Θu) for down-
loading (resp. uploading) STAs can then be obtained as

Θd = hΘ ; Θu = (1 − h)Θ , (17)

both in packets per second. Multiplication by the user
payload in each packet yields the throughput in bytes per
second.

3. Throughputs: Delayed ACK

In the case of upload traffic with delayed ACKs, in
steady state, every TCP ACK from the AP will generate
two data packets at the STA. Thus, our earlier approxi-
mation that there can be at most one packet in the STA
queue is no longer valid. However, assuming validity of the

(d+1,u)(d,u)

(d,u+1) (d+1,u+1)

(d+1)/(u+d+2)

(1−h)/(u+d+2)

(u+1)/(u+d+3)

(1−h)/(u+d+1)

(u+1)/(u+d+2)

(h/2)/(u+d+1)

(d+1)/(u+d+3)

(h/2)/(u+d+2)

(h/2)/(u+d+1)

(h/2)/(u+d+2)
(h/2)/(u+d+3)

(h/2)/(u+d+2)

(h/2)/(u+d+3)

Figure 5: Transition probability diagram for the process (Dk , Uk)
for the case of delayed ACKs. Notice that the horizontal transitions
from left to right are halved as compared to the undelayed ACK case.
Also notice the self-loops.

assumption that the transmission from the AP is always
to an empty STA, we provide a simple upper bound on
the throughput by assuming that whenever an STA wins
the contention for the channel, it transmits both the TCP
data packets in its queue. Thus, a successful STA does not
have to contend again for the second packet, thus reduc-
ing the contention time and increasing the throughput to
provide an upper bound.

For downloading STAs, ACKs are generated by the
STAs for alternate packets that they receive. We model
this probabilistically, as in [5]; when the AP transmits a
data packet to a downloading STA, an ACK is generated
at that STA with probability 1

2 . With h defined as before,
the process (Dk, Uk) is a DTMC with the transition prob-
ability structure shown in Figure 5, and detailed below.

Pr ((d, u − 1) / (d, u)) = Pr

„

An upload STA
wins the contention

«

=
u

u + d + 1
(18)

Pr ((d − 1, u) / (d, u)) = Pr

„

An upload STA
wins the contention

«

=
d

u + d + 1
(19)

Pr ((d, u + 1) / (d, u)) = Pr

0

B

B

@

AP suceeds and
transmits an even
numbered ACK to

an upload STA

1

C

C

A

=
h/2

u + d + 1
(20)

Pr ((d, u) / (d, u)) = Pr

0

B

B

@

AP suceeds and
transmits an odd
numbered ACK to

an upload STA

1

C

C

A

=
h/2

u + d + 1
(21)

5

Pr ((d + 1, u) / (d, u)) = Pr

0

@

AP suceeds and
transmits to a
download STA

1

A

=
1 − h

u + d + 1
(22)

The difference from Equations (8)-(11) is in the numer-
ator for the expression P ((d, u + 1) / (d, u)). This captures
the above stated probabilistic model of the fact that a TCP
ACK is generated at a downloading STA only on the re-
ceipt of two data packets from the AP. The stationary
distribution of this DTMC is given by (see Appendix B)

π(d, u) =
u + d + 1

e1−(h

2
) (

2 − h
2

)

×

(

h
2

)d
(1 − h)u

d!u!
. (23)

The rest of the analysis follows along the same lines as
in Section 2. The aggregate AP throughput in packet per
second is again given by (15). The total throughput for
the downloading and uploading STAs is given by

Θd = hΘ and Θu = 2(1 − h)Θ . (24)

The factor 2 arises because each ACK transmitted from
the AP acknowledges 2 data packets. The value of E(d,u)X
(recall the meaning of E(d,u)X provided just after (15)) is
obtained in a manner similar to the undelayed ACK case.

4. Determining h: TCP Window Analysis

In this section we obtain expressions for h for both
delayed and undelayed ACK cases when the AP has a fi-
nite buffer, making suitable approximations in the process.
Note that, as already stated earlier, our analyis is valid for
the scenario when the STAs have TCP connections with
a server located on the Ethernet to which the AP is con-
nected, i.e., the delay between the server and the AP is
negligible. In this section, the version of TCP analyzed
does not support fast retransmit and fast recovery; loss
recovery is by timeout only, and the window is reset to 1
after a timeout. We call this version “OldTahoe.” TCP
Reno is analyzed in the next section.

4.1. The Case of Undelayed ACKs

4.1.1. Modeling Assumptions and Approximations

a) From (13) and (14) it can be seen that the average
number of active STAs is 3/2. Hence, for a large number
of STAs, and for sufficiently large upload and download
connection windows, it can be assumed that most of the
TCP packets (data or ACKs) reside in the AP (as will be
seen later, even 5 STAs, with a maximum TCP window of
20 packets suffices to make this approximation accurate).
Here we are also using the fact that the remote end-point
is on the LAN.

 Server service
process

 B packets

Assume
Immediate
Feedback

ACK for Download and DATA for upload STAs

Delay
Zero

Access point buffer

Figure 6: Model for analyzing the AP buffer in order to obtain h.

b) Assume that the maximum congestion windows for
upload connections is Wmax. Since TCP ACKs are just
40 bytes, their loss probability is small; also, due to the
cumulative acknowledgement property of TCP ACKs, in-
frequent ACK losses do not result in the TCP window
being reduced. Hence, we assume that the TCP conges-
tion windows of the upload connections grow and stay at
Wmax. Define µ = NuWmax, i.e., the total number of
packets belonging to the uploading STAs in the system.
Since most of these packets reside in the AP, we assume
that the AP buffer always contains µLTCP−ACK bytes of
TCP ACKs for the upload connections.

c) Thus, if the AP buffer size is B bytes then the buffer
available for the download connections can be assumed to
be B − µLTCP−ACK . In terms of packets, the number of
download data packets that can be accommodated in the
AP is given by

b =
B − µLTCP−ACK

LTCP−DATA

. (25)

We denote the capacity of the buffer in terms of TCP
data packets (for downloading STAs) by B which is given
by

B = µ + b . (26)

Also, for simplicity in some calculations to be shown
later, we assume that, for i ∈ {2, 4, 6, · · · },

b = i × Nd . (27)

d) In order to analyze the evolution of the TCP win-
dow while accounting for tail-drop loss in the AP buffer,
we now propose a simple model for the AP buffer and the
service applied to it; see Figure 6. Since the number of ac-
tive STAs is small, we ignore the round trip time between
a packet being served at the AP and the corresponding
packet (e.g., data packet for an ACK, and an ACK for
a data packet) being received back at the AP. Thus we
asssume immediate feedback.

e) With the model in Figure 6, let us consider the pro-
cess of services to the AP buffer when it just becomes full
with µ + b packets, without any of the connections having
suffered a tail-drop loss. Now all the download TCP con-
nections will lose packets in the process of serving these
µ + b packets from the AP. To see this, suppose that the

6

TCP window of download connection i is Wi when the
AP buffer just becomes full; by our assumption, these Wi

packets will all be in the AP. Hence we can write

b =

Nd
∑

i=1

Wi . (28)

Among these packets, there will be (at least) one packet
that will cause the window to grow. As soon as this packet
is served from the AP, two packets will arrive at the tail of
the AP buffer; one will be accommodated and one will be
lost. Hence, after the buffer becomes full, all the download
TCP connections will lose packets in the process of serving
µ + b packets from the AP. We call this the loss phase.
In the loss phase, the TCP connections are assumed to
be in congestion avoidance; this assumption is based on
our extensive observation of download window evolution
in simulations, a snapshot of which is given in Section 6.1.

f) Suppose one of the download connections reach its
maximum TCP window then that connection should not
suffer loss. In simulations it was observed that such con-
nections stay at the fixed window and do not suffer loss
for large time intervals. The reason they ultimately do suf-
fer a loss can be explained along the lines of the previous
item (e) (Also see Section 6.1). Since modeling this phe-
nomenon is complicated, we have assumed that the down-
load connections do not have a maximum window limit.
The upload connections do have a maximum window limit
of Wmax. Having no maximum window limit for a connec-
tion is possible in modern TCP implementations by means
of enabling the window scaling option [10]. At the end of
this subsection we also give a simple upper bound on h
when download connections do have a maximum window
limit.

g) Note that if upload connections do not have a max-
imum window limit, then, as the loss of a few ACKs does
not affect their window evolution, these windows will grow
forever and the space for download connections will go on
reducing. Hence, it is important to assume a maximum
window limit on the upload connections.

4.1.2. The TCP Window Evolution Process

If the AP buffer occupancy at an instant is x packets,
then the interval during which these x packets are served
will be called a round.

The loss phase: There is one round in this phase. We
recall that the loss phase starts after the AP buffer just
becomes full (with µ ACKs and b data packets). While
serving all these packets, each download connection loses a
packet (assuming the congestion avoidance phase). Thus,
after this round, there will still be µ+ b packets in the AP
buffer. If download connection i had the window Wi at the
time of losing a packet, it still has Wi packets in the AP
buffer at the end of this round. Let us assume that among
the Wi packets that began the loss phase, it was the last
packet that caused the window to grow and, hence, caused
the loss of a packet. This assumption will be supported

later in this section, after explaining the synchronization
process.

The reset phase: Round 1: In the beginning of this
round there are µ + b packets in the AP buffer. Consider
the first packet served from the AP buffer pertaining to
connection i. When the TCP ACK corresponding to this
packet goes to the server and returns as a TCP data packet
to the AP, a gap is created in the sequence numbers of the
packets corresponding to that connection. This gap rests
between the remaining Wi − 1 data packets in the buffer
and the newly arrived data packet. These remaining Wi−1
packets will be served during the services of µ + b packets
from the AP and will return as new data packets to the
AP. Thus after this round, there will be again b packets
in the AP buffer among which Wi packets will correspond
to the ith download connection. Also, there is a gap in
the sequence numbers before the very first packet of each
download connection.

The reset phase: Round 2: The service of the very
first packet from the ith download connection informs the
receiver about the packet loss. The receiver returns a du-
plicate TCP ACK. In the TCP version we are analyzing, a
timeout is needed for resetting the connection window. We
assume that in reset phase round 2, during the services of
the µ+ b packets from the AP there will be timeout for all
the download connections. This is based on the fact that
after the lost packet was sent by the server, 2(µ+ b) are to
be sent until the end of the reset phase round 2, the time
taken for which suffices to cause a TCP sender timeout.
Thus, during this round the windows of all the download
connections will be reset to 1, with the slow start threshold

for download connection i being set to W
(i)
th = Wi

2 . Hence,
after this round, there will be µ + Nd packets in the AP
buffer with one packet out of the Nd packets belonging to
each download connection.

The window evolution is synchronized: After the round
2 in the reset phase, all connection windows are reset to 1
and the ith download connection has a slow start threshold
of W i

th = Wi

2 . Refering to (28), it can be shown that

Nd
∑

i=1

W
(i)
th = b/2 . (29)

For moderate values of b, it has been observed (see Sec-
tion 6.1) that after some number of occurrences of the loss
phase and the reset phase, there are very small differences
between the slow start thresholds of download connections.
Hence, all the connection windows become synchronized
to the same values, the synchronization instants being the
ends of the rounds corresponding to the loss phase and
the reset phase, and also the phases that will be discussed
next. Henceforth, the analysis is carried out assuming all
the window evolutions are synchronized.

The slow start phase: Denote by Tk,1 the instant when
the kth reset phase ends. The windows of the download
transfers are modeled as evolving in cycles that start at
instants {Tk,1, k ≥ 0}. At these instants the download

7

Table 1: AP Buffer Evolution for TCP OldTahoe with Undelayed ACKs.

Phase Buffer at Buffer Buffer services
at Tk,i at Tk,i+1 in [Tk,i, Tk,i+1)

slow µ + Nd µ + 2Nd µ + Nd

start µ + 2Nd µ + 4Nd µ + 2Nd

µ + 4Nd µ + 8Nd µ + 4Nd

..
µ + 2r−1Nd µ + 2rNd µ + 2r−1Nd

= µ + b/2
congestion µ + b/2 µ + b/2 + Nd µ + b/2
avoidance µ + b/2 + Nd µ + b/2 + 2Nd µ + b/2 + Nd

..
µ + b/2 µ + b/2 + xNd µ + b/2
+(x − 1)Nd = B +(x − 1)Nd

losses µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

reset µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

µ + b/2 + xNd µ + Nd µ + b/2 + xNd

windows are synchronized and have been set to 1. Thus,
the AP buffer occupancy is µ + Nd. All the download
windows have the same slow start threshold and all are in
the slow start phase. The first round in a cycle consists of
serving all the packets in the AP; this results in there being
µ + 2Nd packets in the AP buffer. Call this instant Tk,2.
In the slow start phase, after each round all the download
connection windows will be doubled. Thus, during the jth

round in the slow start phase (corresponding to the time
interval [Tk,j , Tk,j+1)) the AP buffer occupancy increases
from µ + 2j−1Nd to µ + 2jNd; µ + 2j−1Nd packets are
served from the AP during this interval. Since the down-
load connection windows are assumed to be synchronized,
and have the same slow start thresholds, they all enter the
congestion avoidance phase at the instant Tk,r+1, where r
is defined by

µ + 2rNd = µ + NdWth = µ + b/2 . (30)

yielding

r = log2

(

b

2Nd

)

. (31)

By assuming window synchronization, all the download
connection windows leave slow start phase at the end of
the same round, and when the buffer is not yet full. This is
consistent with the previously made assumption that the
connections are in congestion avoidance phase at the time
of buffer overflow.

The congestion avoidance phase: Following the previ-
ous discussion, the buffer occupancy at the beginning of
this phase is µ + b/2. The free space for download con-
nections in the AP buffer is now b/2 packets. Due to the
linear increase in the congestion avoidance phase, after the
jth round in this phase, the buffer occupancy will increase
from µ + b/2 + (j − 1)Nd to µ + b/2 + jNd. At the end of
the xth round, the buffer becomes full, where x is defined

by xNd = b/2, yielding x = b
2Nd

, where x is an integer

due to (27). After this round, the loss phase of this cycle
begins. This AP buffer evolution has been summarised
compactly in Table 1. Note that the number of upload
packets transmitted by the AP is just µ in all the rounds.

Thus, in each cycle the window evolution and the num-
ber of packets served are deterministic. Hence, the ratio
of download packets transmitted by the AP to the total
packets transmitted by the AP is constant and can be cal-
culated using Table 1. From (7), h is the same as the value
of this fraction. Thus, h is given by

h =

h

(2r
− 1) +

x(x−1)
2

+ 3x
i

Nd + (x + 3) b
2

(r + x + 3)µ +
h

(2r
− 1) + x(x−1)

2
+ 3x

i

Nd + (x + 3) b
2

. (32)

The value of h calculated using the above procedure
can be substituted into the analysis in section 2 to obtain
the value of the AP throughput, the download throughput
and the upload throughput for the undelayed ACK case.
A simple upper bound when all the connections have a max-
imum window limit: We so far assumed that the upload
connections have a maximum window limit but the down-
load connections have no such limit. When the download
connections also have a maximum window limit, a simple
upper bound can be obtained as follows. Let the download
connections have a maximum window limit of Wmax. The
space available for download packets in the AP buffer is
b packets. Assume that ⌊ b

Wmax
⌋ connections reach their

maximum window limit and stay there indefinitely. Then
assume that remaining Nd−⌊ b

Wmax

⌋ download connections
follow the window evolution process described above with
b − Wmax⌊

b
Wmax

⌋ space available for their packets in the
AP buffer. Calculating h with this model provides an up-
per bound on h.

8

Table 2: AP Buffer Evolution for TCP Reno with Undelayed ACKs.

Phase Buffer at Buffer Buffer services
at Tk,i at Tk,i+1 in [Tk,i, Tk,i+1)

congestion µ + b/2 µ + b/2 + Nd µ + b/2
avoidance µ + b/2 + Nd µ + b/2 + 2Nd µ + b/2 + Nd

..
µ + b/2 µ + b/2 + xNd µ + b/2
+(x − 1)Nd = B +(x − 1)Nd

losses µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

reset µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

µ + b/2 + xNd µ + b/2 µ + b/2 + xNd

4.2. The Case of Delayed ACKs

The above analysis for calculating h can be easily ex-
tended to the delayed ACK case; also recall the discussion
in Section 3. We assume that every alternate TCP DATA
packet gets acknowledged. Now it can be assumed that
B = µ/2 + b as the AP stores one ACK corresponding to
two DATA packets for the upload connections. There is
another minor modification in the model from Section 4.1.1.
In the delayed ACK case, when the AP sends an ACK to
an STA that is performing an upload, the STA generates
two DATA packets, as opposed to one in the undelayed
ACK case. These two DATA packets are assumed to be
“served” together (recall the first paragraph of Section 3);
they then travel the round trip to the server and return to
the AP as a single ACK, with immediate feedback. Simi-
larly, an ACK packet sent by a downloading STA returns
to the AP as two DATA packets, again with immediate
feedback from the server.

The analysis steps will be exactly like the undelayed
ACK case except that we replace µ by µ/2, which is the
number of TCP ACKs corresponding to upload STAs rest-
ing in the AP. Thus replacing µ by µ/2 in (32), we obtain

h =

h

(2r
− 1) + x(x−1)

2
+ 3x

i

Nd + (x + 3) b
2

(r + x + 3)µ
2

+
h

(2r
− 1) +

x(x−1)
2

+ 3x
i

Nd + (x + 3) b
2

.

(33)

5. Extension to TCP Reno

The analysis easily extends to the Reno version of TCP.
We first consider the undelayed ACK case, with no limit
on the congestion window for download connections. The
analysis is similar to that in Section 4.1. For the Reno case
we assume that there are no timeouts and the recovery
uses only Fast Retransmit and Fast Recovery mechanisms
([11]). We assume that there are sufficient number of pack-
ets buffered for every download connection to trigger the
Fast Retransmit mechanism. This will lead to absence of
the slow start phase in the cumulative window evolution.
Also, we note that for the Reno case it is not necessary
to assume that all the download windows have the same

value at the instants Tk,i. All that matters is that the cu-
mulative download window increases linearly from b/2 to b
in the congestion avoidance phase, with increments of Nd

in [Tk,i, Tk,i+1). After the buffer occupancy reaches b, the
loss phase and reset phase occur similar to the TCP Old-
Tahoe case, the only difference being that at the end of the
reset phase, the buffer occupancy is b/2 instead of Nd as
in the OldTahoe. The AP buffer evolution is summarized
in Table 2. The formula for h for Reno becomes:

h =

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(x + 3)µ +
[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

. (34)

Following similar lines as in Section 4.2, h for TCP
Reno for the delayed ACK case is given by

h =

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(x + 3)µ
2 +

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

. (35)

6. Analytical and Simulation Results

All the simulation results are obtained using ns-2.31
using parameters summarized in Table 3.

6.1. Synchronized Window Evolution

Figure 7 shows a window evolution snapshot for Nu =
5, Nd = 5, b = 50 in support of the assumptions and ap-
proximations made in Section 4.1. We have assumed a
synchronized window evolution in Section 4.1.1. From
Figure 7 we see that this assumption holds good most of
the time but not always. One reason why synchroniza-
tion might fail to occur is the following. Suppose that two
download STAs are active at some moment, and serving
one of these can potentially cause a window increase in the
connection corresponding to that STA. If such an STA is
served before the other STA then two packets will return
to the AP because of the window increase. Now as the
AP has space for two packets, both these packets will be
accommodated in the AP and thus the connection will not
lose packets, even though there are µ+b packets in the AP

9

Table 3: IEEE 802.11b and TCP/IP parameters

Parameter Symbol Value

Data rate 1 R1 2 Mbps
Data rate 2 R2 5.5 Mbps
Data rate 3 R3 11 Mbps
Control rate Cc 2 Mbps
PHY Preamble time TP 144 µS
PHY header TPHY 48 µS
MAC header size LMAC 34 bytes
RTS packet size LRTS 20 bytes
CTS packet size LCTS 14 bytes
MAC ACK packet size LACK 14 bytes
System slot time δ 20 µS
DIFS Time TDIFS 50 µS
SIFS Time TSIFS 10 µS
EIFS Time TEIFS 364 µS
Min. contention window CWmin 31
Max. contention window CWmax 1023
IP header LIPH 20 bytes
TCP header LTCPH 20 bytes
TCP ACK packet size LTCP−ACK 20 bytes
TCP data packet size LTCP−DATA 1500 bytes

buffer. But we have found that the assumption of a syn-
chronized window evolution model provides results that
are close to the actual performance. The simulation re-
sults in support of this claim are provided in the following
sections.

6.2. TCP OldTahoe

Undelayed ACK Case: Figures 8, 9 and 10 provide a
validation of the analysis performed in Section 4.1 for
Nd = Nu = 5, 8, 10. Here h is plotted vs. the buffer size
expressed as b

2Nd

. For uploads the maximum TCP win-

dow is Wmax = 20. Thus, for example, b
2Nd

= 10, with
Nu = Nd = 5, means that the AP buffer can accommo-
date 100 TCP data packets and 100 TCP ACKs. It can be
seen that the analysis provides a very accurate estimate of
h in spite of our several simplifying modeling assumptions.
We see that for a small AP buffer, the download transfers
can obtain as little as just 10% of the total packet through-
put from the AP, and b

2Nd

needs to be 10 for the download

throughput to be 40% of the total packet throughput from
the AP.

The upload and download throughputs are obtained by
multiplying the aggregate packet throughput from the AP
by h; see (17). For PHY rates of 2Mbps, 5.5Mbps and 11
Mbps, the throughput Θ in packets/s provided by the sim-
ulations was consistently found to be 116, 230, 318, respec-
tively, regardless of h and the number of STAs, whereas
the corresponding analytically obtained values were 117,
231 and 320 in terms of packets/s. Thus, the analysis
also provides a very accurate estimate of the upload and
download throughputs.

150 160 170 180 190 200
0

5

10

15

20

25

time

D
ow

nl
oa

d
w

in
do

w

Figure 7: Sample path of window evolutions of several connections,
in support of our assumption of synchronization of the window evo-
lution processes.

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

b/2Nd

h

h for undelayed ACK, Nu=Nd=5

2Mbps
5.5Mbps
11Mbps
Analytical

Figure 8: TCP OldTahoe, undelayed ACK case: h vs. buffer size
(expressed as b

2Nd

) for Nu = Nd = 5.

Discussion: As an illustration, we see that if b
2Nd

= 10

with Nu = Nd = 5 (see Figure 8), and, keeping the same
buffer, we make Nd = Nu = 10 (see Figure 10), then
the download throughput will drop from about 40% of
aggregate throughput to about 25%. Our observation of
constant aggregate throughput with increasing number of
nodes is consistent with the earlier work on TCP reported
in [3] and [5].
Delayed ACK Case: Figure 11 shows simulation results for
h for the delayed ACK case in Section 4.2 for Nu = Nd = 5.
Similar results were obtained for Nu = Nd = 8, 10. As for
the case of undelayed ACKs, the values of total throughput
were again found to be almost insensitive to h and the
total number of STAs. From our simulations, these values
were found to be, approximately, 123, 254, 360 packets/s
for the PHY rates of 2, 5.5, 11 Mbps, respectively, very
close to the analytically obtained values of 125, 257, 365,
respectively.

We find that the analysis underestimates the value of
h in this case. This can be explained as follows: We have

10

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

b/2Nd

h
h for undelayed ACK, Nu=Nd=8

2Mbps
5.5Mbps
11Mbps
Analytical

Figure 9: TCP OldTahoe, undelayed ACK case: h vs. buffer size
(expressed as b

2Nd

) for Nu = Nd = 8.

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

b/2Nd

h

h for undelayed ACK, Nu=Nd=10

2Mbps
5.5Mbps
11Mbps
Analytical

Figure 10: TCP OldTahoe, undelayed ACK case: h vs. buffer size
(expressed as b

2Nd

) for Nu = Nd = 10.

2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

b/2Nd

h

h for delayed ACK, Nu=Nd=5

2Mbps
5.5Mbps
11Mbps
Analytical

Figure 11: TCP OldTahoe, delayed ACKs: h vs. buffer size (ex-
pressed as b

2Nd

) for Nu = Nd = 5.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

b/2Nd

h

h for TCP Reno undelayed ACK, Nu = Nd = 5

2 Mbps
5.5 Mbps
11 Mbps
Analytical

Figure 12: TCP Reno, Undelayed ACK case: h vs. buffer size (ex-
pressed as b

2Nd

) for Nu = Nd = 5

assumed in Section 4.2 that when an upload ACK is trans-
mitted by the AP, the resulting two DATA packets at the
corresponding STA are served together, back-to-back, af-
ter one contention by the STA (see also the first paragraph
of Section 3). These two DATA packets instantly reach the
server and return as an ACK into the AP buffer. In prac-
tice, however, one of the upload DATA packets will stay
in the STA, waiting for another contention, so that the
number of upload ACKs in the AP is less than what our
analysis assumes. Thus, the number of upload ACKs in
the AP is overestimated by our model, which results in an
underestimate of the value of h.

Discussion: It can be seen from (24) that the upload
and download throughputs are equal when h = 2

3 . We see
from Figure 11 that for Nd = Nu = 5 this situation is ap-
proached for b

2Nd

= 10. Another insight we obtain is that
the aggregate throughput in packets per second is almost
constant with buffer size and the number of nodes. Fur-
ther, the simplification we made for carrying out the anal-
ysis with delayed ACKs in the first paragraph of Section 3
is seen to yield a very good approximation for throughput.

6.3. TCP Reno

Figure 12 shows the simulation results obtained for h
for TCP Reno with undelayed ACKs for Nu = Nd = 5.
Similar results were obtained for Nu = Nd = 8, 10. We
notice that the values of h for the same value of buffer are
a little greater than with OldTahoe. This can be explained
as follows: With TCP Reno, the cumulative TCP window
of downloading STAs oscillates between b/2 and b. For
TCP OldTahoe, because of repeated resetting of the win-
dow 1 and entry into the slow start phase, the cumulative
window has to climb to b/2 and then it enters the conges-
tion avoidance phase. Thus, the slow start phase of TCP
OldTahoe results in reducing the throughput obtained by
downloading STAs and hence h. Again similar to Old-
Tahoe, for PHY rates of 2Mbps, 5.5Mbps and 11 Mbps,

11

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

b/2Nd

h

h for TCP Reno Delayed ACK, Nu = Nd = 5

2 Mbps
5.5 Mbps
11 Mbps
Analytical

Figure 13: TCP Reno, delayed ACK case: h vs. buffer size (expressed
as b

2Nd

) for Nu = Nd = 5

2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

b/2Nd

h

h given max. window limit, Nu=Nd=5

2Mbps
5.5Mbps
11Mbps
No Wmax for d/l
Upper bound

Figure 14: TCP OldTahoe, undelayed ACK: h for Nu = Nd = 5,
Wmax = 20

the simulated throughput Θ in packets/s was consistently
found to be 116, 230, 318, respectively, regardless of h and
the number of STAs, whereas the corresponding analyti-
cally obtained values were 117, 231 and 320 in terms of
packets/s.

Figures 13 shows the simulation and analysis results
obtained for h with Nu = Nd = 5 for TCP Reno with
delayed ACKs. Similar results were obtained for Nu =
Nd = 8, 10. Again the values of total throughput were
found to be almost insensitive to h and the total number
of STAs. These values were approximately 125, 257, 365
packets/s for the PHY rate of 2, 5.5, 11 Mbps respectively
and very close to the analytical results.

6.4. Bounds on h with finite Wmax

The results in Section 6.2 were provided assuming no
maximum window limit on download connections but the
upload connections had a maximum window limit of 20. At
the end of Section 4.1.2 we provided a simple upper bound

on h for the case of undelayed ACK and when all connec-
tions have a maximum window limit. Intuitively, we antic-
ipate that for small values of the AP buffer, the analytical
h would be close to the h obtained with no maximum win-
dow limit only on download connections. Figure 14 shows
the simulated value of h given the maximum window limit
of 20 on all the connections, and analytical values of h for
the case when there is maximum window limit only on up-
load connections for Nu = Nd = 5. Similar results were
obtained for Nu = Nd = 8, 10. We see that for small buffer
sizes the analytical model with no maximum limit on the
download TCP windows provides an accurate estimate of
h. For other cases, the two analyses provide bounds on h.

7. Conclusion

The analysis for calculating h is essentially rateless,
i.e., the value of h does not change with PHY rate as long
as the number of uploading STAs, the number download-
ing STAs, AP buffer size and maximum window limit for
upload connections remain same. Thus, we can expect to
obtain the same value of h even in the scenario where STAs
associate with the AP with different PHY rates. The anal-
ysis for calculating h made use of only the fact that the
average number of active STAs is small, as stated in Sec-
tion 4.1.1, and has no other dependence on the underlying
MAC layer analysis.

Since, for a given the PHY rate, there is no variation in
aggregate throughput with the number of STAs (see Sec-
tion 6.2 and 6.3), it motivates the processor sharing model
for the case of randomly arriving short file transfers. The
model will consist of N = Nu + Nd connections and a
server serving packets at Θ = Θu + Θd packets/second.
Each download STA will get service at the rate hΘ

Nd

pack-

ets/s and each upload STA will get service with (1−h)Θ
Nu

packets/s. With this model, the mean time taken to com-
plete the file transfers can be predicted [11]; we leave the
study of the accuracy of such a model as future work.

We have thus provided a fairly general analytical model
that (i) explains the observations made by several prior
experimental and simulation studies (e.g., [1]), (ii) yields
several new insights into the interaction of the TCP pro-
tocol and the IEEE 802.11 MAC (e.g., beyond those in [3]
and [5]), and (iii) provides an accurate model that could
be used to predict performance, perhaps for the purpose
of network engineering.

APPENDIX

A. DTMC for the Undelayed ACK case

Consider the DTMC (Dk, Uk) characterized by the fol-
lowing equations:

12

Pr ((d − 1, u) / (d, u)) =
d

u + d + 1
(36)

Pr ((d, u − 1) / (d, u)) =
u

u + d + 1
(37)

Pr ((d + 1, u) / (d, u)) =
h

u + d + 1
(38)

Pr ((d, u + 1) / (d, u)) =
1 − h

u + d + 1
(39)

The Markov chain is depicted in Figure 4. The follow-
ing lemmas will be used in the analysis [8].

Lemma A.1. A Markov chain is reversible if and only if
there exists a probability distribution π on S, where S is
the set of all the nodes of the Markov chain, such that, for
all i, and j ∈ S,

πipij = πjpji (40)

where pij denotes the transition probability from node i to
node j.

Lemma A.2. A Markov chain is reversible if, in every
closed (circular) path formed by its nodes, the product of
the transition probablities in the clockwise direction is equal
to the product of the transition probabilites in the anti-
clockwise direction.

A.1. Stationary state distribution

Using Lemma A.2, the DTMC in Figure 4 can be easily
seen to be reversible. Recall that, π(d, u) denotes the sta-
tionary state probability of the state (d, u). Using Lemma A.1,
we can write

π(d, u − 1)
1 − h

u + d
= π(d, u)

u

u + d + 1
. (41)

Hence,

π(d, u)

π(d, u − 1)
=

(1 − h)(u + d + 1)

u(u + d)
, (42)

Applying (42) repetitively, we get

π(d, u)

π(d, u − 1)
× · · ·×

π(d, 1)

π(d, 0)
=

(1 − h)u

u!
×

u + d + 1

d + 1
, (43)

or,

π(d, u)

π(d, 0)
=

(1 − h)u

u!
×

u + d + 1

d + 1
. (44)

Similarly, we can obtain

π(d, u)

π(0, u)
=

hd

d!
×

u + d + 1

u + 1
. (45)

Substituting u = 0 in the above equation gives

π(d, 0)

π(0, 0)
=

hd

d!
× (d + 1) . (46)

Multiplying equations (44) and (46) we get

π(d, u)

π(0, 0)
= (u + d + 1) ×

hd(1 − h)u

d!u!
. (47)

Now using the normalization equation

∞
∑

d=0

∞
∑

u=0

π(d, u) = 1 , (48)

we get

∞
∑

d=0

∞
∑

u=0

(u + d + 1)
hd(1 − h)u

d!u!
× π(0, 0) = 1. (49)

Thus, we can write

1

π(0, 0)
=

∞
∑

d=0

hd

d!

∞
∑

u=0

(u + d + 1)
(1 − h)u

u!

=

∞
∑

d=1

hd

(d − 1)!

{

∞
∑

u=0

(1 − h)u

u!

+

∞
∑

d=0

hd

d!

∞
∑

u=1

(1 − h)u

(u − 1)!

+

∞
∑

d=0

hd

d!

∞
∑

u=0

(1 − h)u

u!

}

= e(1−h)eh {h + (1 − h) + 1}

= 2e . (50)

∴ π(0, 0) =
1

2e
. (51)

Substituting π(0, 0) = 1
2e

in equation (47), we get

π(d, u) =
u + d + 1

2e
×

hd(1 − h)u

d!u!
. (52)

A.2. Mean number of active download and upload STAs

The mean number of active download STAs is given by

E(D) =
∞
∑

u=0

∞
∑

d=0

d ×
u + d + 1

2e
×

hd(1 − h)u

d!u!

=
1

2e

∞
∑

u=0

(1 − h)u

u!

∞
∑

d=0

(d2 + d(u + 1)) ×
hd

d!

=
1

2e

∞
∑

u=0

(1 − h)ueh

u!

{

(h2 + h) + (u + 1)h
}

=
1

2e
ehe(1−h)

{

h2 + h + h(1 − h) + h
}

=
3h

2
. (53)

13

Observing symmetry of equation (52) in u and d, it
can be easily seen that the mean number of active upload
STAs is given by

E(U) =
3(1 − h)

2
. (54)

B. DTMC for the Delayed ACK case

The DTMC (Dk, Uk) for this case is characterized by
following equations:

Pr ((d − 1, u) / (d, u)) =
d

u + d + 1
(55)

Pr ((d, u − 1) / (d, u)) =
u

u + d + 1
(56)

Pr ((d + 1, u) / (d, u)) =
h
2

u + d + 1
(57)

Pr ((d, u) / (d, u)) =
h
2

u + d + 1
(58)

Pr ((d, u + 1) / (d, u)) =
1 − h

u + d + 1
(59)

This DTMC is depicted in Figure 5. Using Lemma A.2,
it can be verified to be reversible. Equation (47) now
changes to

π(d, u)

π(0, 0)
= (u + d + 1) ×

(

h
2

)d
(1 − h)u

d!u!
. (60)

Following the same analysis steps as in the undelayed
ACK case, we can write

1

π(0, 0)
=

∞
∑

d=0

(

h
2

)d

d!

∞
∑

u=0

(u + d + 1)
(1 − h)u

u!

= e(1−h)
∞
∑

d=1

{

(

h
2

)d

(d − 1)!

+(1 − h)

∞
∑

d=0

(

h
2

)d

d!
+

∞
∑

d=0

(

h
2

)d

d!

}

= e(1−h)e(
h

2
)
{

h

2
+ (1 − h) + 1

}

= e1−(h

2
)
(

2 −
h

2

)

.

∴ π(0, 0) =
1

e1−(h

2
) (

2 − h
2

)

. (61)

Hence,

π(d, u) =
u + d + 1

e1−(h

2
) (

2 − h
2

)

×

(

h
2

)d
(1 − h)u

d!u!
. (62)

C. Derivation of E(d,u)X

The denominator of (15) requires E(d,u)X , i.e., the
mean cycle time starting in the state (d, u). As explained
earlier, a contention cycle comprises several channel slots,
and we obtain the mean cycle time by writing down simple
recursive expressions by embedding at channel slot bound-
aries. The “back-off” periods shown in Figure 3 comprise
several idle slots in which none of the nodes attempts.
If one or more attempts occur at a channel slot bound-
ary, there is a success or collision accordingly. Starting in
the state (d, u), the state remains (d, u) until a successful
transmission ends. The following events can happen at the
channel slot boundaries:

• The slot goes idle with probability

Pidle = (1 − βu+d+1)
u+d+1.

• The AP succeeds with probability

PAP
succ = βu+d+1(1 − βu+d+1)

u+d.

• A download STA succeeds with probability

P d
succ = dβu+d+1(1 − βu+d+1)

u+d.

• An upload STA succeeds with probability

Pu
succ = uβu+d+1(1 − βu+d+1)

u+d.

• There is a collision with the remaining probability.

When two or more transmissions collide, the duration
of collision is given by the duration of the longest transmis-
sion. Hence, we distinguish among the various possibilities
of collisions depending on whether a download STA or an
upload STA is involved in the collisions, and also whether
the AP, if involved in the collision, has a TCP data packet
or a TCP ACK at the HOL position. This is due to the
fact that, the time spent in collision can be dominated by
either the duration of RTS or the duration of TCP ACK
depending on the PHY rates. Let Tcoll1 (resp. Tcoll2) de-
note the duration of a collision given that the RTS (resp.
the TCP ACK) is the longest packet involved in the colli-
sion. Then, Tcoll1 and Tcoll2 are given by (see Table 3)

Tcoll1 = TP + TPHY +
LRTS

Rcontrol

+ TEIF S

Tcoll2 = TP + TPHY +
LMAC + LIPH + LTCP−ACK

Rdata

+ TEIF S

Note that Tcoll2 < Tcoll1 at 11 Mbps and Tcoll2 > Tcoll1

at 2 Mbps and 5.5 Mbps. The various possibilities of col-
lisions can now be summarized as follows:

• An AP transmission collides with a transmission by
the download STA (and upload STAs are not in-
volved in the collision) with probability

PAP,d
coll = βu+d+1(1 − βu+d+1)

u[1 − (1 − βu+d+1)
d].

14

Table 4: Parameter values for Equations (64) and (65)

Parameter Value at 11 Mbps Value at 2 Mbps and 5.5 Mbps

PDATA
coll1 PAP,d

coll + PAP,u
coll + Pu

coll + P d,u
coll PAP,u

coll + Pu
coll

PDATA
coll2 P d

coll PAP,d
coll + P d

coll + P d,u
coll

PACK
coll1 PAP,u

coll + Pu
coll + P d,u

coll Pu
coll

PACK
coll2 PAP,d

coll + P d
coll PAP,d

coll + PAP,u
coll + P d

coll + P d,u
coll

• The AP transmission collides with a transmission by
the upload STA (and download STAs are not in-
volved in the collision) with probability

PAP,u
coll = βu+d+1(1 − βu+d+1)

d[1 − (1 − βu+d+1)
u].

• Two or more download STAs collide (and neither the
AP nor the upload STAs are involved in the collision)
with probability

P d
coll = (1 − βu+d+1)

u+1 × [1 − (1 − βu+d+1)
d −

dβu+d+1(1 − βu+d+1)
d−1].

• Two or more upload STAs collide (and neither the
AP nor the download STAs are involved in the col-
lision) with probability

Pu
coll = (1 − βu+d+1)

d+1 × [1 − (1 − βu+d+1)
u −

uβu+d+1(1 − βu+d+1)
u−1].

• Both download and upload STAs are involved in the
collision (AP may or may not be involved) with prob-
ability

P d,u
coll = [1 − (1 − βu+d+1)

u][1 − (1 − βu+d+1)
d].

As the time interval (Gk−1, Gk] depends on whether
the packet at HOL at the AP was Data or ACK packet,
the expected cycle length can be expressed as

E(d,u)X = h E
DATA
(d,u) X + (1 − h) E

ACK
(d,u) X. (63)

where E
DATA
(d,u) and E

ACK
(d,u) denote the expected cycle lengths

starting in the state (d, u) given that the HOL packet at
the AP is a TCP data packet or TCP ACK respectively.
Let PDATA

coll1 (resp. PDATA
coll2) denote the probability that

the time spent in collision is Tcoll1 (resp. Tcoll2) given that
the AP’s HOL position contains a TCP data packet. Let
PACK

coll1 (resp. PACK
coll2) denote the probability that the time

spent in collision is Tcoll1 (resp. Tcoll2) given that the AP’s
HOL position contains a TCP ACK. As noted earlier, the
above probabilities depend on the PHY rates and have
been summarized in Table 4.

Table 4 can be explained as follows. Consider the 11
Mbps case when the AP’s HOL position contains a TCP
data packet. Since Tcoll2 < Tcoll1 at 11 Mbps, the time
spent in collision is Tcoll2 iff neither the AP nor any upload
STA is involved in the collision. If either the AP or any of
the upload STAs is involved in the collision, then the time
spent in collision is Tcoll1. Thus, in this case, we have

PDATA
coll2 = P d

coll ,

and

PDATA
coll1 = PAP,d

coll + PAP,u
coll + Pu

coll + P d,u
coll .

Other entries in Table 4 can be similarly explained.
Applying a renewal argument, E

DATA
(d,u) and E

ACK
(d,u) can

be recursively written as follows:

E
DATA
(d,u) X = Pidle(δ + E

DATA
(d,u) X)

+ P DATA
coll1 (Tcoll1 + E

DATA
(d,u) X)

+ P DATA
coll2 (Tcoll2 + E

DATA
(d,u) X)

+ P AP
succTTCP−DATA + P u

succTTCP−DATA

+ P d
succTTCP−ACK (64)

E
ACK
(d,u) X = Pidle(δ + E

ACK
(d,u) X)

+ P ACK
coll1 (Tcoll1 + E

ACK
(d,u) X)

+ P ACK
coll2 (Tcoll2 + E

ACK
(d,u) X)

+ P AP
succTTCP−ACK + P u

succTTCP−DATA

+ P d
succTTCP−ACK (65)

where TTCP−DATA and TTCP−ACK denote the times taken
for transmission of TCP data packet and TCP ACK, re-
spectively. Equations (63), (64) and (65) provide E(d,u)X .
The attempt probabilities needed to compute various prob-
abilities can be obtained by a saturated analysis as in [6] or
[7], and the various time durations can be obtained using
the parameter values summarized in Table 3.

15

References

[1] M. Gong, Q. Wu, C. Williamson, Queue management strategies
to improve TCP fairness in IEEE 802.11 wireless LANs, in: The
2nd Workshop on Resource Allocation in Wireless NETworks,
RAWNET, Boston, MA, 2006.

[2] S. Pilosof, R. Ramjee, D. Raz, Y. Shavit, P. Sinha, Understand-
ing TCP Fairness Over Wireless LAN, in: Proceedings of IEEE
INFOCOM’03, 2003.

[3] R. Bruno, M. Conti, E. Gregori, Modeling TCP Throughput
Over Wireless LANs, in: Proc. 17th IMACS World Congress
Scientific Computation,Applied Mathematics and Simulation,
Paris, France, 2005.

[4] S. Harsha, A. Kumar, V. Sharma, An Analytical Model for the
Capacity Estimation of Combined VoIP and TCP File Trans-
fers over EDCA in an IEEE 802.11e WLAN, in: 14th IEEE
International Workshop on Quality of Service (IWQoS), Yale
University, New Haven, 2006.

[5] G. Kuriakose, S. Harsha, A. Kumar, V. Sharma, Analytical
models for capacity estimation of IEEE 802.11 WLANs us-
ing DCF for internet applications, Wireless Networks, Springer
15 (2).

[6] G. Bianchi, Performance Analysis of the IEEE 802.11 Dis-
tributed Coordination Function, IEEE Journal on Selected Ar-
eas in Communications 18 (3) (2000) 535–547.

[7] A. Kumar, E. Altman, D. Miorandi, M. Goyal, New insights
from a fixed point analysis of single cell IEEE 802.11 WLANs,
IEEE/ACM Transactions on Networking 15 (3) (2007) 588–601,
also appeared in INFOCOM, 13–17 March 2005, pp. 1550 –
1561.

[8] F. Kelly, Reversibility and Stochastic Networks, John Wiley,
1979.

[9] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems,
Chapman and Hall, London, UK, 1995.

[10] RFC 1323, http://www.ietf.org/rfc/rfc1323.txt (1992).
[11] A. Kumar, D. Manjunath, J. Kuri, Communication Network-

ing: An Analytical Approach, The Morgan Kaufman Series in
Networking, Morgan Kaufmann, an Imprint of Elsevier Series
in Networking, 2004.

16

