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Abstract

We consider an Internet link carrying http-like traffic, i.e., transfers of finite volume files arriving at random time
instants. These file transfers are controlled by an adaptive window protocol (AWP); an example of such a protocol
is TCP.

We provide analysis for the auto-covariance function of the AWP-controlled traffic into the link’s buffer; this
traffic, in general,cannotbe represented by an on–off process. The analysis establishes that, for TCP-controlled
transfer of Pareto-distributed file sizes with infinite second moment, the traffic into the link buffer is long range-
dependent (LRD).

We also develop an analysis for obtaining the stationary distribution of the link buffer occupancy under an
AWP-controlled transfer of files sampled from some distribution. For any AWP, the analysis provides us with the
Laplace–Stieltjes transform (LST) of the distribution of the link buffer occupancy process in terms of the functions
defining the AWP and the file size distribution. The analysis also provides a necessary and a sufficient condition for
the finiteness of the mean link buffer content; these conditions again have explicit dependence on the AWP used and
the file size distribution. This establishes the sensitivity of the buffer occupancy process to the file size distribution.

Combining the results from the above analyses, we provide various examples in which the closed loop control of
an AWP results in finite mean link buffer occupancy even though the file sizes are Pareto-distributed (with infinite
second moment), and the traffic into the link buffer is long range-dependent (with Hurst parameters which would
suggest an infinite mean queue occupancy under open loop analysis).

We also study the effect of window reductions due to active queue management and find that window reductions
lead to further lightening of the tail of buffer occupancy distribution.

The significance of this work is three-fold: (i) by looking at the window evolution as a function of the amount
of data served and not as a function of time, this work provides a new framework for analysing various processes
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related to the link buffer under AWP-controlled transfer of files with a general file size distribution; (ii) it indicates
that the buffer behaviour in the Internet may not be as poor as predicted from an open loop analysis of a queue
fed with LRD traffic; and (iii) it shows that the buffer behaviour (and hence the throughput performance for finite
buffers) is sensitive to the distribution of file sizes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It was observed in[1] that traffic processes in the Internet display long range dependence. In[2],
this phenomenon was traced to the fact that the traffic in the Internet results from the transfer of files
that have a heavy-tailed distribution. Models have shown that the transfer of Pareto-distributed files
(P{V > x} = min(1, 1

xα
),1 < α < 2) results in a traffic rate process that has an auto-correlation function

that decays as1
τα−1 . These observations have been taken to indicate that the buffer occupancy distribution in

router buffers will have heavy tails[3]. Such observations are, however, based on an “open loop” analysis
of an LRD traffic source feeding a buffer. It has also been noted recently[4] that an understanding of
traffic and buffer processes in the Internet should take into account the closed loop nature of Internet
congestion control, namely TCP which is an adaptive window protocol (AWP). In this paper, we carry
out such an analysis for a particular network scenario.

The Internet carries predominantly elastic traffic; the transfer of such traffic is controlled by TCP[5].
Most of the literature on TCP modelling is concerned with the “throughput” obtained by TCP-controlled
file transfers over a single bottleneck link, with or without the assumption of random drops/losses. These
works can be divided into two streams; the (chronologically) first stream of work assumes a single
bottleneck link that is used to transfer a fixed number of files of very large volumes (see[6–8], and
references therein), whereas the second category deals with the performance of TCP-controlled transfer
of http-like (finite volume) files where the number of ongoing transfers is randomly varying (see[9], and
references therein). An important consideration in the case of http-like traffic is the distribution of file
transfer volumes.

Some of the works that fall in the first category attempt to model the behaviour of the link
buffer (see[6,10]) but, to our knowledge, there is no such analytical study available for TCP-
controlled transfer of http-like traffic. In this paper, we develop a framework for analysing the be-
haviour of the link buffer, and related processes, assuming that the file transfers are controlled us-
ing a general adaptive window protocol, explicitly taking into account the distribution of file transfer
volumes.

We consider the scenario shown inFig. 1, where an Internet link connects clients on one side to servers
on the other side. We assume that there is no restriction on the number of simultaneous ongoing transfers.
The clients generate file transfer requests and the servers send the requested files using an AWP. The
servers and clients are connected to the link by very high-speed access links. Hence, the Internet link is
the bottleneck; also shown in the figure is this link’s buffer containing data packets from the ongoing file
transfers. We make the following system and traffic assumptions:



Fig. 1. TCP-controlled file transfers over a single link connecting servers and clients; the link propagation delay is assumed to
be negligible, and the link buffer is infinite. In this work, we analyse thea(t) process, and the link buffer occupancy process.

• The end-to-end propagation delay is negligible (in the sense that the propagation delay between the end
nodes of the link is much less than one packet service time; for example, this could be a 34 Mbps link
interconnecting two locations 15 km apart in a city for a TCP packet size of 1500 bytes, the bandwidth
delay product being 0.3 packets).

• The link buffer on the server side is such that there is no packet loss. (It follows that since the file sizes
are finite, the window growth is governed solely by the increase phase of the AWP; the window of each
transfer remains finite since the volume of the transfer is finite. We wish to study the tail behaviour
of the stationary contents of the buffer; such an analysis would provide some insight into the tail drop
loss behaviour with finite buffers.)

• The link buffer on the server side implements a per-flow round-robin scheduling discipline with a
service quantum of one packet. Examples of such scheme are Deficit Round Robin (DRR, see[11])
and weighted fair queueing (WFQ).

• Each request is for the transfer of a single file, and the files have independent and identically distributed
sizes.

• The starting instants of file transfers constitute a Poisson process (of rateλ). (The instants at which
new user sessions start is now accepted to be well modelled by a Poisson process (see[4]); our model
thus assumes that each session transfers just one file.)

• We first assume that the link buffer does not drop or mark the packets owing to any active queue
management mechanisms. This assumption is later relaxed and random marking of packets are also
considered.

The first assumption above implies that the link buffer contains all unacknowledged data from the
ongoing file transfers (sessions). This also implies that the link is busy whenever at least one session is
active.

1.1. Relationship with existing literature

It has been shown[12,13] that for Pareto-distributed file sizes (with tail1
xα

), the data departure rate
process (d(t) in Fig. 1) is long range-dependent (LRD) with Hurst parameter3−α

2 . This result follows from
the observation that, owing to zero propagation delay, thed(t) process corresponds to the busy idle process
of a work conserving queue. Further,d(t) is not affected by the feedback control used. Clearly, however,



Fig. 2. Two simple queueing models illustrating that for the same input process (Poisson with rateµ) the behaviour of a buffer
is entirely different in a closed loop (a) and in an open loop (b). The queue in (b) is unstable (a null recurrent Markov chain).

the input process to the link buffer depends on the feedback control used and hence it is interesting to
study the correlation structure of the data arrival rate process into the link buffer (denoted bya(t) in
Fig. 1); this is one contribution of the work presented here.

Extensive analysis of Internet data has confirmed that Internet traffic is LRD (see[1]). It has been
argued that the LRD behaviour of Internet traffic is related to heavy-tailed file transfer volumes[2].
Recent studies (see[12,14,15]) show that the stationary distribution of a queue fed with LRD traffic will
have a non-exponential tail; for example, it has been shown that an arrival rate process auto-covariance
that is O ( 1

τα−1 ),1 < α < 2, leads to a stationary distribution of buffer occupancy that has a tail that is
O ( 1

xα−1 ). The above observations are usually combined to conclude that the link buffer occupancies in
the Internet will be heavy-tailed. Such observations are, however, based on an “open loop” analysis of
an LRD traffic source feeding a buffer. Recent numerical studies[4,16,17]suggest that an understanding
of traffic and buffer processes in the Internet should take into account the closed loop nature of Internet
congestion control, namely TCP which is an adaptive window protocol. The second contribution of this
paper is to carry out such an analysis for the network scenario ofFig. 1and for a general AWP.

It is easy to see that the behaviour of a buffer for a given input process can be strikingly different in a
feedback loop as compared to when the same process is applied to the buffer (i.e., “open loop”). InFig. 2,
we provide a simple example.Fig. 2(a) depicts a closed queueing system where a single customer is fed
back to the queue (with a new service requirement distributed as exponential(µ)) as soon as it gets served;
the system is clearly stable as there is always a single customer in the system. Note that the customer
arrival instants to the queue form a Poisson process of rateµ. Fig. 2(b) depicts an M/M/1 queue with a
Poisson arrival process of rateµ, and exponentially distributed service requirement with mean1

µ
; this

queue is clearly unstable (the queue length process being a null recurrent Markov chain).
It is intuitive that introduction of window reductions due to presence of active queue management

scheme at the link buffer would result in a well-behaved buffer occupancy distribution. We study this
phenomenon for two specific AWPs and find that the results are in accordance with the intuition.

1.2. Overview and organisation of the paper

Assuming an AWP and a general file size distribution, we study the auto-covariance function of the
data arrival rate process into the link buffer (thea(t) process, seeFig. 1). We then analyse the link
buffer occupancy process for a general AWP and file size distribution and provide a necessary and a
sufficient condition for the existence of the mean buffer occupancy. Combining the results from above
two analysis, it is shown that it is possible to have a finite mean link buffer occupancy even when the
file size requirements are heavy-tailed and thea(t) process is LRD. This does not contradict the result



of [12,14]as the model analysed there does not include any feedback control from the queue. Next, we
consider specific AWPs to study the effect of window reductions owing to random packet markings/drops
and find that, as expected, window reductions result in further lightening in the tail of the buffer occupancy
distribution while the traffic into the buffer remains LRD.

The paper is organised as follows. In Section2, we develop a queueing equivalent model of the scenario
of Fig. 1, introduce some notation we use in the paper and give some queueing results required later in
the work. In Section3, we introduce some characterising functions associated with an AWP. Section4
presents a study of the auto-covariance function of thea(t) process. In Section5, we give the analysis
of the link buffer occupancy process. In Section6, we consider two specific AWPs and study the effect
of introducing random marking of packets on the link buffer occupancy process and thea(t) process.
Section7 concludes the paper.

2. Modelling approach

Our model is motivated by the most popular AWP, namely TCP. TCP adapts its transmission window
when it receives acknowledgements, detects missing packets, or receives a congestion mark. The window
adaptation serves two purposes: (i) to limit the amount of outstanding data (and hence congestion) in the
network, and (ii) to promote fair sharing of the bandwidth. Thus, by controlling the window, TCP controls
the release of data into the network, and hence the amount of data that stays in the file server. One aspect
of our model will capture this feature, i.e., we will model the way the AWP controls the release of data
into the buffer and the amount of the file that is left behind on the server.

We also wish to assume that the link’s bandwidth is shared equally among the ongoing transfers. Recent
literature[9,18] suggests that,for a zero propagation delay link and even in absence of a per-flow fair
scheduling at the link buffer, in the above situation the TCP mechanism effectively serves the files in a
processor sharing (PS) fashion. This suggests that, even if the packets are served in the order of their
arrival to the link buffer, the packets from the active files are interlaced in such a manner that the data from
these files in the link buffer is served in a round-robin manner. We have observed, however, that such an
equal sharing isnotvalid for general file size distributions and breaks down, in particular, for heavy-tailed
file volume distributions unless the link buffer implements a per-flow fair queueing (see[19]). Thus, in
order to use a processor sharing model to capture the way the link bandwidth is shared among the files
being transferred, we need to assume per-flow fair scheduling at the link buffer.

We now describe the stochastic model in detail. File transfer requests arrive in a Poisson process of
rateλ to the servers. The transfer volumes are independently and identically distributed with common
distributionV (·). An AWP is used to carry out the file transfers. The round trip propagation delay is zero,
hence as soon as the link transmits some data for a file, this data is acknowledged to the AWP transmitter
at the file server which releases more data (if any) into the buffer. It follows that at each point of time
every unfinished transfer has a positive amount of data in the buffer.

The release of data into the buffer is governed by the way the window of the AWP increases with
acknowledgements. The window of an ongoing transfer is a function only of the amount of data that it
has transferred. The zero propagation delay assumption implies that the contents of the link buffer are
the window of the transfer or the residual amount of the file (not yet transferred), whichever is smaller.
These windows are served in a round-robin manner as per the assumption of per-flow fair scheduling at
the link buffer. The round-robin discipline is simpler to study via the processor sharing model, hence we



Fig. 3. Queueing equivalent of the network scenario ofFig. 1.

approximate the service of the windows in the link buffer by a PS discipline. Based on this approximation,
Fig. 3depicts the queueing equivalent of the scenario shown inFig. 1; note that the link buffer has been
replaced by a PS server. As each active flow has positive amount of outstanding data (window) in the
link buffer and since these windows are served in a PS fashion, assuming that the files are composed of
infinitely divisible fluid, it follows that the ongoing file transfers(as a whole) also get service in a PS
manner.

Note that at any time instantt, an active session would have successfully transferred some data to
its client, some of its data would be in the link buffer (this would be the current window size of AWP
controlling the transfer of the file), and the remaining data would be in the server waiting to be transferred.
At any time instant, we use the term “age” for the amount of data of a file successfully transferred to
the client, and by “residual file” or “residual service” we mean the amount of data of the file yet to be
transferred, i.e., the sum of the data in the link buffer and that remaining in the server. As data from a file
is served (along with other files, in a PS manner), more data is pulled into the link buffer from the file
server, so as to replenish the windows and to account for any window growth. Eventually, the amount of
data of the file in the server reduces to zero, and the entire residual file is in the link buffer. Note that as
long as the file is not fully transferred, a positive amount of it is always in the link buffer. Thus, in term of
the PS queue model, the server is the link, and each “customer” in service is split between the file server
and that in the link buffer.

Note that, as the files are served in PS fashion irrespective of the AWP used, the evolution of “age” (and
hence the residual file) is also independent of the AWP used. At any instant, the AWP used to transfer a
file onlydetermines the splitting of theresidual filebetween the server and the link buffer while the active
sessions are still served in a PS manner.Fig. 4 shows the distribution, among the sender and the link
buffer, of the data of a file of sizev that has transferredu amount of data to the client (i.e., has attained
an ageu); the AWP used determines onlyw(u, v) which gives the breakup of the remainingv − u for the
link buffer and the sender. To elaborate on this, for a particular fixed sequence of interarrival times and file
sizes, the vector valued process of the ages and residual file of the (time varying) active transfers remains
the same irrespective of the AWP used to transfer these files but the vector valued process corresponding
to the amount of data in link buffer of the individual active transfers will depend on the AWP used. This
point will become more clear in Section5, where we characterise AWPs based on the way they split the
file between server and link buffer and thus make clear the distinction between the data of a file in the
server and the link buffer.



Fig. 4. Figure showing the breakup of the data of a file of sizev between the server, the link buffer and the client.

The above general model, which was motivated by observations about the performance of TCP-
controlled finite volume transfers, is what we work with in this paper. We will show how to apply it
to specific cases of TCP type adaptive window control.

2.1. Notation and some results related to an M/G/1 PS queue

We follow the convention that ifZ is a random variable thenEZ is its expectation,Z(·) denotes its
cumulative distribution function (cdf),Zc(·) its complementary cdf,z(·) its density (if it exists), ˜z(s)
the Laplace–Stieltjes transform (LST) ofZ(·), andZ̃(s) the Laplace transform (LT) ofZ(·). We also let
Ze(·) denote the excess distribution ofZ(·), andZs(·) denotes the spread distribution associated withZ
(see[20]). In the context of a queueing system, with the above-mentioned convention, we introduce the
following notation:

V, the random variable for the file sizes brought by sessions;
ρ := λEV ;
a(t), the instantaneous data arrival rate into the queue at timet;
N(t), number of sessions active at timet;
Y (t), total of the residual file sizes at timet;
B, the busy period random variable of an M/G/1 queue;
x(s) := 1 − b̃(s) (introduced for notational convenience);
By, the busy period random variable with initial ‘work’y in an M/G/1 queue;
Ky(t), the number of starts of idle periods until timet givenY (0) = y.

We know that (see[20])

b̃y(s) = e−y(s+λ−λb̃(s)) = e−y(s+λx(s)) (1)

b̃(s) = ṽ(s + λx(s)) (2)

We use the notationf (t) ∼t→t0 g(t) to mean limt→t0
f (t)
g(t) = 1 and writef (t) �t→t0 g(t) to mean that there

exists a functionh(t) such thatf (t) ≥ h(t) for all t andh(t) ∼t→t0 g(t).
In this work, we frequently use the following known results for astationaryM/G/1 PS queue (see

[21]). At any time instantt:

• P{N(t) = n} = (1 − ρ)ρn.



• The total file sizes of each of theN(t) ongoing transfers at timet are mutually independent random
variables and are distributed asVs(·), vs(x) = xv(x)

EV
, (see[20]).

• Conditioned on the total service requirement of a file transfer beingv, its age1 is uniformly distributed
over the interval [0, v].

A recent work[22] reports the following result:
• In the M/G/1 PS system modified by havingk permanent jobs with infinite service requirements, for

n ≥ k,

lim
t→∞P{N(t) = n} = (1 − ρ)k+1

(
n − k

k

)
ρn (3)

3. Characterisation of a general AWP

An AWP can be characterised by the amount of data released by the sender (server) in response to a
unit amount of acknowledged data. In general, this quantity will be a function of the size of the file being
transferred and the total amount of data successfully received by the client. We introduce the following
notation in the context of a general AWP.

Notation:

Rv(u) is the amount of data released by the sender per unit of acknowledged data when a file of sizev

has attained ageu (i.e.,u amount of its data has been acknowledged).
U(v) = sup{u : Rv(u) > 0,0 ≤ u ≤ v} is the age of a file (of sizev) after which an acknowledg-

ment does not result in release of data from file server, i.e., at this time the file server has
sent a total ofv amount of data to the link buffer. At this point, the receiver would have ac-
knowledgedU(v) amount of data andv − U(v) amount of data from the file will be in the link
buffer.

X(u) = inf {v : U(v) > u,0 ≤ v < ∞} is the minimum file size for which the protocol will still be
sending data to the buffer after it has received acknowledgment ofu amount of data.

Note that,∫ U(v)

u=0
Rv(u) du = v (4)

U(X(u)) = u, X(U(v)) = v (5)

Thus,U andX are inverse functions.
Call TCP-CA the TCP algorithm with initial slow start threshold set to unity, i.e., the protocol starts

with the congestion avoidance phase. Also let TCP-SS denote the TCP algorithm with initial slow start
threshold set to infinity, i.e., the protocol starts with and remains in the slow start phase. Note that if
no loss occurs, as is the case with an infinite link buffer, TCP-SS is always in the slow start phase and
TCP-CA is always in the congestion avoidance phase.

1 The data already transferred to the client by the session by timet.



3.1. TheRv(u), U(v) andX(u) functions for TCP-SS

If the transfer of a file is controlled using only the slow start algorithm of TCP then each unit of data
acknowledged results in the arrival of two units of data, thus

Rv(u) = 2I{u≤U(v)}

Using Eq.(4) with Rv(u) = 2I{u≤U(v)}, we get

U(v) = v

2

Using Eq.(5) with U(v) = v
2, we get

X(u) = 2u

3.2. TheRv(u), U(v) andX(u) functions for TCP-CA

If the transfer of a file is controlled using only the congestion avoidance algorithm of TCP then, when
window size isw, each unit of data acknowledged results in arrival of 1+ 1

w
units of data. Also, when

the window size is some integern, the amount of data that has been acknowledged (i.e., the age of file) is
n(n−1)

2 . Thus, the window size corresponding to an age ofu is −1+√
1+8u

2 . To avoid complex expressions,
since we are interested in asymptotic behaviour, we use the approximation that when the age of file isu
the window size is

√
2u. This gives

Rv(u) =
(

1 + 1√
2u

)
I{u≤U(v)}

Using Eq.(4) with Rv(u) =
(
1 + 1√

2u

)
I{u≤U(v)}, we get

U(v) = v + 1 − √
1 + 2v

Using Eq.(5) with U(v) = v + 1 − √
1 + 2v, we get

X(u) = u +
√

2u

4. Asymptotic behaviour of the auto-covariance function of thea(t) process

In this section, we study the auto-covariance function of thea(t) process (seeFig. 3) when the transfer
of files is controlled by a AWP.



When there aren active sessions, owing to the PS model, a unit data served by the link implies each of
thesen sessions gets a service of1

n
data units hence their total data sending rate at instantt will be

a(t) =
N(t)∑
i=1

Rvi(ui(t))

N(t)
(6)

whereui(t) andvi are, respectively, the total service received by and the total service requirement ofith
session active at timet.

Lemma 4.1. For the stationary system,

Ea(t) = ρ

Proof. By conditioning onN(t) and the file size requirements (vi) of theN(t) ongoing transfers and their
ages (ui), using Eq.(6) and results of Section2.1,

Ea(t) =
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v1=0
· · ·
∫ ∞

vn=0

∫ v1

u1=0
· · ·
∫ vn

un=0

[
n∑

i=1

Rvi(ui(t))

n

]
dun

vn
· · ·

× du1

v1
dVs(vn) · · · dVs(v1)

Since the integrand in square brackets above is linear and symmetric with respect to the indicesi, we get

Ea(t) =
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v1=0
· · ·
∫ ∞

vn=0

∫ v1

u1=0
· · ·
∫ vn

un=0
Rv1(u1(t))

dun

vn
· · · du1

v1
dVs(vn) · · · dVs(v1)

=
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v1=0

∫ v1

u1=0
Rv1(u1(t)) du1

dVs(v1)

v1

Using Eq.(4),

Ea(t) =
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v1=0
v1

dVs(v1)

v1
= ρ �

We note that this result is as would be expected; for letA(t) denote the cumulative process for the rate
processa(t) (i.e.,A(t) = ∫ t

u=0 a(u) du). Then, for the stable system,

lim
t→∞

A(t)

t
= λEV

c
= ρ

(we have takenc = 1 packet/s).
The auto-covariance function of thea(t) process for a lag ofτ is given by

ra(τ) := Ea(0)a(τ) − Ea(0)Ea(t) = Ea(0)a(τ) − ρ2

= Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0}+Ea(0)a(τ)I{N(0)>0,KY (0)(τ)>0} − ρ2 =: J1(τ) + J2(τ) − ρ2 (7)



whereKy(·) andY (t) are as defined in Section2.1. We study the asymptotic behaviour ofra(τ) by
consideringJ1(τ) andJ2(τ) separately.

Theorem 4.1. For AWP-controlled transfer of file sizes of distributionV (·), if there exists a r such that
0 < r ≤ inf 0≤v<∞ inf 0≤u<U(v) Rv(u), then

J1(τ) �τ→∞ (1 − ρ)2λr2
∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
dudV (v)

Proof. LetVi(t) andYi(t),1 ≤ i ≤ N(t), denote, respectively, the total and residual service requirements
of the ith session active at timet. Now,

J1(τ) = Ea(0)a(τ)I{N(0)>0,KY (0)(τ)=0} ≥ Ea(0)a(τ)I{N(0)=1,U(V1(0))−(V1(0)−Y1(0))>τ}

which holds because whenN(0) = 1, V1(0) − Y1(0) is the age of the file active at time 0, andU(V1(0)) −
(V1(0) − Y1(0)) > τ implies that the source will still be sending data for this file until timeτ. Define the
last term to beJ3(τ).

Note that{U(V1(0)) − (V1(0) − Y1(0)) > τ} ⊂ {V1(0) > X(τ)}, hence

J3(τ) = Ea(0)a(τ)I{N(0)=1,V1(0)>X(τ),Y1(0)>V1(0)−U(V1(0))+τ} (8)

Plugging the distributions ofN(0), V1(0) andY1(0) using results given in Section2.1, we get from Eq.
(8),

J3(τ) = (1 − ρ)ρ
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ

a(0)E(a(τ)|N(0) = 1, V1(0) = v, Y (0) = y)
dy

v
dVs(v)

At τ, there could be other sessions active; these arrive in the interval (0, τ). Let us continue to use the
index 1 at timeτ for the session that was active at time 0. SinceY1(τ) > 0, (and noting thatV1(τ) = V1(0))

a(τ) ≥ RV1(τ)(V1(τ) − Y1(τ))

N(τ)
= RV1(0)(V1(τ) − Y1(τ))

N ′(τ) + 1

whereN ′(τ) is the number of sessions active atτ otherthan the tagged session which was active at time
0. The inequality is obtained since there could be a positive rate from the other sessions atτ.

By hypothesis, we have

0 < r ≤ inf
0≤v<∞

inf
0≤u<U(v)

Rv(u)

Now, sinceY1(τ) > V1(τ) − U(V1(τ)), by definition ofr we haveRV1(0)(V1(τ) − Y1(τ)) ≥ r, hence

a(τ) ≥ r

N ′(τ) + 1



so, fory > τ,

E(a(τ)|N(0) = 1, V1(0) = v, Y (0) = y) ≥ rE

[
1

N ′(τ) + 1
|N(0) = 1, V1(0) = v, Y (0) = y

]
also, sinceV1(0) − Y1(0) < U(V1(0)),

a(0) = RV1(0)(V1(0) − Y1(0)) ≥ r

Hence, using above inequalities and that dVs(v) = vdV (v)
EV

,

J3(τ) ≥ (1 − ρ)λr2
∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ

E

[
1

N ′(τ) + 1
|N(0) = 1, V1(0) = v, Y (0) = y

]
dy dV (v)

Note that the conditionsN(0) = 1, V1(0) = v andY (0) = y > τ together imply that the file that was
present at time 0 is also present at timeτ, and hence owing to the PS modelN ′(τ) is independent ofv
andy. Hence,

J3(τ) ≥ (1 − ρ)λr2E

[
1

N ′(τ) + 1
|N(0) = 1, Y (0) > τ

] ∫ ∞

v=X(τ)

∫ v

y=v−U(v)+τ

dy dV (v)

We know that (see Eq.(3) in Section2.1with k = 1)

P{N ′(τ) = n|N(0) = 1, Y (0) > τ} ∼τ→∞ (1 − ρ)2(n + 1)ρn

Hence,

E

[
1

N ′(τ) + 1
|N(0) = 1, Y (0) > τ

]
∼τ→∞ (1 − ρ)

The proof follows with a change of variable (usingy = v − u). �

Pareto-distributed file sizes have the following distribution

V c(x) = min

(
1,

1

xα

)
with the property thatEV is finite iff α > 1 andEV 2 is finite iff α > 2.

Corollary 4.1. For Pareto-distributed file sizes transferred using TCP-SS,

J1(τ) �τ→∞ 4(1− ρ)2 λ

α − 1

1

2ατα−1

Proof. For TCP-SS,Rv(u) = 2I{u<U(v)}, U(v) = v
2 andX(τ) = 2τ. UseTheorem 4.1with r = 2. �



Corollary 4.2. For Pareto-distributed file sizes transferred using TCP-CA,

J1(τ) �τ→∞ (1 − ρ)2 λ

α − 1

1

τα−1

Proof. For TCP-CA,Rv(u) = (1 + 1√
2u

)I{u<U(v)}, U(v) = v + 1 − √
1 + 2vandX(u) = u + √

2u. Now,

U(v) = (v + 1 − √
1 + 2v) = (

√
1 + 2v − 1)2

2
>

(
√

2v − 1)2

2
= 2v + 1 − 2

√
2v

2
> v −

√
2v

Hence, fromTheorem 4.1with r = 1,

J1(τ) �τ→∞ (1 − ρ)2λ

[∫ ∞

v=τ+√
2τ

(v −
√

2v) dV (v) − τV c(τ +
√

2τ)

]
= (1 − ρ)2λ

[
EV

(τ + √
2τ)α−1

− α/(α − 0.5)

(τ + √
2τ)α−0.5

− τ

(τ + √
2τ)α

]
∼τ→∞ (1 − ρ)2 λ

α − 1

1

τα−1

The proof follows by noting thatf (t) �t→∞ g(t) andg(t) ∼t→∞ h(t) impliesf (t) �τ→∞ h(t). �

As is evident from the examples of slow start and congestion avoidance given in Section3, theRv(u)
function for an AWP, in general, will be of the formR∞(u)I{0≤u≤U(v)} so that inf0≤v<∞ inf 0≤u<U(v) Rv(u) =
inf u≥0 R∞(u), whereR∞(u) is the data sending rate function of a file of infinite volume. If in addition,
Rv(u)I{u≤U(v)} is bounded, i.e.,Rv(u)I{u≤U(v)} ≤ R for some∞ > R ≥ r, we have the following corollary
of Theorem 4.1.

Corollary 4.3. If an AWP is such that0 < r ≤ Rv(u)I{u≤U(v)} ≤ R < ∞ for v, u ≥ 0 then,

J1(τ) �τ→∞ (1 − ρ)2λr2

[∫ ∞

v=Rτ

v

R
dV (v) − τV c(Rτ)

]
Proof. SinceRv(u)I{u≤U(v)} ≤ R, we get from Eq.(4),

v =
∫ U(v)

u=0
Rv(u) du ≤ RU(v)

Thus,U(v) ≥ v
R

. From Eq.(5),

X(u) =
∫ u

0
RX(u)(x) dx ≤ Ru

Thus,X(u) ≤ Ru. The proof follows by using above bounds forU(v) andX(u) to further bound the lower
bound ofJ1(τ) in Theorem 4.1. �



Corollary 4.4. If an AWP, such that0 < r ≤ Rv(u)I{u≤U(v)} ≤ R < ∞, is used for transfer of Pareto-
distributed files then,

J1(τ) �τ→∞
(1 − ρ)2λr2

(α − 1)Rατα−1

Proof. Follows fromCorollary 4.3. �

Theorem 4.2. For AWP-controlled transfer of Pareto-distributed file sizes,

ρ2 − J2(τ) � ρ2

s
− J̃2(s) ∼s→0 ρλ

α2Γ (−α)

(1 − ρ)α−1s2−α

Proof. We condition as follows:

(1) condition onN(0), the number of ongoing transfers at time 0;
(2) givenN(0), condition on the total file sizeVi(0) of ith ongoing transfer at time 0,1 ≤ i ≤ N(0);
(3) givenN(0) andVj(0),1 ≤ j ≤ N(0), condition onYi(0), the residual size of theith, 1≤ i ≤ N(0)

file having total sizeVi(0);
(4) givenY (0) = ∑N(0)

i=1 Yi(0), the total residual file volumes at time 0, condition onθ,0 < θ < τ, the
start of the first idle period after time 0.

This yields

J2(τ) =
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

×
∫ τ

θ=0
E(a(τ)|N(θ) = 0, N(θ−) > 0)b∑n

i=1 yi
(θ) dθ

dy(n)

v(n)
dVs(v(n))

wherev(n) is a row vector of dimensionn with componentsv1, . . . , vn and y(n) is a row vector of
dimensionn with componentsy1, . . . , yn. Also, abusing notation,dy(n)

v(n) := dyn
vn

· · · dy1

v1
and dVs(v(n)) :=

dVs(vn) · · · dVs(v1), andby(·) is the density ofBy.
Due to the Poisson arrival assumption

E(a(τ)|N(θ) = 0, N(θ−) > 0) = E(a(τ)|N(θ) = 0)

is a function only ofτ − θ.
Let Φ(τ) := E(a(τ)|N(0) = 0) and denote bỹΦ(s) the Laplace transform ofΦ(·). So,

E(a(τ)|N(θ) = 0, N(θ−) > 0) = Φ(τ − θ)

Thus,

J2(τ) =
∞∑
n=1

(1 − ρ)ρn

∫ ∞

v(n)=0

∫ v(n)

y(n)=0
a(0)

∫ τ

θ=0
Φ(τ − θ)b∑n

i=1 yi
(θ) dθ

dy(n)

v(n)
dVs(v(n)) (9)



Taking the Laplace transform of Eq.(9) and noting that:

• dVs(v) = vdV (v)
EV

,

• a(0) =
∑n

j=1 Rvj
(vj−yj)

n
,

• the integral with respect toθ is a convolution of two terms which have LT given byΦ̃(s) andb̃∑n
i=1 yi

(s),
and

• b̃∑n
i=1 yi

(s) = ∏n
i=1 e−yi(s+λx(s)),

we get the following expression for the LT ofJ2(τ)

J̃2(s) = sΦ̃(s)

s

∞∑
n=1

(1 − ρ)λn

∫ ∞

v(n)=0

∫ v(n)

y(n)=0

∑n
j=1 Rvj (vj − yj)

n

n∏
i=1

e−yi(s+λx(s)) dy(n) dV (v(n))

It can be seen after some calculations that

J̃2(s) = (1 − ρ)
sΦ̃(s)

s
λ

[∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u) dudV (v)

]
s + λx(s)

s

We know that lims→0 sΦ̃(s) = ρ. Let sΦ̃(s) = ρ + κ(s), where κ(s) → 0 as s → 0. Also,
lim s→0

∫ v

u=0 eu(s+λx(s))Rv(u) du = v so,
∫ v

u=0 eu(s+λx(s))Rv(u) du = v + ∇(s) where lims→0 ∇(s) = 0. Thus,∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u) dudV (v) ∼s→0

∫ ∞

v=0
e−v(s+λx(s))vdV (v) = − d

dz
ṽ(z)|z=s+λx(s)

For Pareto distribution,V c(v) = min(1, vα), hence

ṽ(z) = α zα Γ (−α, z)

where,Γ (·, ·) is the incomplete Gamma function.2 Further, by using the series expansion of the incomplete
Gamma function (see[23]), we get

ṽ(z) = α zα

{
Γ (−α) −

∞∑
n=0

(−1)nz−α+n

n!(−α + n)

}
= α zα Γ (−α) − α

∞∑
n=0

(−1)nzn

n!(−α + n)

It follows that,∫ ∞

v=0
e−v(s+λx(s))

∫ v

u=0
eu(s+λx(s))Rv(u) dudV (v) ∼s→0

α

α − 1
− α2Γ (−α)(s + λx(s))α−1

2 Γ (a, y) = ∫∞
y

exp−u ua−1 du.



Hence,

J̃2(s) ∼s→0 (1 − ρ)sΦ̃(s)λ
s + λx(s)

s

[(α/(α − 1)) − α2Γ (−α)(s + λx(s))α−1]

s

The proof follows by noting that:

(1) Fors → 0, x(s) = sEB + o (s) = sEV
1−ρ

+ o (s).

(2) sΦ̃(s) ∼s→0 ρ.
(3) EV = α

α−1. �

Corollary 4.5. For AWP-controlled transfer of Pareto-distributed file sizes withα > 1,

ρ2 − J2(τ) ∼τ→∞
α2Γ (−α)

(1 − ρ)α−1

2 − α

Γ (3 − α)

ρλ

τα−1

Proof. Follows usingTheorem 4.2and a Tauberian theorem from[13]. �

Note that the result ofTheorem 4.2(and hence ofCorollary 4.5) are independent of the AWP used.
This also gives the convergence rate in the Key Renewal Theorem[20].

Theorem 4.3. For transfer of Pareto-distributed file sizes using TCP-SS or TCP-CA,

ra(τ) �τ→∞ 1(λ, α)
1

τα−1

For some function1(λ, α) that depends on whether slow start or congestion avoidance is used to transfer
the files.
Further, there exists aλ∗ > 0 such that1(λ, α) > 0 for all λ < λ∗.

Proof. UsingCorollaries 4.1, 4.2 and 4.5,

ra(τ) = J1(τ) + J2(τ) − ρ2 �τ→∞

[
δ(1 − ρ)2

α − 1
− ρ

α2Γ (−α)

(1 − ρ)α−1

2 − α

Γ (3 − α)

]
λ

τα−1
= 1(λ, α)

1

τα−1

whereδ = 1 for congestion avoidance andδ = 22−α for slow start. Note that in both casesδ is independent
of λ. Now, for fixedα > 1 andρ < 1, the second term in square brackets above is always positive and
decreases to 0 asλ → 0 while the first term increases toδ (a positive number) asλ → 0. Since both these
terms are continuous functions ofλ, there existsλ∗ > 0 such that1(λ,α)

λ
> 0 for all λ < λ∗. �

It follows from Theorem 4.3that, for 1< α < 2 andλ < λ∗, the processa(t) is LRD. Further, if it
can be shown thatra(τ) has a hyperbolic decay then thea(t) process will be LRD with Hurst parameter
H ≥ 3−α

2 .

Theorem 4.4. For transfer of Pareto-distributed file sizes using an AWP such that0 < r ≤
Rv(u)I{u≤U(v)} ≤ R < ∞, for v, u ≥ 0,



ra(τ) �τ→∞ 1(r, R, λ, α)
1

τα−1

For some function1(r, R, λ, α) for which there exists aλ∗ > 0such that1(r, R, λ, α) > 0 for all λ < λ∗.

Proof. Follows fromCorollaries 4.4 and 4.5and arguments similar to those inTheorem 4.3. �

Remark.Theorem 4.4is of particular importance for the cases where the window of the AWP is bounded
so that after some age (at which the maximum allowed window is achieved) an acknowledgement of
du data result in exactly du to be released by sender thus keeping the window size fixed and hence3

R∞(u) = 1. For example, if the AWP is TCP with initial slow start threshold set to a value larger than
the maximum allowed window then, for an infinitely long file, the sender will send 2du amount of data
for each acknowledgement of du amount of data,4 i.e., R∞(u) = 2 till the point at which the window
size becomes equal to the maximum allowed window and from this age onwards, du amount of data
acknowledgement will result in du amount of data released from the transmitter so as to maintain a
constant window and henceR∞(u) = 1.

5. Analysis of the stationary link buffer process

In this section, we present the analysis for obtaining the distribution of the link buffer content process.
An explicit expression for the LST of the distribution of the buffer content process is obtained in terms of
the file size distribution and the quantities associated with an AWP (see Eqs.(11) and (13)). The structure
of the LST thus obtained is used to find a necessary and a sufficient condition for the existence of the
mean of the buffer content process.

5.1. Important observations

• The amount of data in the link buffer at any timet is the sum of the windows from all the file transfers
ongoing att.

• Owing to the infinite buffer assumption there is no loss hence an AWP follows a known window
increase schedule as a function of the age of the file transfer. This enables us to determine the window
(which is also the session’s contribution to the link buffer occupancy) for a given age.

3 At this point, it is important to see the relation between theR∞(u) function and the window size as a function of age. Ifw(u)
denotes the window size of an infinitely long file then the following relations hold

w(u) = w(0) +
∫ u

x=0
R∞(x) dx

R∞(u) = 1 + dw(u)

du

Thus, if the maximum allowed window is attained at ageu∗, then dw(u)
du = 0 for all u ≥ u∗.

4 And hence will be increasing the window size by du.



Table 1
The values ofw(n) andW(n) for TCP’s congestion avoidance and slow start phases

Phase of TCP w(n) (packets) W(n) (packets)

TCP-CA n + 1
n(n + 1)

2
TCP-SS 2n 2n − 1

The age of an ongoing transfer can be obtained in the following way: the stationary distribution of the
number of ongoing transfersN(t) is given byP{N(t) = n} = (1 − ρ)ρn. Conditioned on the number of
ongoing transfers att, the ages of the various ongoing transfers are independent; further, the age of an
ongoing transfer is uniformly distributed in the interval [0, v] wherev is its total file transfer size (which
has distributionVs(·), see Section2.1).

5.1.1. Analysis for the buffer content process
Consider an AWP that starts transmission with an initial window ofw(0) packets, i.e., on connection

startup the server sendsw(0) packets into the buffer. Letw(1) be the window after thesew(0) packets
have been transmitted by the link and acknowledged. For example, in TCP-SS,w(0) = 1 andw(1) = 2.
Generalising, letw(n), n ≥ 1, denote the window size just after

∑n−1
i=0 w(i) amount of data of the file is

acknowledged. For example, in TCP-SS,w(0) = 1,w(1) = 2,w(2) = 4, . . . , w(n) = 2n.
Let the period where thenth window of the sequence{w(i), i ≥ 0} is getting served be called the

(n + 1)th cycle. Thusw(n − 1) is the window at the start of thenth cycle and is also the amount of data
served in |it nth cycle. The (n + 1)th cycle starts whenw(n − 1) amount of data is served after start ofnth
cycle. LetW(n) := ∑n−1

i=0 w(i) denote the amount of data acknowledged until the start of (n + 1)th cycle
(seeFig. 5). Note thatW(0) = 0, by definition. The values ofw(n) andW(n) for TCP-CA and TCP-SS
are listed inTable 1.

Note that thew(n), n ≥ 0, are the possible window sizes at the beginnings of cycles; during the cycles
the window sequences could pass through other integer values. For example, in TCP-SS, the TCP window
can take all integer values butw(n) is restricted to integral powers of 2.

Let γm(z) denote thenetinput rate into the link buffer from an infinitely long session that has received
z amount of service in the (m + 1)th window. For TCP-SS,γm(z) = 1 because every dz amount served
brings in 2dz and dz amount leaves the link buffer. Note that the definition ofγm(z) does not depend on
file size as it is defined for an infinitely long file. Also note that,γm(z) = R∞(W(m) + z) − 1 in terms of
functionRv(u) defined in Section3.

Recall the functionU(v) defined in Section3. If the ageu of a file of sizev is such thatu > U(v) then
the net data input rate into link buffer is−1 because no new data is sent for a unit amount of data served.

Fig. 5. The figure shows a file of sizeX packets (W(5) < X < W(6)) split into the possible window sizes (at end of cycles)
under a general AWP.



Note that ifv ∈ [W(m),W(m + 1)], thenU(v) ∈ (W(m − 1),W(m)). For example, ifv = 5, and we
have TCP-SS, then in the first cycle one packet is sent. Upon the receipt of an acknowledgement for
this packet, the window grows tow(1) = 2 and two packets are sent during the second cycle. When
the acknowledgement of the first of these is received, the window grows to three and two more packets
are sent bringing the total number of sent packets to five; we see thatU(5) = 2 since upon receipt of
the second acknowledgement the residual file in the server is fully transferred. On the receipt of the
acknowledgement of the third packet, the window grows to four and the second cycle ends. The third
cycle involves no transmission from the server and just the last two packets of the file are transferred by
the link in this cycle.

The idea now is to find the transform of the distribution of the windows which constitute the link buffer
occupancy. Considering the stationary system, at time instantt and for 1≤ i ≤ N(t), denote byGi(t) the
window of theith ongoing transfer. We recall the facts about the stationary M/G/1 PS queue from Section
2.1. AsGi(t) is a function only of theith ongoing transfer’s total file size and age, conditioned onN(t),
theGi(t)’s are independent and identically distributed random variables. The total data in the link buffer
is

Q(t) =
N(t)∑
i=1

Gi(t) (10)

as the whole of the current window worth of data from each file is in the buffer (owing to zero propagation
delay assumption).

Thus, the stationary link buffer occupancy is actually a random sum of i.i.d. random variables with
common distribution, say,G(·). Using Proposition 2.9 of[24], it follows that if G(·) corresponds to a
sub-exponential distribution (see[24]) then so doesQ(·). In particular, if the tail ofG(·) is regularly
varying with parameterβ then so is the tail ofQ(·).

Denote the LST ofG(·), the window size distribution, by ˜g(s). The LST of link buffer occupancy
distribution is thus

q̃(s) =
∞∑
k=0

ρk(1 − ρ)g̃(s)k = 1 − ρ

1 − ρg̃(s)
(11)

where we have used the fact that the probability of there beingn files active is (1− ρ)ρn and that
conditioned onN(t) = n, theGi(t)’s are independent and distributed according toG(·).

Thus, we can obtain the mean buffer length and the variance of the buffer occupancy once we have
obtained ˜g(s). In particular, the mean buffer occupancy is given by

EQ =
(

ρ

1 − ρ

)(
− d

ds
g̃(s)

)∣∣∣∣
s=0

(12)

Observe thatEQ is finite iff d
ds g̃(s)|s=0 is finite.

Theorem 5.1.For an AWP used to transfer files of distributionV (·), the LST of the distribution of a single
file’s contribution to the link buffer is

g̃(s) =
∞∑
n=0

∫ W(n+1)

v=W(n)

[∫ v

U(v)
e−s(v−u) du

v
+
∫ U(v)

W(n−1)
e−s(w(n−1)+∫ u−W(n−1)

0 γn−1(z) dz) du

v



+
n−2∑
m=0

∫ W(m+1)

u=W(m)
e−s(w(m)+∫ u−W(m)

0 γm(z) dz) du

v

]
dVs(v) (13)

Proof. Follows from the results for PS queue given in Section2.1. We use the fact that the window size
of a file of sizev, when its ageu < U(v) andu ∈ (W(m),W(m + 1)), isw(m) + ∫ u−W(m)

0 γm(z) dz. Also,
the window size of a file of sizev is v − u if u > U(v). In Eq.(13), n is used to condition onv (the file
size requirement) being in thenth cycle, andm is used to condition onu (the age of the file) being in
themth cycle. The integrand (with respect tov) above contains three terms to take care of the possibility
where the age of file is in the last window (i.e.,u > U(v)) and hence whole of remaining filev − u is in
the link buffer. �

Corollary 5.1. For TCP-SS controlled transfer of files of distributionV (·), the LST of the distribution of
a single file’s contribution to the link buffer is

Gc(x) ∼x→∞ V c
e(2x)

Proof. For TCP-SS, w(n) = 2n, W(n) = 2n − 1, U(v) = v
2 and γm(z) ≡ 1, hence w(m) +∫ u−W(m)

0 γm(z) dz = u + 1. It follows from Eq.(13) that

g̃(s) =
∞∑
n=0

∫ W(n+1)

v=W(n)

[∫ v

v/2
e−s(v−u) du

v
+
∫ v/2

0
e−s(u+1)du

v

]
dVs(v)

=
∫ ∞

v=0

[∫ v

v/2
e−s(v−u) du +

∫ v/2

0
e−s(u+1) du

]
dV (v)

EV
= 1 + e−s

sEV

∫ ∞

v=0
[1 − e−(s/2)v] dV (v)

= 1 + e−s

sEV

[
1 − ṽ

( s
2

)]
= 1 + e−s

2
ṽe

( s
2

)
⇒ g(x) = 1

2
[ve(2x) + ve(2x − 1)]

whereṽe(s) is the LST of the distribution of the excess random variable associated withV (see[20]). The
proof follows for largex. �

Corollary 5.2. For TCP-SS controlled transfer of Pareto-distributed files,Gc(·) is regularly varying with
parameterα − 1whereα is the shape parameter of Pareto distribution.

Proof. Follows directly fromCorollary 5.1. �

Remark.Using the property thatγm(z) ≥ 0 for TCP-SS, result ofCorollary 5.1has also been obtained
in [25]. Using a similar observation, it is also shown in[25] that for TCP-CA controlled transfer of
Pareto-distributed files,Gc(·) is regularly varying with parameter 2(α − 1). Thus, the method presented
in this section, being applicable irrespective of any structure ofγm(z) function, is more general in nature
as compared to that of[25]; Corollary 5.1, when compared to results of[25], serves as validation of the
general method introduced in this section.



5.1.2. The mean link buffer occupancy, EQ
The expected link buffer occupancy is, from Eqs.(12) and (13)and using dVs(v) = vdV (v)

EV
,

EQ = λ

1 − ρ

∞∑
n=0

∫ W(n+1)

v=W(n)

[∫ v

U(v)
(v − u) du +

∫ U(v)

u=W(n−1)

(
w(n − 1) +

∫ u−W(n−1)

0
γn−1(z) dz

)
du

+
n−2∑
m=0

∫ W(m+1)

u=W(m)

(
w(m) +

∫ u−W(m)

0
γm(z) dz

)
du

]
dV (v) (14)

The case whereγm(z) ≥ 0 is of special interest as it includes TCP-SS and TCP-CA. We obtain explicit
results for this case. These results are summarised in the following.

Theorem 5.2. Under a general AWP withγm(z) ≥ 0,∀m, z,

λ

1 − ρ

∞∑
n=0

w2(n − 1)V c(W(n)) ≤ EQ ≤ 2λ

1 − ρ

∞∑
n=0

w2(n)V c(W(n − 1))

Proof. If γm(z) ≥ 0,∀m, z then the sequence{w(n), n ≥ 0} is nondecreasing and so, (w(m) +∫ u−W(m)
0 γm(z) dz) ≤ w(m + 1) for u ≤ W(m + 1). Thus, we can upper bound the third term in the inte-

grand (with respect tov) in the right-hand side of Eq.(14)
n−2∑
m=0

∫ W(m+1)

u=W(m)

(
w(m) +

∫ u−W(m)

0
γm(z) dz

)
du

≤
n−2∑
m=0

∫ W(m+1)

u=W(m)
w(m + 1) du =

n−2∑
m=0

w(m)w(m + 1) ≤
n−2∑
m=0

w2(m + 1)

Using the same argument, the second term in Eq.(14) is∫ U(v)

u=W(n−1)

(
w(n − 1) +

∫ u−W(n−1)

0
γn−1(z) dz

)
du

≤
∫ W(n)

u=W(n−1)

(
w(n − 1) +

∫ u−W(n−1)

0
γn−1(z) dz

)
du ≤ w2(n)

Thus, using the above inequalities∫ W(n+1)

v=W(n)

[∫ U(v)

u=W(n−1)

(
w(n − 1) +

∫ u−W(n−1)

0
γn−1(z) dz

)
du

+
n−2∑
m=0

∫ W(m+1)

u=W(m)

(
w(m) +

∫ u−W(m)

0
γm(z) dz

)
du

]
dV (v)

≤
∫ W(n+1)

v=W(n)

n−1∑
m=0

w2(m + 1) dV (v) = w2(n)V c(W(n))

where the last expression is obtained using some algebra.



The first term in right-hand side of Eq.(14) can be bounded from above asv − u ≤ w(n) for v ∈
(W(n),W(n + 1)) andU(v) < u < v. Hence, the first term is∫ W(n+1)

v=W(n)

∫ v

U(v)
(v − u) dudV (v) ≤

∫ ∞

v=W(n−1)
w2(n) dV (v) = w2(n)V c(W(n − 1))

Combining the upper bounds for the three terms of Eq.(14)and noting thatV c(W(n)) ≤ V c(W(n − 1)),
we get

EQ ≤ 2λ

1 − ρ

∞∑
n=0

w2(n)V c(W(n − 1)) (15)

Now we can lower bound the three terms in right-hand side of Eq.(14). The first and second terms are
clearly≥ 0. Also, if γm(z) ≥ 0, then (w(m) + ∫ u−W(m)

0 γm(z) dz) ≥ w(m). These observations along with
some algebra gives the following lower bound

EQ ≥ λ

1 − ρ

∞∑
n=0

w2(n − 1)V c(W(n)) (16)

The result now follows from Eqs.(15) and (16). �

Corollary 5.3. For congestion avoidance controlled transfer of Pareto-distributed file sizes, EQ is finite
iff α > 1.5.

Proof. Follows fromTheorem 5.2with V c(v) = 1
vα

, w(n) = n + 1,W(n) = n(n+1)
2 . �

Corollary 5.4. For slow start controlled transfer of Pareto-distributed file sizes, EQ is finite iffα > 2.

Proof. Follows fromTheorem 5.2with V c(v) = 1
vα

, w(n) = 2n,W(n) = 2n − 1. �

Note that theCorollaries 5.3 and 5.4are in accordance with our results ofCorollary 5.2and that of
[25] where we have seen thatGc(·) is regularly varying with parameterα − 1 and 2(α − 1) for TCP-SS
and TCP-CA, respectively.

5.2. Discussion of results

We make the following remarks on the results obtained till now in this section:

• Note the marked difference in the tail of the buffer occupancy distribution for TCP-SS and TCP-CA.
We have seen in Section4 that for both of these AWPs thea(t) process is LRD with same lower bound
on the Hurst parameter. The results of this section thus clearly indicate that feedback control can lead
to a lightening of the tail of the link buffer occupancy when compared to an uncontrolled (open-loop)
transfer of files. It can also be observed that an aggressive feedback control like the slow start phase
of TCP may not result in lightening of the buffer occupancy distribution; in this case the mean buffer
occupancy is finite iff the second moment of the (Pareto) file size distribution is finite.

• Corollary 5.3is interesting in view of the result of Section4 where it was shown that, for small
arrival ratesλ, the traffic into the link buffer (a(t) process) is LRD for Pareto-distributed file sizes with



Fig. 6. Plot showing logQc(x) vs. log(x) obtained fromnssimulations for Pareto files withα = 1.6 and 1.4 controlled using
TCP-CA and TCP-SS. The link load was set to 0.4. Also shown are the curves obtained from numerical computation ofQc(·)
from analysis.



Fig. 7. Variance–time plots fora(t) process obtained fromnssimulations for Pareto files withα = 1.6 and 1.4 controlled using
TCP-CA and TCP-SS. The link load was set to 0.4.



1 < α < 2. Thus, we now have an example where the traffic into a queue is LRD but the mean queue
length is finite; this is because the traffic into the queue is regulated using a closed loop control.

• Note from Theorem 5.2that if w(n) are bounded thenEQ < ∞ independent of the file size
distribution. Yet it is still possible to have thea(t) process exhibiting long range dependence as seen
in the discussions in relation toTheorem 4.4at end of Section4. For example, ifw(n) = 1 for all
n then Theorem 4.4is applicable withr = R = 1, thus establishing thata(t) process is LRD for
smallλ while the distribution of the link buffer occupancy has an exponentially decaying tail, as now
P(Q(t) > q) = P(N(t) > q) = ρq+1.

5.2.1. Simulation experiments
We performednssimulations to validate the results of the previous sections. We simulated a single link

with capacity 10 Mbps to which requests for transfer of Pareto files arrive according to a Poisson process
of rateλ. The mean file size was set to 30 KB andλ = 16.7 requests/s, so that the link load wasρ = 0.4.

In Fig. 6, we plot logQc(x) versus log(x) obtained fromns simulations for the transfer of Pareto-
distributed files using the TCP-CA and TCP-SS protocols; the normalised offered loadρ was set to 0.4
and the link buffer implements DRR scheduling. The shape parametersα of the file size distribution were
1.6 and 1.4. Also shown in the figure are the corresponding plots obtained from numerical computation
of the buffer occupancy distribution using, along with Eq.(10), the results ofCorollary 5.1(for TCP-SS)
and[25] (for TCP-CA). The slopes of the analysis curves are also shown in the figures and are seen to
be close to their respective values predicted by the above analysis; for example, the slope for TCP-SS
with α = 1.4 is −0.3955 which is close to (α − 1) as suggested by the analysis. The plot also confirms
the results of Section5 that with TCP-CA the tail of link occupancy distribution is lighter than that for
TCP-SS. Note that the tail behaviour for TCP-SS controlled transfer of Pareto 1.6 files is worse than that
for TCP-CA controlled transfer of Pareto 1.4 files. The sharp drops observed at the ends of the simulation
curves are due to the finite simulation run lengths and are not considered in the approximation.

Variance–time plots5 for the a(t) process are shown inFig. 7 for TCP-SS and TCP-CA controlled
transfer of Pareto files with shape parameterα = 1.6 and 1.4. The slopes of the plots indicate that the
input process is LRD with Hurst parameter3−α

2 irrespective of TCP-SS or TCP-CA as proved before.

5 Obtain the time seriesX = {Xi, i ≥ 1}, whereXi is the number of packets arriving in the interval (p(i − 1), pi) wherep is a
packet service time. Divide the original time seriesX into blocks of sizemand average within each block, that is consider the
aggregated series,

X(m)(k) = 1

m

km∑
i=(k−1)m+1

Xi, k ≥ 1

for successive values ofm. The indexk labels the block. Then take the sample variance ofX(m)(k), k ≥ 1 within each block. This
sample variance is an estimator of VarX(m). For a givenm, divide the data,X1, . . . , XN , into N/m blocks of sizem. Calculate
X(m)(k), for 1 ≤ k ≤ N/m, and its sample variance

V̂arX(m) = 1

N/m

N/m∑
k=1

(X(m)(k))2 −
(

1

N/m

N/m∑
k=1

X(m)(k)

)2

Repeat this procedure for different values ofmand plot the logarithm of the sample variance versus logm. The slopeβ of the
curve is obtained by fitting a line to the points obtained from the plot. The Hurst parameter is thenH = β+2

2 .



6. Effect of random packet drops

In this section, we consider the effect of window reductions due to active queue management; for
simplicity of analysis we assume random packetmarking instead ofdropsand assume that the sender
AWP is cooperative and responds to the mark signal as if it has detected a packet loss. In Section5, we
have seen that the worst possible behaviour of the tail of the buffer occupancy distribution is obtained
when the AWP is aggressive like TCP-SS. In this section, we assume such an aggressive AWP and study
the effect of random marking on the buffer occupancy distribution. We consider various schemes of
responses to reception of a marked packet, i.e., we consider a multiplicative decrease of the window and
also a gentle decrease. This section is meant to support the intuition, in the framework of the model, that
with window reductions (due to random packet drops or markings owing to active queue management),
the buffer occupancy distribution will have a lighter tail. Similar results have also been obtained in[26].

We use the notationw(u) for the window size of an infinitely long file whoseuamount of data has been
acknowledged. Note that, owing to random packet marking,w(u) is now a stochastic process. Since we
are considering data as fluid, we use a markingrate (per unit data) instead of a markingprobability (per
packet), i.e., if the router marks each packet with probabilityp then, in the fluid model, the amount of
data served between two consecutive markings is exponentially distributed with parameter ln1

1−p
=: µ.

We assume that 0< p < 1 to avoid the consideration of the extreme cases where the analysis is slightly
different (the case ofp = 0 is already presented in previous sections). We are assuming marking instead
of packet drops to avoid the unnecessary details of packet retransmissions, and because we are only
interested in qualitative results for the case where window reductions occur. Considern files being
served in a PS fashion. At a marking instant, the mark is applied to any one of the files with equal
probability. Hence, the marking rate of a file isµ

n
per unit time, assuming a unit rate server. But each

file’s age is increasing at rate1
n

data per unit time. Hence, the marking rate of a file isµ per unit of its
age. Further, these marking processes within files are independent. Hence, we can again analyse each
active flow separately along the lines our analysis in previous section. The AWP increases the window
as a function of age according tow(u); marks can occur in a Poisson process of rateµ over the age
evolution; at each mark the window decrease and increase is discussed further. These observations lead
to a simple analysis as now we can consider each active flow separately and model only its individual
contribution to the link buffer. The modes of evolutions ofw(u) we consider in this work are depicted in
Figs. 8 and 10.

6.1. The AWP with linear window reduction

In Fig. 8, w(u) increases as it does in TCP-SS, i.e., linearly with ageu until a mark occurs. We
use a TCP-SS like window buildup as it was observed in[25] that TCP-SS gives the worst possi-
ble tail behaviour ofG(·) in absence of window reductions (due to marking or drops). We refer to
the period, wherew(u) increases linearly as anon-period. We then assume that after a mark occurs,
no new data is sent until whole of the window at which the mark occurred is served; this is what
happens in the Tahoe version of TCP (see[7]), except that we are not considering the time wasted
in coarse timeout. This assumption ensures that an ongoing transfer always has a positive amount
of outstanding data in the link buffer and hence enables us to use the processor sharing results. The
phase wherew(u) is decreasing and no new data is sent in response to acknowledgments is called
an off-period. Note also that a mark occurring during the off-period does not affect the trajectory
of w(u).



Fig. 8. Thew(u) andR(u) functions for the AWP considered in Section6.1.

In Fig. 8, which depicts thew(u) function for an infinitely long file, the first on-period ends at an age
of x1, where a mark occurs;x1 is an exponentially distributed random variable with mean1

µ
. After a mark

at agex1, the TCP sender stops sending data and enters the off-period. Note that in the off-period the
windoww(u) decreases at the same rate as the age of the file increases, i.e.,dw(u)

du = −1. This continues
for an additional age ofw(x1) = x1 (for simplicity we have takenw(x1) = x1 instead ofx1 + 1 as is the
case for TCP-SS). At 2x1 another on-period starts and the evolution process repeats itself.Fig. 8 also
shows theR(u) process, the rate of data arrival into the link buffer from an infinitely long session which
has attained ageu. Note that, owing to the TCP-SS-like window evolution in the on-period, the off-period
duration (in terms of age) is same as the corresponding on-period length. Also,R(u) = 2 in an on-period
and 0 in an off-period.

6.1.1. Buffer occupancy distribution for the AWP of Fig. 8
Let px(u) := P{w(u) > x}. The regenerative behaviour of thew(u) process as observed inFig. 8

enables us to write a renewal equation forpx(u) as follows

px(u) = e−µzx(u)I{u>x} +
∫ u

y=0
px(u − y)

µ

2
e−(µ/2)y dy (17)

wherezx(u) is the minimum age such that if a mark does not occur in the age interval [0, zx(u)] then
w(u) ≥ x. Note thatzx(u) satisfies the condition thatw(zx(u)) = (u − zx(u)) + x; this is obtained by
putting the condition that a mark occurs at agezx(u) and results in a window of exactlyx at ageu (see
Fig. 9). In the second term in Eq.(17), y is used to condition on the start of the second on-period which
is the regeneration instant for thew(u) process; also used is the fact that the first regeneration epoch (and
also the subsequent regeneration cycle lengths) is exponentially distributed with mean2

µ
.

Solution to Eq.(17) is (see[20])

px(u) = e−µzx(u)I{u>x} +
∫ u

y=0
e−µzx(u−y)I{u−y>x}

µ

2
dy



Fig. 9. Figure showing the computation of thezx(u) function used in analysis of the AWP of Section6.1.

= e−µzx(u)I{u>x} +
∫ u−x

y=0
e−µzx(u−y)µ

2
dy = e−µxI{u>x}

Now, the above expression assumes an infinitely long file. For a file of sizev, the window at ageu is
wv(u) = min(w(u), v − u) ≤ w(u). Hence, recalling the notationG from Section5,

Gc(x) =
∫ ∞

v=0

∫ v

u=0
P{wv(u) > x}du

v
dVs(v) ≤

∫ ∞

v=0

∫ v

u=0
P{w(u) > x}du

v
dVs(v)

= e−µx

∫ ∞

v=x

∫ v

u=x

du

v
dVs(v) ≤ e−µx

i.e.,Gc(·) is bounded by an exponentially decaying function.

Remark.Compare this result withCorollary 5.2where it is shown that for TCP-SS controlled transfer
of Pareto-distributed files and with no random markingGc(·) is regularly varying with parameterα − 1.

6.1.2. Auto-covariance function of thea(t) process for the AWP of Fig. 8
Letp(u) denote the probability that, for an infinitely long file, theR(u) function is 2, i.e., an on-period

at ageu. The following renewal equation can be written forp(u)

p(u) = e−µu +
∫ u

y=0
p(u − y)

µ

2
e−(µ/2)y dy

which has solution

p(u) = e−µu +
∫ u

y=0
e−µ(u−y)µ

2
dy = 1

2

[
1 + e−µu

]
It is easy to see thatTheorem 4.1can be modified for an AWP which has regenerative behaviour in
response to marking as the above protocol, to read.



Theorem 6.1. If the AWP used to transfer file sizes of distributionV (·), in presence of random drops,
has the properties:

(1) The AWP alternates between two states, called on-period and off-period.
(2) A mark results in the end of the current on-period and the start of the next off-period.
(3) The window size at any age is strictly positive irrespective of the state of the AWP.
(4) The instants of start of on-periods are regeneration points for theR∞(u) function.
(5) There exists a r such thatRv(u) ≥ r > 0 in an on-period andRv(u) = 0 in the off-period,
Then,

J1(τ) �τ→∞ (1 − ρ)2λr2
∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
EI{on atu}I{on atu1(τ)} dudV (v)

Proof. The above relation follows using arguments similar to those in the proof ofTheorem 4.1. We have
usedu1(τ) to denote the age, at timeτ, of the session active at time 0. Here,U(·) andX(·) are deterministic
and correspond to theµ = 0 case; this simplification is obtained using the regeneration property ofRv(u)
which ensures that (asRv(u) = 0 in off-periods), sup{u : Rv(u) > 0, u ≤ v} ≥ U(v). �

Corollary 6.1. For the AWP ofFig. 8,

J1(τ) �τ→∞ 2(1− ρ)2λ

∫ ∞

v=X(τ)

∫ U(v)−τ

u=0
p(u) dudV (v) ∼τ→∞

(1 − ρ)2λ

2α(α − 1)

1

τα−1

(for Pareto-distributed file sizes)

Proof. The first relation above follows fromTheorem 6.1by usingr = 2 and noting that, due to alternating
behaviour of on and off periods in the AWP ofFig. 8, as 0< µ < ∞, and as the consecutive on-period
and off-period length are same

EI{on atu}I{on atu+t} →t→∞
1

2
p(u)

along with the observation thatu1(τ) →τ→∞ ∞. The second expression of the corollary follows by using
p(u) = 1+e−µu

2 ,U(v) = v
2 andX(τ) = 2τ and plugging in the expression for Pareto distribution in the first

expression. �

SinceJ2(τ) has asymptotic behaviour independent of the AWP used, it follows thatTheorem 4.3(and
hence its conclusion) holds withδ = 2−α for the AWP ofFig. 8.

6.2. The AWP with multiplicative window reduction

The AWP ofFig. 8is very conservative in responding to marking as the window size reduces to 0 and
then the window buildup restarts independent of the past history.

We now consider another, more aggressive, response to marking, i.e., multiplicative decrease of the
window as shown inFig. 10. The window under this AWP evolves as follows: the AWP behaves like
TCP-SS until the first mark occurs at agex1. At agex+

1 , a multiplicative decrease of the window takes



Fig. 10. Thew(u) andR(u) functions for the AWP considered in Section6.2.

place and the window size is reduced tow(x1)
2 . Note that this is possible if the following mechanism is

used: a mark at window sizew results in drop of all of the data of the corresponding file in the link
buffer and the AWP controlling the transfer of the file reduces it’s window size tow

2 instantaneously (thus
transferringw

2 amount of data to the link buffer). Note that this mode of window evolution is very similar
to the Reno version of TCP.

The exact analysis of buffer occupancy distribution becomes hard as the evolution of the window
depends on all the previous marking epochs. But it is possible to analyse for the expected window of
active sessions. Letw(u) be the random variable corresponding to the window of an infinitely long file at
an age ofuand letEw(u) be its expectation. Following the analysis of[27] it is possible to write down the
following differential equation forEw(u)6. We letM(u) denote the Poisson process corresponding to the
instants of marks, i.e., dM(u) = I{a mark occurred in the interval (u,u+du)}. With this notation, we get the following
differential equation governing the evolution of theEw(u) function

dEw(u) = du − Ew(u)

2
µdu (18)

where the first term is for the increment of the window by an amount du when du amount of data is
acknowledged (without marking) and the second part takes care of the multiplicative decrease in window
size as a result of a mark occurring. We have also used the fact thatM(u) is a Poisson process of rateµ.

The above differential equation when solved with the boundary condition ofEw(0) = 0 (for simplicity),
yields

Ew(u) = 2

µ
(1 − e−(µ/2)u) ≤ 2

µ

6 The only difference in the analysis of[27] and the one to be presented here is that we are interested in window as a function
of age while[27] considers window as a function of time for the case where only one session is active.



Note that the above expression is for an infinitely long file and the window at any age of a finite length file
is bounded byw(u), it follows that (recallGandQdefined in Section5) EG ≤ 2

µ
and hence, using Wald’s

lemma,EQ = EN.EG ≤ ρ

1−ρ
2
µ

which is finite for allµ > 0 irrespective of the file size distribution. It
can also be shown in a similar manner that the second moment ofw(u) process is bounded above by a
fixed quantity.

As the AWP ofFig. 10hasRv(u) = 2 for the duration the sender is transmitting data to the link buffer,
Theorem 4.4holds for this AWP withR = r = 2.

7. Conclusion

We have developed a framework for the analysis of processes related to the bottleneck link buffer
under an adaptive window protocol controlled transfer of randomly arriving finite volume files. The most
important example of an AWP is TCP. The key idea used in the analysis was to look at the window
size of the AWP controlling the transfer of a file as a function of the amount of data served from
the file.

We have analysed the auto-covariance function of the process corresponding to the aggregate traffic
into the bottleneck link buffer. Bounds on the asymptotic behaviour of the auto-covariance function is
given which have explicit dependence on the AWP used and the file transfer volume distribution.

Also analysed is the stationary behaviour of the bottleneck link buffer occupancy under the same
scenario. An explicit expression for the stationary distribution of the link buffer occupancy was obtained,
and was again seen to have a dependence on the AWP and the file size distribution.

It was shown that, for Pareto-distributed file transfer volumes with shape parameterα:

(1) When TCP’s congestion avoidance or slow start algorithms are used, the traffic into the link buffer is
long range-dependent (LRD) for small file transfer request arrival rates and for 1< α < 2.

(2) Under the congestion avoidance phase of TCP, the tail of the distribution of the link buffer occupancy
process is regularly varying with index 2(α − 1). This also implies that the mean link buffer occupancy
is finite iff α > 1.5.

(3) Under the slow start phase of TCP, the tail of the distribution of the link buffer occupancy process
is regularly varying with index (α − 1). This means that the mean link buffer occupancy is finite iff
α > 2.

Thus, we have given an example (Pareto-distributed file sizes with 1.5 < α < 2 transferred under the
congestion avoidance phase of TCP) where, in the presence of LRD input to the link buffer, the buffer
occupancy has finite mean. This suggests that the impact of long range dependence of Internet traffic may
not be as severe as is usually predicted by means of an open loop analysis.

We have also considered the effect of window reductions (owing to random packet markings) on the
link buffer occupancy process. It was seen that, for an AWP which increases its window aggressively
like the TCP does in its slow start phase followed be a response to packet marking which is either
gentle as in TCP Tahoe or aggressive as in TCP Reno, the mean link buffer occupancy remains finite
irrespective of the file size distributionwhile the traffic arrival process into the link buffer could still be long
range-dependent.



The characterisation of the tail of link buffer occupancy we have developed could lead to an explana-
tion of the sensitivity with distribution of TCP throughput performance with finite volume transfers (as
observed in[9]).

The work reported in this paper is for a zero propagation delay link; it will be interesting to study how
the results presented in this paper change as the propagation delay increases.
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