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J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 2velopments in high{speed networking. In high{speed networks, link transmissiontimes have decreased sharply relative to the constant signal propagation times.This has a�ected the control of such systems, since by the time the state informa-tion reaches the controller, the state may have changed, due to arrivals/departures.Owing to this, the state of a system as seen by the controller at any time is not thepresent state of the system. Hence, it becomes important to consider problems ofoptimal control under the constraint of delayed feedback information.A standard framework often applied to problems of optimal control is that ofMarkov Decision Theory (with appropriate Markovian assumptions on the sys-tem's random variables). Problems with delayed feedback information can benaturally modelled in the framework of Markov Decision Theory as Partially Ob-servable Controlled Markov Chains (PO{CMC). In this approach, the \state" ofthe PO{CMC is de�ned as a conditional probability measure on the space of theunderlying unobservable system state (the so{called \information state"). Often,however, a direct formulation in terms of a Completely Observable ControlledMarkov Chain (CO{CMC) is possible by appropriately de�ning an enlarged stateso that the enlarged state encompasses all the relevant information. This ap-proach has been followed in Altman & Nain ([1]), Kuri & Kumar ([10], [11]),Artiges ([5]), Kuri ([12]) and recently in Altman & Stidham ([4]). Related workon control with delayed information can be found in Koole ([8]), Altman & Koole([3]) and Altman & Koole ([2]).In Altman & Nain ([1]), Kuri & Kumar ([10], [11]), Artiges ([5]), discrete{timeoptimal control problems in discrete{time queueing models were studied. Thefeedback delay was restricted to one time{step and it was shown that the optimalcontrol policies are of the threshold or switching types. In all of the above papers,the technique of Value Iteration (see, for example, Kumar & Varaiya [9], Hajek[6]) was used to establish that the optimal value function had properties whichimplied that the optimal policy was of threshold/switchover type.In Kuri ([12]), Altman & Stidham ([4]) and the present paper, arbitrary delaysare considered. In a general context, Altman & Stidham ([4]) use a stochasticdominance approach, coupled with the inductive dynamic programming techniqueto establish that for two{action Markovian Decision Processes, threshold typepolicies are optimal.We focus on a speci�c discrete{time queueing control problem. There is asingle queue to which customers arrive randomly at the beginning of each slot.Departures also occur randomly at the end of each slot. A controller decides, atevery slot, whether an arrival can be admitted to the queue or not. The constraintis that the controller has access only to k{slot old queue lengths, where k can bearbitrary. Admission to the queue yields a reward, but this is counter{balancedby the cost of holding customers in the queue. The objective is to minimize thenet discounted cost over an in�nite horizon.



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 3In terms of this problem, the results of Altman & Stidham ([4]) say the fol-lowing: for a particular pattern of arrivals to the queue during the k{slot longfeedback delay period, the optimal policy is characterised by a threshold on thequeue length. This existence result speci�es the nature of the optimal policy; how-ever, several important questions remain: in particular, how are the thresholdscorresponding to di�erent arrival patterns related?In the present paper (as in Kuri ([12])), the problem is formulated as a CO{CMC in terms of a multidimensional state variable, which gathers all the relevantinformation. We then show that under appropriate conditions, the multidimen-sional Dynamic Programming Equation (DPE) can be reduced to a unidimen-sional DPE. This is done by exploiting the observation that there are many dif-ferent states in the multidimensional formulation for which the optimal costs areactually equal. This fact can be further exploited in a straightforward way tosee that, for suitable values of the parameters of the problem, it is optimal tonot accept an arrival whenever the observed queue length is larger than a certainvalue.The contribution of this paper is four{fold. Firstly, we utilise the observa-tion that the optimal costs corresponding to di�erent multidimensional states areequal to reduce the dimensionality of the state space to unity under appropriateconditions. This is a considerable simpli�cation of the problem. Secondly, weprovide simple computable upper and lower bounds to the optimal value functioncorresponding to the \reduced" unidimensional DPE. Thirdly, when a certain re-lationship between the parameters of the problem holds, our approach easily leadsto a quick partial characterization of the optimal policy. Thus, in a very simpleway, we recover, in part, the nature of the optimal policy. Fourthly, for the samerelationship among the parameters, our approach enables us to provide easilycomputable upper bounds to the thresholds. In addition, it is shown that thereare simple relationships between the upper bounds to the thresholds correspond-ing to di�erent arrival patterns. These relationships allow us to gain very usefulinsights into the nature of the optimal policy. In particular, the insights obtainedare of great importance for the problem of actually computing an optimal policybecause they reduce the search space enormously.The outline of the paper is as follows. In the next section, we consider theunderlying queueing model. This is followed in Section 3 by the formulationof the problem in terms of a CO{CMC with a multi{dimensional state space.Section 4 shows how the state space can be collapsed to a single{dimensional oneunder appropriate conditions. In Section 5, we provide computable upper andlower bounds to the single{dimensional optimal value function. This is followedin Section 6 by computable upper bounds on the thresholds for the optimal policy.



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 42 The Underlying Queueing ModelWe consider a control system in discrete time. The duration between two succes-sive time epochs is de�ned as a \slot." There is a single queue to which arrivalsmay occur at the beginning of each slot (just after the slot boundary that de-termines the beginning of the slot). Precisely at the boundary of each slot, acontroller decides, based on the latest available information, whether to admitor not an arrival that may occur immediately afterwards. A departure from thequeue may occur at the end of each slot (just prior to the boundary that deter-mines the end of the slot). In terms of the above description, slot n commenceswith the time epoch at which the controller makes a decision regarding admissionof an arrival that may occur immediately afterwards and lasts till the next instantat which the controller is required to decide again.a(n) 2 f0; 1g denotes the occurrence or non{occurence of an arrival at timen+, where n+ means immediately after the slot boundary (as in Figure 1). Weassume that a(n) is distributed as a Bernoulli random variable with parameter �:a(n) = ( 1 w:p: �0 w:p: 1� �(w:p: stands for \with probability"). Similarly, d(n + 1) 2 f0; 1g denotes a de-parture from the queue at the end of slot n, at time (n + 1)�, where (n + 1)�means immediately before the slot boundary. d(n) is assumed to be Bernoulliwith parameter �: d(n) = ( 1 w:p: �0 w:p: 1� �Let q(n) denote the queue length at n. Let u(n) denote the control actiontaken at the beginning of the nth slot. We note that the control action u(n) inslot n is taken precisely at the boundary where slot n begins. u(n) = 1 correspondsto admitting the arrival which may occur at n+, and u(n) = 0 corresponds torefusing entry. The embedding convention described above is shown in Figure 1.We then haveq(n+ 1) = (q(n) + a(n)Ifu(n)=1g � d(n+ 1))+where Ifu(n)=1g is 1 if u(n) = 1, and 0 otherwise.For a control problem without feedback delay, the controller knows q(n) beforedeciding on u(n). Therefore, for this problem with no feedback delay, q(n) quali�esas the \state". Now consider a control problem with a delay of 1 time slot. Attime (n+1), the controller knows q(n), and also whether a customer was admittedat the beginning of slot n. In other words, the controller knows the producta(n) � Ifu(n)=1g. Let us denote i(n) = a(n)Ifu(n)=1g, where i(n) will be referred
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Figure 1: Diagram showing the embedding convention.to as the \indicator" variable for \an admission in" slot n. Note that i(n) is 1only when the last control action u(n) was 1 and an arrival occurred at time n+(a(n) = 1). At time (n+1), therefore, (q(n); i(n)) quali�es as a state variable forthe 1{step delay problem, since, by virtue of the Markovian assumptions on therandom variables, it encompasses all known and relevant information. Note thatour assumptions of Bernoulli distributions ensure that for a given choice of thesequence fu(n)g, the process fq(n)g evolves as a Markov Chain.We now introduce some notation in the context of the 1{step delay problem.This will be useful in considering delays of any number of steps. Given a currentstate (q(n); i(n)) = (l; i), let Pi denote a matrix whose (l;m) element is given asfollows: for l;m = 0; 1 : : : and i 2 f0; 1g,Pi(l;m) = Prob(q(n+ 1) = mjq(n) = l; i(n) = i)It is clear that a row of Pi speci�es the conditional probability distribution of therandom variable q(n+ 1). Obviously,P0(l;m) = 8><>: � if m = (l� 1)1� � if m = l0 otherwisewhen l � 1, and P0(0; 0) = 1. Similarly,P1(l;m) = 8><>: � if m = l1� � if m = (l+ 1)0 otherwise



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 6From the structure of the matrices P0 and P1, the properties in the followingLemma are obvious. Let Pi(l; �) denote the lth row of Pi. Let X �st Y denotethat random variable X is stochastically less than random variable Y . ThenLemma 1For the matrices P0 and P1, the following hold:1. Pi(l; �)�st Pi(l+ 1; �), l � 02. P0(l; �)�st P1(l; �), l � 03. P0(l+ 1; �) = P1(l; �), l � 0We exploit the fact that the rows of Pi are stochastically increasing by usingthe following well{known result (see Stoyan [13]):Lemma 2If X and Y are random variables, then X �st Y , for all non{decreasing func-tions f , E[f(X)]� E[f(Y )].3 The Controlled Markov ChainWe turn now to the formulation of the discrete{time Controlled Markov Chainthat describes the control problem for a feedback delay of k slots, where k � 1(for a formal treatment, see [12]). Just as in the case of the 1{slot delay problem,it is easy to see that the \state" at time n, s(n), can be de�ned as:s(n) = (q(n� k); i(n� k); i(n� k + 1); : : : ; i(n� 1))This multi{dimensional state variable captures all the relevant information.The action at time n, u(n) lies in the set f0; 1g, as before.We de�ne the one{step cost function of the CMC based on the followingconsiderations. Each queued customer is assumed to cost the system an amountb < 1 per slot (a \holding cost"). If n customers are queued, the holding cost perslot is nb. We de�ne the vector b to indicate the holding costs corresponding tothe number of customers queued:b = (0; b; 2b; 3b; : : :)twhere (� � �)t denotes transpose. Each accepted arrival is assumed to yield a one{time reward of 1 upon admission. Let the state s(n) of the CMC be given ass(n) = (x; ik; ik�1; : : : ; i1), where ij denotes the indicator j steps back from the



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 7current time, i.e., i(n� j). Let u(n) = u denote the action taken. Then, we de�nethe one{step cost c(s(n); u(n)) as the \net expected holding cost over step n":c(s(n); u(n)) = bE(q(n)js(n))� �(1� b)uLet P(ikik�1 � � � i2i1) denote the matrix productPik � Pik�1 � � � �Pi2 � Pi1 :For x = 0; 1; 2 � � �, row x of P(ikik�1 � � � i2i1) gives the distribution of the currentqueue length given a k{step old observed queue length of x and an indicator se-quence of (ikik�1 � � � i2i1). Following usual practice, we will denote a product of thematrix P(ikik�1 � � � i2i1) and the vector b as the vector P(ikik�1 � � � i2i1)b. Further,P(ikik�1 � � � i2i1)b(x) will denote the xth element of the vector P(ikik�1 � � � i2i1)b.Note that P(ikik�1 � � � i2i1)b gives a vector of expected holding costs over the cur-rent step. In terms of this notation, we can rewrite the one{step cost asc(s(n); u(n)) = (P(ikik�1 � � � i2i1)b)(x)� �(1� b)u(P(ikik�1 � � � i2i1)b)(x) denotes the holding cost over the current step when theinitial state is (x; (ikik�1 � � � i2i1)). The term �(1 � b)u denotes the expectedreward for action u, and the net expected cost is simply the di�erence of the twoterms.We shall use the standard discounted cost criterion as our performance metric.Corresponding to a policy �, an initial state s(0), and a discount factor � 2 (0; 1),the cost criterion is given byE�s(0)[ 1Xn=0�nc(s(n); u(n))]where, as usual, E�s(0) is the expectation de�ned with respect to the probabilitymeasure induced by policy � and initial state s(0) (see, for example, [7]).The dynamic programming equation for the k{step delay problem can now bewritten down. For s = (x; (ikik�1 � � � i2i1)), let i = (ikik�1 � � � i2i1); then we writes = (x; i). Let V ��;(i)(x) denote the expected cost when the initial state is (x; i)and the policy followed is �. For each i, we view V ��;(i)(x) as a vector indexed byx 2 f0; 1; 2; � � �g. As usual, we de�neV ��;(i)(x) = min� V ��;(i)(x)and the Dynamic Programming equation isV ��;(ikik�1 � � � i2i1)(x)



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 8= minf(P(ikik�1 � � � i2i1)b)(x) + �(PikV ��;(ik�1ik�2 � � � i10))(x);(P(ikik�1 � � � i2i1)b)(x)� �(1� b) + ��(PikV ��;(ik�1ik�2 � � � i10))(x)+��(PikV ��;(ik�1ik�2 � � � i11))(x)g= (P(ikik�1 � � � i2i1)b)(x) + �(PikV ��;(ik�1ik�2 � � � i10))(x)+ ��minf0; (PikV ��;(ik�1ik�2 � � � i11))(x)� (PikV ��;(ik�1ik�2 � � � i10))(x)� 1� b� g (1)The �rst expression in minf� � � ; � � �g corresponds to a control action 0 (disallowadmission) and the second expression corresponds to a control action 1 (allowadmission). When the control action is 0, the next state can be characterizedas follows: the arrival indicator part of the next state is (ik�1ik�2 � � � i10) (sinceadmission is disallowed), while the observed queue length distribution is given byrow x of the matrix Pik . Therefore, the \cost{to{go" from the next step becomes(PikV ��;(ik�1ik�2 � � � i10))(x). Similarly, the terms appearing in the expression forcontrol action 1 can be explained.From Equation (1), we observe that there is a \coupling" between di�erentindicator sequences. Writing down Equation (1) for each possible indicator se-quence, we would get a system of 2k coupled equations. Essentially, the optimalvalue function is a real{valued map on the (k+1){dimensional space f0; 1gk�N .This is only to be expected since our state itself is (k + 1){dimensional.It can be shown without di�culty that(P1) 8x � 0, and any indicator sequence i,V ��;(i)(x+ 1) � V ��;(i)(x)Further, let j be any sequence and let i be \derived" from j by ipping one ormore 0's occurring in j to 1's.(P2) 8x � 0, and j and i as above,V ��;(i)(x) � V ��;(j)(x)Lemma 3V ��;(i)(x) possesses P1 and P2.Proof: The proof uses Lemma 1 and relies on the familiar technique of showingthat when a function possessing properties P1 and P2 is transformed by theDynamic Programming Operator, the resulting transformed function also has P1and P2. (The space of such functions is non{empty since the \zero function",which is identically 0 everywhere, has these properties trivially). We omit thedetails ([12]) since it is a matter of writing down the expressions and checking. 2



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 94 Reduction to a Single Dimensional State VariableWe show below that for appropriately large values of the observed queue length,V ��;(ikik�1 � � � i2i1)(:) can be written in terms of V ��;0(:); here, 0 means that in(ikik�1 � � � i2i1), ik = ik�1 = � � � = i2 = i1 = 0:The implication of this is that, for su�ciently large observed queue lengths,an equation of the form of (1) can be \reduced" to one involving only V ��;0(:). Aswe shall see later, it is thus enough to consider only 1 equation instead of the 2kcoupled equations which correspond to the 2k distinct sequences of (ikik�1 � � � i2i1)possible.The key to the \reduction" referred to above is the observation that for appro-priately large values of the observed queue length (k steps old), the current queuelength distribution generated by this observed queue length and a given string ofindicators, is exactly the same as that generated by a suitably modi�ed observedqueue length value (k steps old) and a particular indicator string, viz., one withthe �rst (k� 1) bits being zeroes. In other words, if the last known queue lengthis su�ciently large, then the arrivals occurring during the delay period may betaken to have occurred at the beginning itself. This is explained below.In general, for an observed queue length x, the current queue length would begiven by((� � �((x+ ik �Dk�1)+ + ik�1 �Dk�2)+ + � � �+ i2 �D1)+ + i1 �D0)+where Dj , 0 � j � k� 1, is the virtual service random variable j steps back fromthe current time (it is Bernoulli, taking the value 1 with probability �). Thisexpression can be simpli�ed when x is su�ciently large for it allows us to ignorethe + in (� � �)+. We explore this idea now.Let i be the given indicator string and let i0 represent the �rst or leading (k�1)entries of i. Let z(i0) denote the number of zeroes in i0 , so that 0 � z(i0) � (k�1).Consider an observed queue length of (l + z(i0)), l � 0. Then the current queuelength is given by:((� � �((l+ z(i0) + ik �Dk�1) + ik�1 �Dk�2) + � � �+ i2 �D1) + i1 �D0)+Note that since we are starting with (l + z(i0)) customers (the observed queuelength), the expression(� � � ((l+ z(i0) + ik �Dk�1) + ik�1 �Dk�2) + � � �+ i2 �D1)is non{negative. But z(i0) + ik + ik�1 + � � �+ i2 = (k � 1)



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 10and using this we get(� � �((l+ z(i0) + ik �Dk�1) + ik�1 �Dk�2) + � � �+ i2 �D1)= (� � �((l+ k � 1�Dk�1)�Dk�2)� � � � �D1)Thus, the current queue length can also be written as((� � �((l+ k � 1�Dk�1)�Dk�2)� � � � �D1) + i1 �D0)+and this is nothing but the current queue length generated by an observed queuelength of (l+ k � 1), and the indicator string (0(k�1)i1).Now recall that in our problem the one{step cost is determined by the distri-bution of current queue length. Therefore, if we have two distinct initial statessuch that the distribution of queue length at time 0 due to each is the same, thecosts corresponding to the two states must be the same. Hence we have, for l � 0,V ��;(i01)(l + z(i0)) = V ��;0(l + k) (2)and V ��;(i00)(l+ z(i0)) = V ��;0(l+ k � 1) (3)Equations (2) and (3) indicate how large the observed queue length (appearingin brackets) should be (corresponding to the given indicator sequence) for thesimpli�cation to go through. They also show that the optimal costs for manydi�erent states are equal. When x = l + z(i0), for some l � 0, we can ignore the+ in (� � �)+ at all but the last place, and this allows us to \pull" all the 1{valuedindicators in fikik�1 : : : i2g to the observed queue length position. Clearly, thiscould not be done if we had fewer than z(i0) customers to start with.Theorem 4For x � k, the DPE can be written asV ��;0(x) = (P0b)(x) + �(P(0)V ��;0)(x)+��minf0; �(V ��;0(x)� V ��;0(x� 1)) +�(V ��;0(x+ 1)� V ��;0(x))� 1� b� gProof : Suppose the sequence of indicators is denoted by i = (ikik�1 � � � i2i1).Let the observed queue length be (l + z(i)), l � 0; that is, the observed queuelength is greater than or equal to the number of zeroes in the indicator sequence.The DPE is given by equation (1):V ��;(ikik�1 � � � i2i1)(l + z(i)) =



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 11(P(ikik�1 � � � i2i1)b)(l+ z(i)) + �(PikV ��;(ik�1ik�2 � � � i10))(l+ z(i))+ ��minf0; (PikV ��;(ik�1ik�2 � � � i11))(l+ z(i))� (PikV ��;(ik�1ik�2 � � � i10))(l+ z(i))� 1� b� g (4)Firstly, by virtue of Equations (2) and (3), we haveV ��;(i)(l + z(i)) = V ��;0(l+ k) (5)Secondly, the distribution of current queue length given an observed queue lengthof (l + z(i)) and indicator string i is the same as that given an observed queuelength of (l+ k) and indicator string 0; hence, (Pib)((l+ z(i)) = (P0b)(l+ k).Next we consider the term (PikV ��;(ik�1ik�2 � � � i10))(l+ z(i)).Case ik = 1By the de�nition of P1, we have(P1V ��;(ik�1ik�2 � � � i10))(l+ z(i))= �V ��;(ik�1ik�2 � � � i10)(l+ z(i)) + �V ��;(ik�1ik�2 � � � i10)(l + z(i) + 1)= �V ��;0(l+ k � 1) + �V ��;0(l + k) (using Equation (3))= (P1V ��;0)(l+ k � 1)and similarly, (P1V ��;(ik�1ik�2 � � � i11))(l+ z(i)) =(P1V ��;0)(l+ k)Case ik = 0In this case we have(P0V ��;(ik�1ik�2 � � � i10))(l+ z(i))= �V ��;(ik�1ik�2 � � � i10)(l+ z(i)� 1) + �V ��;(ik�1ik�2 � � � i10)(l+ z(i))= �V ��;0(l+ k � 1) + �V ��;0(l + k) (using Equation (3))= (P1V ��;0)(l+ k � 1)and correspondingly,(P0V ��;(ik�1ik�2 � � � i11))(l+ z(i)) = (P1V ��;0)(l+ k)



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 12Hence, substituting term for term, the equation (4) becomesV ��;0(l+ k) =(P0b)(l+ k) + �(P1V ��;0)(l+ k � 1)+ ��minf0; (P1V ��;0)(l+ k)� (P1V ��;0)(l+ k � 1)� 1� b� g (6)Now expanding the terms in equation (6), we have, for x � k,V ��;0(x) = (P0b)(x) + �(P(0)V ��;0)(x)+��minf0; �(V ��;0(x)� V ��;0(x� 1)) +�(V ��;0(x+ 1)� V ��;0(x))� 1� b� g (7)This ends the proof. 2Initially, we had 2k coupled equations. The optimal value function could beviewed as a map from the (k+ 1){dimensional space f0; 1gk �N to the real line.The reduction procedure shows that when x � k, it is possible to �x k elementsof the (k + 1), and thereby obtain what is essentially a function of one variable,viz., x. We emphasize that this simpli�cation is possible only when x � k. Wenow gain some insight into the structure of the optimal policy by considering theexpression occurring in the minf0; � � �g term in Equation (7).5 Bounds for the Optimal Value FunctionWe shall now study the function V ��;0(x). Bounds for V ��;0(x), x � 0, can beobtained as shown below.Consider a policy ~� that never accepts. Let V ~��;0(x) represent the cost corre-sponding to the state (x; 0) when the policy followed is ~�. Clearly, V ~��;0(0) = 0.We have, for x � 1,V ~��;0(x) = (P0b)(x) + �(�V ~��;0(x) + �V ~��;0(x� 1)) (8)Using this recursion along with V ~��;0(0) = 0, we can compute the cost functionV ~��;0(x) corresponding to the policy ~�.Lemma 5V ~��;0(x) is convex non{decreasing.



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 13Proof: It is clear that V ~��;0(x) is non{decreasing. To see that V ~��;0(x) is convex,we proceed as follows. From Equation (8), we have for x � 1,V ~��;0(x) = (P0b)(x)1� �� + ��1� ��V ~��;0(x� 1) (9)Now using Equation (9),(V ~��;0(x+ 2)� V ~��;0(x+ 1)) � (V ~��;0(x+ 1)� V ~��;0(x))i� (P0b)(x+ 2)� (P0b)(x+ 1)1� ��+ ��1� �� (V ~��;0(x+ 1)� V ~��;0(x)) � (V ~��;0(x+ 1)� V ~��;0(x))Rearranging terms, the above is equivalent to(V ~��;0(x+ 1)� V ~��;0(x)) � (P0b)(x+ 2)� (P0b)(x+ 1)1� � (10)Thus, in order to prove that V ~��;0(x) is convex, we need to check that the condi-tion in Inequality (10) is satis�ed for all x. In order to this, we shall be using thefollowing fact, which follows from Lemma 2:If b(:) is convex non{decreasing, then (P0b)(:) is also convex non{decreasing. Re-peated application of the above fact shows that (P0b)(:) is convex non{decreasing.Now consider V ~��;0(1)� V ~��;0(0). We haveV ~��;0(1)� V ~��;0(0) = (P0b)(1)1� ��Recalling that (P0b)(0) = 0, we see that by the convexity of b,(P0b)(1)� (P0b)(0) � (P0b)(2)� (P0b)(1)Therefore, (P0b)(1)� (P0b)(0)1� �� � (P0b)(2)� (P0b)(1)1� �and the statement in Inequality (10) is true for x = 0.



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 14Now assume that Inequality (10) is true for x = (y � 1) � 0. Then,V ~��;0(y + 1)� V ~��;0(y) = (P0b)(y + 1)� (P0b)(y)1� ��+ ��1� �� (V ~��;0(y)� V ~��;0(y � 1))� (P0b)(y + 1)� (P0b)(y)1� ��+ ��1� �� (P0b)(y + 1)� (P0b)(y)1� �(induction hypothesis)= (P0b)(y + 1)� (P0b)(y)1� �� (P0b)(y + 2)� (P0b)(y + 1)1� �where we have used the convexity of b(:) to obtain the last line. Hence the induc-tion step is complete. 2The following lemma shows that the optimal value function V ��;0(x) can bebounded above and below in terms of the cost function V ~��;0(x). Note that thisprovides computable upper and lower bounds to the optimal value function forall x � 0.Lemma 6We have, 8x � 0, V ~��;0(x)� �(1� b)1� � � V ��;0(x) � V ~��;0(x)Proof: V ��;0(x) � V ~��;0(x) follows because V ��;0(x) is the optimal cost and ~�is a particular policy. To prove V ~��;0(x) � �(1�b)1�� � V ��;0(x), we argue as follows.Consider the policy ~� that never accepts. If ~� is followed, the resulting queuelength over any step in the horizon will be stochastically the smallest. Hence, forany policy, the expected cost over any step will be lower bounded by(Expected queue length at step if ~� is followed - �(1� b))When this is discounted by � and added over all steps, we get V ~��;0(x)� �(1�b)1�� .Hence we have V ~��;0(x)� �(1�b)1�� � V ��;0(x). 2



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 15The computable upper and lower bounds to V ��;0(x) for all x � 0 in Lemma 6,enable us to obtain a simple lower bound to (V ��;0(x+ 1)� V ��;0(x)): 8x � 0,(V ��;0(x+ 1)� V ��;0(x)) � V ~��;0(x+ 1)� �(1� b)1� � � V ~��;0(x)def= LB(x)It is immediate from the convexity of V ~��;0(x) that LB(x) is non{decreasing.6 Bounds on the Acceptance ThresholdWe show now that the bounds on V ��;0(x) (which hold for all x � 0) can becombined with the reduced DPE given by Equation (7) (which holds for x � k)to give upper bounds on the thresholds of the optimal policy, when a speci�crelationship between the parameters is satis�ed.The fact that LB(x) increases with x has the following implication. In equa-tion (7), consider the term minf0; � � �g on the right hand side. We know that forx � k, �(V ��;0(x)� V ��;0(x� 1))+�(V ��;0(x+ 1)� V ��;0(x))� �LB(x � 1) + �LB(x)Now (�LB(x � 1) + �LB(x) � 1�b� ) increases with x. Therefore, if this quantitybecomes positive for some ~x, it remains positive for all x > ~x. Thus, if theparameters of the problem, viz., b, �, �, �, k are such that (�LB(x�1)+�LB(x)�1�b� ) > 0 for x � ~x, then for all x � ~x, we must have�(V ��;0(x)� V ��;0(x� 1))+�(V ��;0(x+ 1)� V ��;0(x))�> 1� b�Hence, for x � max(k; ~x), both the above and equation (7) will hold. Therefore,for all observed queue lengths x � max(k; ~x), the optimal action is 0. We havethus shown the following:Lemma 7Suppose b, �, �, � and k are such that (�LB(x� 1) + �LB(x) � 1�b� ) is positivefrom some x onwards. Let ~x be the smallest value of x for which (�LB(x � 1) +



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 16Table 1Correspondence between observed queue lengthsObs. queue for seq. i Obs. queue for seq. 0kz(i) kz(i) + 1 (k + 1)z(i) + 2 (k + 2)� � � � � ��LB(x) � 1�b� ) > 0. Consider the all{zero indicator sequence. Then, for allobserved queue lengths x � max(k; ~x), the optimal action is 0.In Altman & Stidham ([4]), it has been shown that the optimal policy forthe k{step problem has a threshold structure, with a threshold for each indicatorsequence i. Our approach provides an upper bound to the threshold for appro-priate values of the parameters. In particular, the upper bound to the thresholdcorresponding to the all{zero indicator sequence is precisely max(k; ~x), as shownabove.We have seen that for the indicator sequence of all 0's, the upper bound to thethreshold is given by max(k; ~x). Now recall the fact that the multi{dimensionalDPE for di�erent indicator sequences can be reduced to the same unidimensionalDPE (Equation (7)) for appropriately large observed queue lengths. It is thensimple to obtain the upper bound to the threshold for any indicator sequence i asfollows.For a given set of parameters, we can �rst evaluate max(k; ~x). This will beequal to some entry on the right{hand column of Table 1. The correspondingentry in the left{hand column gives the upper bound for sequence i. This is givenby z(i) + max(0; ~x� k). Thus, we have shown the following:Lemma 8The upper bound to the threshold corresponding to the indicator sequence i is givenby z(i) + max(0; ~x� k).It is immediate from the above that the upper bounds corresponding to allindicator sequences that have the same z(i) are equal. The relationships betweenthe upper bounds for di�erent indicator sequences is also easily seen and sum-marised below.Lemma 9If i and j are two sequences such that the numbers of zeroes in them di�er byd � 0, then the upper bounds to the thresholds corresponding to them also di�erby d.



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 17Our approach provides easily computable upper bounds to the thresholdscorresponding to di�erent indicator sequences. From a practical point of view,this will be very useful in the search for an optimal policy as it serves to limit thesearch space. In fact, since z(i) 2 f0; 1; � � � ; kg, it is obvious that there are just(k + 1) upper bounds for the entire set of 2k possible indicator sequences, withthe relationships between them being given by Lemma 9. Without the results inLemma 8 and Lemma 9, it would be extremely di�cult to actually compute theoptimal policy. This becomes particularly signi�cant as k becomes large.Finally, we consider the question: under what conditions can we expect theexpression (�LB(x�1)+�LB(x)� 1�b� ) to become eventually positive? Recallingthat LB(x) = V ~��;0(x+ 1)� �(1� b)1� � � V ~��;0(x)we �nd that the limiting value of LB(x), as x increases to 1, is governed bylimx!1(V ~��;0(x+ 1)� V ~��;0(x)). Now it is clear thatlimx!1(V ~��;0(x+ 1)� V ~��;0(x)) = b1� �since the left hand side is the cost of holding 1 extra customer forever. Therefore,we have limx!1(�LB(x � 1) + �LB(x)� 1� b� ) = b1� � � �(1� b)1� � � 1� b�This enables us to conclude that the limiting value of (�LB(x�1)+�LB(x)� 1�b� )is positive i� the following condition holds� > 1� b1� �(1� b) (11)Inequality (11) gives the simple condition among the parameters of the problemunder which computable bounds can be obtained as in Lemmas 8 and 9. Notethat the condition given in Inequality (11) does not involve the parameter �, and,more interestingly, the feedback delay parameter k.AcknowledgementsThe authors are grateful to the referee and the Associate Editor for providinginsightful comments.
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