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We consider a problem of admission control to a single queue in discrete time.
The controller has access to k—step old queue lengths only, where k can be arbi-
trary. The problem is motivated, in particular, by recent advances in high—speed
networking where information delays have become prominent.

We formulate the problem in the framework of Completely Observable Con-
trolled Markov Chains, in terms of a multi-dimensional state variable. Exploiting
the structure of the problem, we show that under appropriate conditions, the
multi-dimensional Dynamic Programming Equation (DPE) can be reduced to a
unidimensional one. We then provide simple computable upper and lower bounds
to the optimal value function corresponding to the reduced unidimensional DPE.
These upper and lower bounds, along with a certain relationship among the pa-
rameters of the problem, enable us to deduce partially the structural features of
the optimal policy. Our approach enables us to recover simply, in part, the recent
results of Altman & Stidham, who have shown that a multiple—threshold—type
policy is optimal for this problem. Further, under the same relationship among
the parameters of the problem, we provide easily computable upper bounds to the
multiple thresholds and show the existence of simple relationships among these
upper bounds. These relationships allow us to gain very useful insights into the
nature of the optimal policy. In particular, the insights obtained are of great im-
portance for the problem of actually computing an optimal policy because they
reduce the search space enormously.

Keywords: Markov Decision Theory, Delayed Feedback Information, Threshold
Policies

1 Introduction

The problem of optimal control of arrivals to a queue under delayed feedback
information has recently become important. It is motivated, in particular, by de-
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velopments in high—speed networking. In high—speed networks, link transmission
times have decreased sharply relative to the constant signal propagation times.
This has affected the control of such systems, since by the time the state informa-
tion reaches the controller, the state may have changed, due to arrivals/departures.
Owing to this, the state of a system as seen by the controller at any time is not the
present state of the system. Hence, it becomes important to consider problems of
optimal control under the constraint of delayed feedback information.

A standard framework often applied to problems of optimal control is that of
Markov Decision Theory (with appropriate Markovian assumptions on the sys-
tem’s random variables). Problems with delayed feedback information can be
naturally modelled in the framework of Markov Decision Theory as Partially Ob-
servable Controlled Markov Chains (PO-CMC). In this approach, the “state” of
the PO-CMC is defined as a conditional probability measure on the space of the
underlying unobservable system state (the so—called “information state”). Often,
however, a direct formulation in terms of a Completely Observable Controlled
Markov Chain (CO-CMC) is possible by appropriately defining an enlarged state
so that the enlarged state encompasses all the relevant information. This ap-
proach has been followed in Altman & Nain ([1]), Kuri & Kumar ([10], [11]),
Artiges ([5]), Kuri ([12]) and recently in Altman & Stidham ([4]). Related work
on control with delayed information can be found in Koole ([8]), Altman & Koole
([3]) and Altman & Koole ([2]).

In Altman & Nain ([1]), Kuri & Kumar ([10], [11]), Artiges ([5]), discrete-time
optimal control problems in discrete-time queueing models were studied. The
feedback delay was restricted to one time—step and it was shown that the optimal
control policies are of the threshold or switching types. In all of the above papers,
the technique of Value Iteration (see, for example, Kumar & Varaiya [9], Hajek
[6]) was used to establish that the optimal value function had properties which
implied that the optimal policy was of threshold /switchover type.

In Kuri ([12]), Altman & Stidham ([4]) and the present paper, arbitrary delays
are considered. In a general context, Altman & Stidham ([4]) use a stochastic
dominance approach, coupled with the inductive dynamic programming technique
to establish that for two—action Markovian Decision Processes, threshold type
policies are optimal.

We focus on a specific discrete-time queueing control problem. There is a
single queue to which customers arrive randomly at the beginning of each slot.
Departures also occur randomly at the end of each slot. A controller decides, at
every slot, whether an arrival can be admitted to the queue or not. The constraint
is that the controller has access only to k—slot old queue lengths, where k& can be
arbitrary. Admission to the queue yields a reward, but this is counter—balanced
by the cost of holding customers in the queue. The objective is to minimize the
net discounted cost over an infinite horizon.
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In terms of this problem, the results of Altman & Stidham ([4]) say the fol-
lowing: for a particular pattern of arrivals to the queue during the k—slot long
feedback delay period, the optimal policy is characterised by a threshold on the
queue length. This existence result specifies the nature of the optimal policy; how-
ever, several important questions remain: in particular, how are the thresholds
corresponding to different arrival patterns related?

In the present paper (as in Kuri ([12])), the problem is formulated as a CO-
CMC in terms of a multidimensional state variable, which gathers all the relevant
information. We then show that under appropriate conditions, the multidimen-
sional Dynamic Programming Equation (DPE) can be reduced to a unidimen-
sional DPE. This is done by exploiting the observation that there are many dif-
ferent states in the multidimensional formulation for which the optimal costs are
actually equal. This fact can be further exploited in a straightforward way to
see that, for suitable values of the parameters of the problem, it is optimal to
not accept an arrival whenever the observed queue length is larger than a certain
value.

The contribution of this paper is four—fold. Firstly, we utilise the observa-
tion that the optimal costs corresponding to different multidimensional states are
equal to reduce the dimensionality of the state space to unity under appropriate
conditions. This is a considerable simplification of the problem. Secondly, we
provide simple computable upper and lower bounds to the optimal value function
corresponding to the “reduced” unidimensional DPE. Thirdly, when a certain re-
lationship between the parameters of the problem holds, our approach easily leads
to a quick partial characterization of the optimal policy. Thus, in a very simple
way, we recover, in part, the nature of the optimal policy. Fourthly, for the same
relationship among the parameters, our approach enables us to provide easily
computable upper bounds to the thresholds. In addition, it is shown that there
are simple relationships between the upper bounds to the thresholds correspond-
ing to different arrival patterns. These relationships allow us to gain very useful
insights into the nature of the optimal policy. In particular, the insights obtained
are of great importance for the problem of actually computing an optimal policy
because they reduce the search space enormously.

The outline of the paper is as follows. In the next section, we consider the
underlying queueing model. This is followed in Section 3 by the formulation
of the problem in terms of a CO-CMC with a multi-dimensional state space.
Section 4 shows how the state space can be collapsed to a single-dimensional one
under appropriate conditions. In Section 5, we provide computable upper and
lower bounds to the single-dimensional optimal value function. This is followed
in Section 6 by computable upper bounds on the thresholds for the optimal policy.
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2 The Underlying Queueing Model

We consider a control system in discrete time. The duration between two succes-
sive time epochs is defined as a “slot.” There is a single queue to which arrivals
may occur at the beginning of each slot (just after the slot boundary that de-
termines the beginning of the slot). Precisely at the boundary of each slot, a
controller decides, based on the latest available information, whether to admit
or not an arrival that may occur immediately afterwards. A departure from the
queue may occur at the end of each slot (just prior to the boundary that deter-
mines the end of the slot). In terms of the above description, slot n commences
with the time epoch at which the controller makes a decision regarding admission
of an arrival that may occur immediately afterwards and lasts till the next instant
at which the controller is required to decide again.

a(n) € {0,1} denotes the occurrence or non-occurence of an arrival at time
n+, where n+ means immediately after the slot boundary (as in Figure 1). We
assume that a(n) is distributed as a Bernoulli random variable with parameter A:

)1 wpe A
“(")_{0 w.p. 1—2A

(w.p. stands for “with probability”). Similarly, d(n 4+ 1) € {0, 1} denotes a de-
parture from the queue at the end of slot n, at time (n + 1)—, where (n 4+ 1)—
means immediately before the slot boundary. d(n) is assumed to be Bernoulli
with parameter u:

)1 wpe op
d(")_{o w.p. 1—p

Let ¢(n) denote the queue length at n. Let u(n) denote the control action
taken at the beginning of the n'" slot. We note that the control action u(n) in
slot n is taken precisely at the boundary where slot n begins. u(n) = 1 corresponds
to admitting the arrival which may occur at n+, and w(n) = 0 corresponds to
refusing entry. The embedding convention described above is shown in Figure 1.

We then have
q(n+1) = (¢(n) + a(n) Lym=1y — d(n+1))*

where I, (n,)=1} is 1 if u(n) = 1, and 0 otherwise.

For a control problem without feedback delay, the controller knows g(n) before
deciding on u(n). Therefore, for this problem with no feedback delay, ¢(n) qualifies
as the “state”. Now consider a control problem with a delay of 1 time slot. At
time (n41), the controller knows ¢(n), and also whether a customer was admitted
at the beginning of slot n. In other words, the controller knows the product
a(n) X Iiyny=1}- Let us denote i(n) = a(n)l(y(n)=1), where i(n) will be referred
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n+l n+2
i) d(n+2) )
] BE |
L a(n) L a(n+1)
u(n) u(n+1) u(n+2)
slotn slot (n+1)

Figure 1: Diagram showing the embedding convention.

to as the “indicator” variable for “an admission in” slot n. Note that i(n) is 1
only when the last control action u(n) was 1 and an arrival occurred at time n+
(a(n) = 1). At time (n + 1), therefore, (¢(n),i(n)) qualifies as a state variable for
the 1-step delay problem, since, by virtue of the Markovian assumptions on the
random variables, it encompasses all known and relevant information. Note that
our assumptions of Bernoulli distributions ensure that for a given choice of the
sequence {u(n)}, the process {¢(n)} evolves as a Markov Chain.

We now introduce some notation in the context of the 1-step delay problem.
This will be useful in considering delays of any number of steps. Given a current
state (q(n),i(n)) = (I,7), let P; denote a matrix whose ([, m) element is given as
follows: for I,m =0,1...and i € {0, 1},

P;(l,m) = Prob(qg(n+ 1) = m|q(n) = ,i(n) = 1)

It is clear that a row of P, specifies the conditional probability distribution of the
random variable ¢(n + 1). Obviously,

I ifm=(-1)
Po(lym)y=< 1—-p ifm=1
otherwise

when [ > 1, and F»(0,0) = 1. Similarly,
I ifm=1
Pi(lym)y=< 1—-p ifm=(I+1)

0 otherwise
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From the structure of the matrices Fy and Py, the properties in the following
Lemma are obvious. Let P;(l,-) denote the I vow of P. Let X <,; Y denote
that random variable X is stochastically less than random variable Y. Then

Lemma 1
For the matrices Py and Py, the following hold:

1. P(l,-) <o Pi(I+1,-),1>0
2. By(l,) <a P(L,-), 1>0
3. P(l+1,)=P(,-),1>0

We exploit the fact that the rows of P; are stochastically increasing by using
the following well-known result (see Stoyan [13]):

Lemma 2
If X and Y are random variables, then X >4 Y < for all non—-decreasing func-
tions f, B[f(X)]> ELf(Y)].

3 The Controlled Markov Chain

We turn now to the formulation of the discrete—time Controlled Markov Chain
that describes the control problem for a feedback delay of & slots, where & > 1
(for a formal treatment, see [12]). Just as in the case of the 1-slot delay problem,
it is easy to see that the “state” at time n, s(n), can be defined as:

s(n) = (g(n —k),i(n—Fk),i(ln—k+1),...,i(n—1))

This multi-dimensional state variable captures all the relevant information.

The action at time n, u(n) lies in the set {0, 1}, as before.

We define the one—step cost function of the CMC based on the following
considerations. Each queued customer is assumed to cost the system an amount
b < 1 per slot (a “holding cost”). If n customers are queued, the holding cost per
slot is nb. We define the vector b to indicate the holding costs corresponding to
the number of customers queued:

b=(0,b,2b,3b,...)"

where (---)! denotes transpose. Each accepted arrival is assumed to yield a one-
time reward of 1 upon admission. Let the state s(n) of the CMC be given as
s(n) = (x,1k, tk—1, ..., 41), where ¢; denotes the indicator j steps back from the



J. Kuri and A. Kumar / Optimal Control with Arbitrary Feedback Delay 7

current time, i.e., i(n—j). Let u(n) = u denote the action taken. Then, we define
the one-step cost ¢(s(n),u(n)) as the “net expected holding cost over step n”:

c(s(n), u(n)) = bE(q(n)]s(n)) = A(1 = b)u

Let P(

Ty - ~izi) denote the matrix product

P, xP,  x--F, xF.

kE—1

Forz=10,1,2--- row z of P(ikik—1 iy

queue length given a k-step old observed queue length of z and an indicator se-

) gives the distribution of the current

quence of (ixtg_1 - - -4271). Following usual practice, we will denote a product of the

matrix P(Zklk—l . izil) ikik—l . ZQZI)Q Further,

b(z) will denote the z*P element of the vector P, - -\ b.
(lklk—l e '2221)

b gives a vector of expected holding costs over the cur-

and the vector b as the vector P(

Plivixy -+ -iain)
Note that P(Zklk—l . 2221)
rent step. In terms of this notation, we can rewrite the one—step cost as

c(s(n),u(n)) = (P(ikik_1 .. -izil)b)(@ — Al —d)u

(P(ikik—1 . _izil)b)(x) denotes the holding cost over the current step when the
initial state is (x, (igig—1 - -i271)). The term A(1 — b)u denotes the expected
reward for action u, and the net expected cost is simply the difference of the two
terms.

We shall use the standard discounted cost criterion as our performance metric.
Corresponding to a policy 7, an initial state s(0), and a discount factor g € (0, 1),
the cost criterion is given by

B3 87 els(n),u(r)

where, as usual, E;r(o) is the expectation defined with respect to the probability
measure induced by policy 7 and initial state s(0) (see, for example, [7]).

The dynamic programming equation for the k—step delay problem can now be
written down. For s = (z, ({xik—1 - -i2t1)), let & = (ixlp—1---9201); then we write
s = (z,7). Let Vg(i)(ac) denote the expected cost when the initial state is (z,¢)
and the policy followed is 7. For each i, we view Vg(ﬁ(x) as a vector indexed by
z € {0,1,2,---}. As usual, we define

Vi) =min Vi (@)
and the Dynamic Programming equation is

v ()

B(thig—y - - 1201)
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= min{ (P, D (@) + By Vi (ikrins - ilo))@%
(P(ikik 1'”2-22-1)13)( z) — A1 =b) 4+ BA(P, ﬁ(lk g ilo))(ﬂﬁ)
AL, ﬁ(lk 1h—2 211))(96)}

= Pl iy D@ E Y ()

+ A min{0, (P, 57(%_1%_2 .. @11))(36)

1—5
— (P -~ 1
PV (iprineg 1208 — 5} (1)
The first expression in min{- - -, - - -} corresponds to a control action 0 (disallow

admission) and the second expression corresponds to a control action 1 (allow
admission). When the control action is 0, the next state can be characterized
as follows: the arrival indicator part of the next state is (ig_1ig_2---910) (since
admission is disallowed), while the observed queue length distribution is given by
row z of the matrix P, . Therefore, the “cost-to-go” from the next step becomes

(P, Vﬁ*(lk i ; 0))(96) Similarly, the terms appearing in the expression for
Ate—1tp—2" 01
control action 1 can be explained.

From Equation (1), we observe that there is a “coupling” between different
indicator sequences. Writing down Equation (1) for each possible indicator se-
quence, we would get a system of 2% coupled equations. Essentially, the optimal
value function is a real-valued map on the (k+ 1)-dimensional space {0, 1< N.
This is only to be expected since our state itself is (k4 1)-dimensional.

It can be shown without difficulty that

(P1) V& > 0, and any indicator sequence i,

Vi +1) 2 V5, (@)

Further, let j be any sequence and let ¢ be “derived” from j by flipping one or
more 0’s occurring in j to 1’s.
(P2) V& > 0, and j and i as above,

Vi@ 2 Vi@

Lemma 3
Vi (i)(ac) possesses P1 and P2.

Proof: The proof uses Lemma 1 and relies on the familiar technique of showing
that when a function possessing properties P1 and P2 is transformed by the
Dynamic Programming Operator, the resulting transformed function also has P1
and P2. (The space of such functions is non-empty since the “zero function”,
which is identically 0 everywhere, has these properties trivially). We omit the
details ([12]) since it is a matter of writing down the expressions and checking. O
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4 Reduction to a Single Dimensional State Variable

We show below that for appropriately large values of the observed queue length,
g7(ikik—1 ji2i1)(') can be written in terms of Vﬁ*g(.); here, 0 means that in
(lklk—l e '2221)7
g =1ip 1 =---=13=1 =0.
The implication of this is that, for sufficiently large observed queue lengths,
an equation of the form of (1) can be “reduced” to one involving only Vﬁ*()(')‘ As

we shall see later, it is thus enough to consider only 1 equation instead of the 2%
coupled equations which correspond to the 2k distinct sequences of (ixik—1 - - -1211)
possible.

The key to the “reduction” referred to above is the observation that for appro-
priately large values of the observed queue length (k steps old), the current queue
length distribution generated by this observed queue length and a given string of
indicators, is exactly the same as that generated by a suitably modified observed
queue length value (k steps old) and a particular indicator string, viz., one with
the first (k — 1) bits being zeroes. In other words, if the last known queue length
is sufficiently large, then the arrivals occurring during the delay period may be
taken to have occurred at the beginning itself. This is explained below.

In general, for an observed queue length z, the current queue length would be
given by

(-~ ((@+ik— D)t +ike1 — Di—o) T+ +i2— DT+ 41 — Do)t

where D;, 0 < j <k —1,is the virtual service random variable j steps back from
the current time (it is Bernoulli, taking the value 1 with probability x). This
expression can be simplified when 2 is sufficiently large for it allows us to ignore
the 4+ in (---)T. We explore this idea now.

Let 2 be the given indicator string and let i represent the first or leading (k—1)
entries of i. Let z(i') denote the number of zeroes in 7', so that 0 < 2(i') < (k—1).
Consider an observed queue length of (I 4 z(i')), I > 0. Then the current queue
length is given by:

((+ (4 2() 4+ 5 — Dpor) + g1 — Dig) + -+ -+ iz — Dy) + iy — Do)

Note that since we are starting with (I + 2(i')) customers (the observed queue
length), the expression

(- ([ +2({) 4+ i, — Do) + ig—1 — Dp—2) + -+ — Dy)
is non—negative. But

2() g A ihog iy = (k1)
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and using this we get

(- (L4 2(]") + ik — Dy—1) +ip—1 — Dy_a) +---+ iy — Dy)
= (- ((U+k=1=Dg1) = Dp—2) == Dy)

Thus, the current queue length can also be written as
(- ((I+k=1=Dp_y) = Dp—z) —--- = Dy) + iy — Do)t

and this is nothing but the current queue length generated by an observed queue
length of (I + k — 1), and the indicator string (0*=13;).

Now recall that in our problem the one—step cost is determined by the distri-
bution of current queue length. Therefore, if we have two distinct initial states
such that the distribution of queue length at time 0 due to each is the same, the
costs corresponding to the two states must be the same. Hence we have, for [ > 0,

Vi + 2(i)) = Vgl +k) (2)
and

Equations (2) and (3) indicate how large the observed queue length (appearing
in brackets) should be (corresponding to the given indicator sequence) for the
simplification to go through. They also show that the optimal costs for many
different states are equal. When & = [+ 2(1/), for some [ > 0, we can ignore the
+in (--)T at all but the last place, and this allows us to “pull” all the 1-valued
indicators in {igix_y ...i2} to the observed queue length position. Clearly, this
could not be done if we had fewer than z(i') customers to start with.

Theorem 4
For x > k, the DPE can be written as

o) = (RB@)+ B(Po V)
FBAmin{0,u(V gle) - Vigla - 1)) +
s y 1-9b
PV g(e + 1) = Vi) - =57
Proof : Suppose the sequence of indicators is denoted by i = (igig—1 - - - i2i1).
Let the observed queue length be (I 4+ z(7)), [ > 0; that is, the observed queue

length is greater than or equal to the number of zeroes in the indicator sequence.
The DPE is given by equation (1):

v; (14 2(0) =

B, (Tglp—1 -+ 1201
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(Pligip_y - -ipiD U+ 2@0) + 8B,V (inrin_s ilo))(H' (7))
F A0, (P ))(l—l—z( i)
BV i tins - -ilo))(H' 2(1)) — %} (4)
Firstly, by virtue of Equations (2) and (3), we have
Vip+2@) =Vl +k) (5)

Secondly, the distribution of current queue length given an observed queue length
of (I + 2(2)) and indicator string ¢ is the same as that given an observed queue

length of (I + k) and indicator string 0; hence, (F;b)(({ + 2(2)) = (Fyb) (I + k).

Next we consider the term (szvﬁ (iporines - i10))(l + 2(2))
Case 1, =1
By the definition of P, we have
(Plvﬁ,(ik—ﬂk—z .. -i10))(l +2(2))
= uVr. . . l V= [ 1
MV iy - i) U H 2@ FIVEG o)+ 1)

0)
= V*O(l + k- ) —|— ,uV*O(l + k) (using Equatlon (3))
= (AVigU+k-1)

and similarly,

i+ () =

PV, . . .
(7 B(th—1tp—2 -+ 111
(PV; Q)+ )

Case 1, =0
In this case we have

(POVJ,(ik_lik_Q...ilo))(lJrZ(i))
= Y lirinn ) U DI Gy )

= V*O(l +k-1)4 V*O(l + k)  (using Equation (3))
= (Vg h 1)

and correspondingly,

BV (i ooty (L 20) = (V) (14 )
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Hence, substituting term for term, the equation (4) becomes

ol k) =
(R + k) + BV I+ k= 1)
+ A min{0, (PV; )L+ k) = (PV;) (L + k= 1)
_ %b} (6)

Now expanding the terms in equation (6), we have, for z > k,

@) = (Rb(@)+ 8P V(@)

FBAmiIn{0, u(V] gla) — V:gla — 1)) +

s y 1—5

(V3 e + 1) = Vygla)) = —5) ™)
This ends the proof. O

Initially, we had 2% coupled equations. The optimal value function could be

viewed as a map from the (k4 1)-dimensional space {0,1}* x A/ to the real line.
The reduction procedure shows that when x > k, it is possible to fix k elements
of the (k4 1), and thereby obtain what is essentially a function of one variable,
viz., . We emphasize that this simplification is possible only when 2z > k. We
now gain some insight into the structure of the optimal policy by considering the
expression occurring in the min{0, - - -} term in Equation (7).

5 Bounds for the Optimal Value Function

We shall now study the function V}y(z). Bounds for Vﬁ*o(ac)7 x > 0, can be
obtained as shown below. B B
Consider a policy 7 that never accepts. Let Vgo(w) represent the cost corre-

sponding to the state (z,0) when the policy followed is 7. Clearly, 50(0) =0.
We have, for z > 1, B

Vig(@) = (Pob) (@) + BEV (@) + pV gz — 1)) (8)

[ASA

Using this recursion along with VﬁO(O) = 0, we can compute the cost function

go(x) corresponding to the policy 7.

Lemma 5
Vgg(w) is convex non—decreasing.
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Proof: 1t is clear that Vgo(w) is non—decreasing. To see that V%O(w) is convex,

[ASA

we proceed as follows. From Equation (8), we have for # > 1,

Ppb)(z ~

Now using Equation (9),
(Vigle +2) = Vigle +1)) = (Ve +1) = V()
iff
(Pb)(z +2) — (Pob)(x + 1)
L —pu
(Vigle +1) = Vig())

B
1 - p3u

_I_
> (Viglz+1) = Vi)
Rearranging terms, the above is equivalent to

(Fpb)(z +2) — (Fpb)(x + 1)
1-p

Thus, in order to prove that Vﬁo(w) is convex, we need to check that the condi-

(Vigle + 1) = Vigle)) < (10)

tion in Inequality (10) is satisfied for all 2. In order to this, we shall be using the
following fact, which follows from Lemma 2:

If b(.) is convex non—decreasing, then (Fyb)(.) is also convex non—decreasing. Re-
peated application of the above fact shows that (Fyb)(.) is convex non-decreasing.

Now consider VEQ(U — EQ(O). We have

(Pgb)(1)
1— A

Recalling that (FPyb)(0) = 0, we see that by the convexity of b,

(Fpb)(1) = (Fpb)(0) < (Fpb)(2) — (Fpb) (1)

Therefore,

(Fpb) (1) — (Fpb)(0) _ (Fpb)(2) — (Fpb) (1)

- 51 = 17

and the statement in Inequality (10) is true for z = 0.
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Now assume that Inequality (10) is true for # = (y — 1) > 0. Then,

7 (Feb)(y + 1) — (Fb)(y)
Tou+ 1) = Vigly) = 5
Bu

(VI g0) = Vgl = 1)
(Fob)(y + 1) — (Fpd) ()

1= om

Bu (Ppd)(y+1) = (Ppb)(y)
- 3u 1=

(induction hypothesis)
(Fob)(y + 1) — (Fpd) ()

L=p
(Fpd)(y +2) — (Fpb)(y + 1)

L=p

where we have used the convexity of b(.) to obtain the last line. Hence the induc-

tion step is complete. O
The following lemma shows that the optimal value function Vﬁ*o(w) can be

IN

<

bounded above and below in terms of the cost function Vgo(x). Note that this

provides computable upper and lower bounds to the optimal value function for
all 2 > 0.

Lemma 6

We have, Yz > 0,

Vipw - —=—F5 < 3 < Viplr) V()

Proof: Vﬁ*g(w) < Vgg(w) follows because V7 ( ) is the optimal cost and 7

is a particular policy. To prove Vﬁﬁ,O(w) - M < V* ( ), we argue as follows.
Consider the policy # that never accepts. If 7 is followed the resulting queue
length over any step in the horizon will be stochastically the smallest. Hence, for
any policy, the expected cost over any step will be lower bounded by

(Expected queue length at step if 7 is followed - A(1 — b))

A(1-b)

When this is discounted by g and added over all steps, we get Vﬁo(w) - =5

7T b E3
Hence we have V, 0() il—Z<V ()
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The computable upper and lower bounds to Vﬁ*o(w) for all z > 0 in Lemma 6,
enable us to obtain a simple lower bound to ( 5*79(5 +1) — /3*79(36)): Va >0,
* * T A(l — b) T
(V@Q(w +1) - V@Q(x)) > V@Q(x +1) - 5 — V@Q(w)

' LB(x)

It is immediate from the convexity of V%O(w) that LB(x) is non—decreasing.

6 Bounds on the Acceptance Threshold

We show now that the bounds on Vﬁ*,O(w) (which hold for all > 0) can be
combined with the reduced DPE given by Equation (7) (which holds for = > k)
to give upper bounds on the thresholds of the optimal policy, when a specific
relationship between the parameters is satisfied.

The fact that LB(z) increases with & has the following implication. In equa-
tion (7), consider the term min{0,---} on the right hand side. We know that for
x>k,

WlV2 gla) - Vzgle — 1)+
(e +1) = Vo)
> plLB(z — 1)+ ulB(x)

Now (uLB(x — 1)+ gL B(z) — 1’%6) increases with z. Therefore, if this quantity
becomes positive for some Z, it remains positive for all x > #. Thus, if the
parameters of the problem, viz., b, 3, A, p1, k are such that (uLB(z—1)+uLB(z)—

1’%6) > 0 for z > &, then for all z > &, we must have

u(V;gle) = Vigle = D)+

AV gla+1) = V7o)
1-0b

> R

8

Hence, for z > max(k, Z), both the above and equation (7) will hold. Therefore,
for all observed queue lengths & > max(k, ), the optimal action is 0. We have
thus shown the following:

Lemma 7
Suppose b, 3, A, p and k are such that (uLB(x — 1) + gLB(z) — 1’%6) is positive
from some x onwards. Let & be the smallest value of x for which (uLB(x — 1)+
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Table 1

Correspondence between observed queue lengths

Obs. queue for seq. 1 Obs. queue for seq. 0F
=) K

) +1 (k+1)

#(3) +2 (k+2)

nlLB(z) — I’%b) > 0. Consider the all-zero indicator sequence. Then, for all
observed queue lengths x > max(k, z), the optimal action is 0.

In Altman & Stidham ([4]), it has been shown that the optimal policy for
the k—step problem has a threshold structure, with a threshold for each indicator
sequence . Qur approach provides an upper bound to the threshold for appro-
priate values of the parameters. In particular, the upper bound to the threshold
corresponding to the all-zero indicator sequence is precisely max(k, &), as shown
above.

We have seen that for the indicator sequence of all 0’s, the upper bound to the
threshold is given by max(k, ). Now recall the fact that the multi-dimensional
DPE for different indicator sequences can be reduced to the same unidimensional
DPE (Equation (7)) for appropriately large observed queue lengths. It is then
simple to obtain the upper bound to the threshold for any indicator sequence 2 as
follows.

For a given set of parameters, we can first evaluate max(k,z). This will be
equal to some entry on the right—hand column of Table 1. The corresponding
entry in the left—hand column gives the upper bound for sequence i. This is given
by z(i) + max(0,  — k). Thus, we have shown the following:

Lemma 8
The upper bound to the threshold corresponding to the indicator sequence v is given

by z(¢) + max(0,Z — k).

It is immediate from the above that the upper bounds corresponding to all
indicator sequences that have the same z(Z) are equal. The relationships between
the upper bounds for different indicator sequences is also easily seen and sum-
marised below.

Lemma 9

If i and j are two sequences such that the numbers of zeroes in them differ by
d > 0, then the upper bounds to the thresholds corresponding to them also differ
by d.
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Our approach provides easily computable upper bounds to the thresholds
corresponding to different indicator sequences. From a practical point of view,
this will be very useful in the search for an optimal policy as it serves to limit the
search space. In fact, since z(i) € {0,1,---,k}, it is obvious that there are just
(k + 1) upper bounds for the entire set of 2* possible indicator sequences, with
the relationships between them being given by Lemma 9. Without the results in
Lemma 8 and Lemma 9, it would be extremely difficult to actually compute the
optimal policy. This becomes particularly significant as & becomes large.

Finally, we consider the question: under what conditions can we expect the
expression (uLB(z —1)+mLB(z) — 1’%6) to become eventually positive? Recalling

that A(L—b)
=5 Y

we find that the limiting value of LB(xz), as x increases to oo, is governed by
lim e ( ;Q(w +1) - ;Q(x)) Now it is clear that

LB(x) = V]g(z+1) -

. = # b
xh_}n(r)lo(Vﬁ’Q(ac +1) - V@Q(x)) =13 5
since the left hand side is the cost of holding 1 extra customer forever. Therefore,
we have

1-b b A1—b) 1-b

5)T1=5 =5 3

This enables us to conclude that the limiting value of (uLB(z—1)+pLB(z)— 1’%6)
is positive iff the following condition holds

(WLB(x — 1)+ FTLB(z) -

lim
T—00

1-5

g> T-A(1-0) (11)

Inequality (11) gives the simple condition among the parameters of the problem
under which computable bounds can be obtained as in Lemmas 8 and 9. Note
that the condition given in Inequality (11) does not involve the parameter y, and,
more interestingly, the feedback delay parameter k.
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