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Abstract— We study the performance of adaptive window congestion
control, for elastic traffic, when it operates over an explicit feedback rate
control mechanism, in a situation in which the bandwidth available to the
elastic traffic is stochastically time varying. It is assumed that the sender
and receiver of the adaptive window protocol are colocated with the rate
control endpoints. Such a scenario would arise when TCP/IP traffic is
transported over an ATM network in an ABR virtual circuit, an d the
TCP/IP endpoints are also ATM endpoints; the available bandwidth is time
varying as the bottleneck link is shared with time-varying CBR/VBR traf-
fic. The objective of the study is to understand if the interaction of the
rate control loop and the window control loop is beneficial for end-to-end
throughput, and how the parameters of the problem (propagation delay,
bottleneck buffers, and rate of variation of the available bottleneck band-
width) affect the performance.

We develop an analysis, for TCP over end-to-end ABR, when theavail-
able bottleneck bandwidth is modeled as a two state Markov chain. The
analysis explicitly models the bottleneck buffers, the delayed explicit rate
feedback, and TCP’s adaptive window mechanism. The analysis, however,
applies only when the variations in the available bandwidthoccur over pe-
riods larger than the round trip delay. For fast variations of the bottleneck
bandwidth, we provide results from a simulation on a TCP test-bed that
uses Linux TCP code, and a simulation/emulation of the network model
inside the Linux kernel.

We find that, over end-to-end ABR, the performance of TCP improves
significantly if the network bottleneck bandwidth variatio ns are slow as
compared to the round-trip propagation delay. Further, we find that TCP
over ABR is relatively insensitive to bottleneck buffer size. These results
are for a short term average link capacity feedback at the ABRlevel (in-
stantaneous capacity (INSTCAP)). We use the test-bed to study another rate
feedback based on a longer term history of the capacity process. We call this
EFFCAPfeedback, as it is motivated by the notion of theeffective capacity
of the bottleneck link. EFFCAP feeds back the minimum over several (a
parameter N ) short term averages (averaging interval set by a parameterM ). We find that EFFCAP feedback is adaptive to the rate of bandwidth
variations at the bottleneck link, and thus yields good performance (as com-
pared to INSTCAP) over a wide range of the rate of bottleneck bandwidth
variation. We provide a guideline for choosing values of theEFFCAP pa-
rameters. Finally, we study if TCP over ABR, with EFFCAP feedback, pro-
vides throughput fairness even if the connections have different round-trip
propagation delays.

I. I NTRODUCTION

In this paper we report the results of an analytical and simu-
lation study of the interactions between an end-to-end adaptive
window based protocol (such as TCP), and an explicit rate based
protocol (such as ABR), for congestion control in a packet net-
work. It is assumed that the sender and receiver of the adaptive
window control protocol are colocated with the rate control end-
points, as shown in Figure 1.

TCP is by far the dominant end-to-end transport protocol for
elastic traffic in the Internet today. TCP uses an adaptive win-
dow mechanism for flow control, congestion control and band-
width sharing. The normal behaviour of all TCP senders is to
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gradually increase their transmit windows upon receiving ac-
knowledgements, thereby increasing their sending rates. This
continues until some link gets congested as a consequence of
which there is packet loss. Implicit loss indications then cause
senders to reduce their windows. Thus the TCP transmit win-
dow, and hence the TCP transmission rate, has an oscillatory
behaviour that can lead to low link utilisation. Further, owing to
the acknowledgement based self-clocking mechanism, fairness
between sessions is also an issue.

The Available Bit Rate (ABR) service in Asynchronous
Transfer Mode (ATM) networks is primarily meant for trans-
porting best-effort data traffic. Connections that use the ABR
service (so called ABR sessions) share the network bandwidth
left over after serving Constant Bit Rate (CBR; e.g.. circuit em-
ulation) and Variable Bit Rate (VBR; e.g., variable rate com-
pressed video) traffic. This available bandwidth varies with the
requirements of the ongoing CBR/VBR sessions. The switches
carrying ABR sessions continually calculate a fair rate for each
session at each output port, and use Resource Management
(RM) cells to explicitly feed this rate back to the session sources
(see [3]). This explicit rate feedback causes the ABR sources to
reduce or increase their cell transmission rates depending on the
availability of bandwidth in the network.

Even if the wide-area packet transport technology is ATM
based, since the ABR service does not guarantee end-to-end
reliable transport of data, the applications in the end-systems
use TCP as the end-to-end transport protocol. Moreover, with
the evolution of gigabit ethernet, ATM has become primarily a
wide-area networking technology. Hence ATM endpoints would
typically be in edge devices (such as edge routers or proxies)
rather than in clients or servers.

A situation that our work applies to is depicted in Figure 2.
In Figure 2, a proxy at a customer’s site has an ATM network
interface card that attaches it to the ATM WAN, and an Ethernet
card on the LAN side. The situation depicted could represent
an enterprise or a web services provider that is managing (e.g.,
backing up, synchronising) the data on its web servers across
two sites, or an Internet brokerage that has its brokers at one
site and servers at another. One persistent TCP connection can
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Fig. 1. The TCP endpoints are colocated with the ABR endpoints. We call this
scenario TCP over end-to-end ABR.
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Fig. 2. TCP/IP hosts (attached to LANs) communicating over awide area net-
work via proxies. There is a single, long-lived, “proxy-to-proxy” TCP con-
nection over ATM/ABR; the proxies are ATM/ABR endpoints. Each TCP
session between a pair of end systems is carried over two “local” TCP/IP
connections over the LANS (between the end-systems and the their respec-
tive proxies), and over the single TCP/IP/ABR connection over the ATM
WAN.

be set up over the ATM WAN between the proxies at the two
sites, and this connection can be shared by all the transactions
between the sites. Over the local networks, there are short-lived
TCP connections between the web servers or clients and their
respective proxies. In this framework, our results in this paper
would apply to the “proxy-to-proxy” (edge-to-edge) TCP over
ABR connection. Note that, if this is the dominant mechanism
for transporting elastic traffic over the ATM network, then the
ATM WAN carries mostlylong-livedABR connections, making
the end-to-end feedback based ABR approach viable. Further,
the long-lived TCP connection (between the proxies) can main-
tain window state from transfer to transfer thus avoiding slow
start for each short transfer. In addition, each proxy can effec-
tively pace the local connections by using ack pacing, or explicit
rate feedback into the TCP senders in the hosts on the LAN. The
latter approach has been investigated further in [13]. Most im-
portantly, from the point of view of this paper, this network ar-
chitecture justifies studying a single long-lived TCP connection
(or a small number of such TCP connections) over a long-lived
wide area ATM/ABR virtual circuit(s).

One of the concerns in an integrated network is that best ef-
fort elastic traffic shares the network bandwidth with CBR/VBR
sessions. Thus the bandwidth available to elastic traffic is time
varying and stochastic. Effective rate control mechanisms for
ABR can be designed even with stochastic variations in bottle-
neck bandwidth (see [2]). TCP has an adaptive window control
mechanism where the window size oscillates periodically, even
when the network capacity does not change.The question that
we wish to answer is that if TCP operates over a rate control
mechanism such as ABR, whether the interaction is beneficial
or not, and how the interaction can be improved.

Many simulation studies have been carried out to study the
interaction between the TCP and ATM/ABR control loops. Ref-
erence [9] reports a study of the buffering requirements for zero
cell loss for TCP over ABR. It is shown, using simulations,
that the buffer capacity required at the switch is proportional
to the maximum round trip time of all the virtual circuits (VC’s)
through the link, and is independent of the number of sources
(or VC’s). The proportionality factor depends on the switch al-
gorithm. In further work, in [10], the authors introduce various
patterns of VBR background traffic. The VBR background traf-
fic introduces variations in the ABR capacity and the TCP traffic

introduces variations in the ABR demand.

In [6], the authors study the effect of ATM/ABR control on
the throughput and fairness of running large unidirectional file
transfer applications on TCP-Tahoe and TCP-Reno with a sin-
gle bottleneck link with a static service rate. The authors in [16]
study the performance of TCP over ATM with multiple con-
nections, but with a static bottleneck link. The paper reports a
simulation study of the relative performance of the ATM ABR
and UBR (Unspecified Bit Rate) service categories in transport-
ing TCP/IP flows through an edge-to-edge ATM (i.e., the host
nodes are not ATM endpoints) network. Their summary conclu-
sion is that there does not seem to be strong evidence that for
TCP/IP workloads the greater complexity of ABR pays off in
better TCP throughputs. Their results are, however, for edge-to-
edge ABR; they do not comment on TCP over end-to-end ABR
which is what we study in this paper.

All the studies above are primarily simulation studies. There
are also a few related analytical studies. In [11], the authors
study the interaction of TCP and ABR control loops with a focus
on the interaction between the rate increase behaviour of the
ABR source and the ramp-up time of the congestion window
during TCP slow start. They conclude that the ramp-up time of
the TCP window can be significantly prolonged over ABR when
the round-trip time is small. However, in our study, as noted
earlier, we are primarily interested in WANs with large round
trip times, and we focus on the long-term throughput of TCP
with and without rate control. In [4], the authors study TCP over
a fading wireless link, which is modeled as a Markov chain. The
analysis consists of modeling the arrival process into the buffer
of the link as a Bernoulli process, thus neglecting TCP window
dynamics. This, as they note, is different from the arrival stream
generated by TCP.

In this paper, we make the following contributions:

1. We develop an analytical model for a TCP connection over
explicit rate ABR when there is a single bottleneck link with
time varying available capacity. In the analytical model we as-
sume that the explicit rate feedback is based on theshort term
average available capacity; we think of this asinstantaneous
capacity feedback, and we call the approachINSTCAPfeed-
back. We explicitly model TCP’s adaptive window dynamics,
the bottleneck buffer process, stochastic variations of the bottle-
neck rate, and ABR rate feedback with delay. Since we model
the buffer process at the bottleneck link, unlike the approach in
[17], our analysis does not need the loss probability as an exter-
nally provided parameter.
2. We use a test-bed to validate the analytical results. This
test-bed implements a hybrid simulation comprising Linux TCP
code, and a network emulation/simulation implemented in the
loopback device driver code in the Linux kernel.While the anal-
ysis has been done only for slow bottleneck rate variations, as
compared to the round trip time, the simulations study a wide
range of bottleneck rate variations.In spite of the fact that many
of our conclusions are based on simulations, there is important
value in the analysis that we have provided. Simulations are
often used to verify analyses, but the reverse can also be use-
ful. A detailed simulation of a protocol as complex as TCP,
or modification of TCP code, can often lead to erroneous im-
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Fig. 3. The segmentation buffer of the system under study is in the host NIC
card and extends into the host’s main memory. The rate feedback from the
bottleneck link is delayed by one round trip delay.

plementations. If an approximate analysis is available for even
some situations, it can help to validate the simulation code. In
fact, when doing another related piece of work, reported in [13],
a serious error in a simulation was discovered only because the
simulation failed to match an analysis.
3. Then with the loss sensitivity of TCP in mind, we develop an
explicit rate feedback that is based on a notion ofeffective ser-
vice capacityof the bottleneck link (derived from large devia-
tions analysis of the bottleneck queue process). We call thisEF-
FCAPfeedback. EFFCAP is more effective in preventing loss at
the bottleneck buffers. Since the resulting model is hard to ana-
lyze, the results for EFFCAP feedback are all obtained from the
hybrid simulator mentioned above.Our results show that dif-
ferent types of bottleneck bandwidth feedbacks are needed for
slowly varying bottleneck rate, rapidly varying bottleneck rate
and the intermediate regime. EFFCAP feedbackadaptsitself to
the rate of bottleneck rate variation.We then develop guidelines
for choosing two parameters that arise in the on-line calculations
of EFFCAP. Notions of effective service capacity of time vary-
ing links, in the context of congestion control, have also been
introduced and used in [4] and [2].
4. Finally, we study the performance of two TCP connections
that pass through the same bottleneck link, but have different
round trip propagation delays. Our objective here is to deter-
mine whether TCP over ABR is fairer than TCP alone, and un-
der what circumstances. In this study we only use EFFCAP
feedback.

The paper is organized as follows. In Section II, we describe
the network model under study. In Section III we develop the
analysis of TCP over ABR with INSTCAP feedback, and of
TCP alone. In Section IV, we develop the EFFCAP algorithm;
TCP over ABR with EFFCAP feedback is only amenable to
simulation. In Section V, we present analysis results for IN-
STCAP feedback, and simulation results for INSTCAP and EF-
FCAP. The performance of INSTCAP and EFFCAP feedbacks
are compared. In Section VI, we study the choice of two param-
eters that arise in EFFCAP feedback. In Section VII we provide
simulation results for two TCP connections over ABR with EF-
FCAP feedback. Finally, in Section VIII, we summarize the
observations from our work.
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Fig. 4. Queueing model of TCP over end-to-end ABR

II. THE NETWORK MODEL

Consider a system consisting of a TCP connection between a
source and destination node connected by a network with a large
propagation delay as shown in Figure 1. We assume that only
one link (called thebottleneck link) causes significant queueing
delays in this connection, the delays owing to the other links
being fixed (i.e., only fixed propagation delays are introduced
by the other links). A more detailed model of this is shown in
Figure 3. The TCP packets are converted into ATM cells and
are forwarded to the ABR segmentation buffer. This buffer is
in the network interface card (NIC) and extends into the main
memory of the computer. Hence, we can look upon this as an
infinite buffer. The segmentation buffer server (also called the
ABR source) gets rate feedback from the network. The ABR
source service rate adapts to this rate feedback. When we study
TCP alone, this segmentation buffer is absent from the model.

The bottleneck link buffer represents either an ABR output
buffer in an ATM switch (in case of TCP over ABR), or a router
buffer (in case of TCP alone). The network carries other traf-
fic (CBR/VBR) which causes the bottleneck link capacity (as
seen by the connection of interest) to vary with time. The bot-
tleneck link buffer is finite which can result in packet loss due
to buffer overflow when rate mismatch between the source rate
and the link service rate occurs. In our model, we will assume
that a portion of the link capacity is reserved for best-effort traf-
fic, and hence is always available to the TCP connection. In the
ATM/ABR case such a reservation would be made by using the
Minimum Cell Rate (MCR) feature of ABR, and would be im-
plemented by an appropriate link scheduling mechanism. Thus
when guaranteed service traffic is backlogged at this link, then
the TCP connection gets only the bandwidth reserved for best-
effort traffic, otherwise it gets the full bandwidth.Hence a two
state model suffices for the available link rate.

III. TCP/ABR WITH INSTCAP FEEDBACK

Figure 4 shows a queueing model of the network scenario de-
scribed in Section II. At timet, the cells in the ATM segmenta-
tion buffer at the source are transmitted at a time dependent rateS�1t which depends on the ABR rate feedback (i.e.,St is the ser-
vice time of a packet at timet). The bottleneck has a finite bufferBmax and has time dependent service rateR�1t packets=sec.
A. Modeling Assumptions

In order to simplify an otherwise intractable analysis, and to
focus on the basic issue of an adaptive window congestion con-
trol operating over an adaptive rate congestion control, we make
the following modeling assumptions:



1. We model a longed lived TCP connection during the data
transfer phase, hence the data packets are assumed to be of fixed
length (the TCP segment size).
2. The ABR segmentation buffer can extend into the main mem-
ory of the client; hence the segmentation buffer capacity is as-
sumed to be infinite. There are as many packets in this buffer as
the number of untransmitted packets in the TCP window. The
(time dependent) service timeSt at this buffer models the time
taken to transmit an entire TCP packet worth of ATM cells. We
assume that the service rate at the segmentation buffer does not
change during the transmission of the cells from a single TCP
packet.
3. The bottleneck link is modeled as a finite buffer queue
with service rate that is Markov modulated by an independent
Markov chain on two states 0 and 1; the service rate is higher in
state 0. Each packet that enters the buffer has a service rateR�1t
at timet, which is assumed constant over the service time of the
packet.
4. If the bottleneck link buffer is full when a cell arrives to it,
the cell is dropped. In addition, we assume that all cells cor-
responding to that TCP packet are dropped. This assumption
allows us to work with full TCP packets only1.
5. The round trip propagation delay� is modeled by an infinite
server queue with service time�. Notice that various propa-
gation delays in the network (the source-bottleneck link delay,
bottleneck link-destination delay and the destination-source re-
turn path delay) have been lumped into a single delay element
(See Figure 4). This can be justified from the fact that even if
the source adapts itself to the change in link capacity earlier than
one round trip time, the effect of that change will be seen only
after a round trip time at the bottleneck link.
6. On receiving an acknowledgment (ACK) the TCP sender
may increase the transmit window. The TCP window evolu-
tion can be modeled in several ways (see [15], [14], [17]). In
this study, we model the TCP window adjustments in the con-
gestion avoidance phase probabilistically as follows: every time
a non-duplicate ACK arrives at the source, the window sizeWt
increases by one with probability (w.p.)1Wt .Wt+ = � Wt + 1 w.p. 1WtWt otherwise

(1)

7. If a packet is lost at the bottleneck link buffer, the ACK pack-
ets for any subsequently received packets continue to carry the
sequence number of the lost packet. Eventually, the source win-
dow becomes empty, timeout begins and at the expiry of the
timeout, the threshold windowW tht is set to half the maximum
congestion window achieved after the loss, and the next slow
start begins.
This model approximates the behavior of TCP without fast re-
transmit. We consider this simple version of TCP as we are
primarily interested in studying the interaction between rate and
window control. This version is simpler to model and captures
the interaction that we wish to study.
With “packets” being read as “full TCP packets”, we define the
following notation.1This is an idealisation of cell discard schemes, such as Partial Packet Discard
[18] or Early Packet Discard (EPD), designed to prevent the ATM network from
wastefully carrying cells that belong to TCP packets some ofwhose constituent
cells have been lost.

At the number of packets in the segmentation buffer at the host
at timetBt the number of packets in the bottleneck link buffer at timetDt the number of packets in the propagation queue at timetRt the service timeof a packet at the bottleneck link;Rt 2fr0; r1g. We taker0 = 1 andr1 > r0. Thus,all times are
normalized to the bottleneck link packet service time at the
higher service rate.St the service time of a packet at the ABR source.
8. We assume thatSt followsRt with delay�, i.e.,St = Rt��,
andSt 2 fr0; r1g. For simplicity we do not model the detailed
ABR source behaviour which additively increases the transmis-
sion rate in small increments (see [1]). We are not driving the
rate feedback from variations in the bottleneck queue length, but
are directly feeding back the current available rate at the bottle-
neck link.
Since the instantaneous rate of the bottleneck link is fed back,
we call this theinstantaneous rate feedbackscheme. (Note that,
in practice, the instantaneous rate is really the average rate over a
small window; that is how instantaneous rate feedback is mod-
eled in our simulations to be discussed later; we will call this
feedbackINSTCAP.)2

B. Analysis of the Queueing Model

Consider the vector processfZt; t � 0g := f(At; Bt; Dt; Rt; St); t � 0g (2)
This process is hard to analyze directly. Instead, we study an
embedded process, which with suitable approximations, turns
out to be analytically tractable.
Definetk := k�; k � 0. Now, consider the embedded processf ~Zk; k � 0g = fZtk ; k � 0g (3)
with ~Z0 = (1; 0; 0; r0; r0). We will use the obvious notation~Zk = (Ak ; Bk; Dk; Rk; Sk).
For mathematical tractability we will make the following addi-
tional assumptions.
1. We assume that the rate modulating Markov chain is em-
bedded at the epochs(t0; t1; : : :), i.e., the bottleneck link rate
changes only at multiples of�. Thus this analysis will not ap-
ply to cases where the link rate changes more frequently than
once per�. For these cases we will use simulations.
2. We assume that packet transmissions do not straddle the em-
bedded epochs.
3. We assume that there is no loss in the slow start phase of
TCP. In [15], the authors show that loss will occur in the slow
start phase ifBmax�r0+1 < 13 even if no rate change occurs in the

slow start phase. For the case of TCP over ABR, as the source
and bottleneck link rates match, no loss will occur in this phase2Notice that with ABR alone (i.e., ABR is not below TCP), if theaverage
bottleneck link rate is fed back to the source, and the sourcesends at this rate,
then we have an “unstable” open queueing model. With TCP overABR, how-
ever, the model in Figure 4 is a closed queueing network, in which the number
of “customers” is bounded by the maximum TCP window. Hence even if the
ABR source rate is equal to the average service rate at the bottleneck, the sys-
tem will be stable. Also, with INSTCAP rate feedback, the rate feedback will
either ber�10 or r�11 (< r�10 ). If the source sends atr�10 then eventually there
will be a loss, and since TCP is over ABR the system will be “reset”. See [2]
for an approach for explicit rate based congestion control (without TCP) based
on the Effective Service Capacity concept, where the sourcedirectly adapts to
an available rate estimate; the rate estimate is chosen, however, to put a certain
constraint on the queue behaviour if the source was to send atthat rate.
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Fig. 5. The embedded processf(Xj ; Tj); j � 0g
as long as rate changes do not occur during slow-start. This as-
sumption is valid for the case of TCP alone only ifBmax�r0+1 > 13 ;

hence with this assumption we will find that our analysis overes-
timates the throughput when TCP is used alone (without ABR).
4. Timeout and loss recovery model:Observe that packets in the
propagation delay queue (see Figure 4) attk will have departed
from the queue bytk+1. This follows as the service time is de-
terministic, equal to�, andtk+1 � tk = �. Further, any new
packet arriving to the propagation delay queue during(tk; tk+1)
will still be present in that queue attk+1. On the other hand,
if loss occurs due to buffer overflow at the bottleneck link in(tk; tk+1), we proceed as follows. Figure 5 shows a packet loss
epoch in the interval(tk; tk+1). This is the first loss since the
last time that TCP went through a timeout and recovery. At this
loss epoch, there are packets in the bottleneck buffer, and some
ACKs “in flight” back to the transmitter. These ACKs and pack-
ets form an unbroken sequence, and hence will all contribute
to the window increase algorithm at the transmitter (we assume
that there is no ACK loss in the reverse path). The transmit-
ter will continue transmitting until the window is exhausted and
then will start a coarse timer. We assume that this timeout will
occur in the interval(tk+2; tk+3) (see Figure 5), and that recov-
ery starts at the embedded epochtk+3. Thus, when the first loss
(after recovery) occurs in an interval then, in our model, it takes
two more intervals to start recovery3.

At time tk, let ~Zk = (a; b; d; r; s). If no loss has occurred (since
last recovery) untiltk the TCP window attk is a+ b+ d. Now,
given ~Zk, we can find the probability that a loss occurs during(tk; tk+1), and the distribution of the TCP window at the time
that timeout starts. (This calculation depends on the fact thatd
ACKs will arrive at the TCP transmitter duringtk; tk+1, and also
on the probabilistic window evolution model during TCP con-
gestion avoidance; the calculation is explained below.) Suppose
this window isw, then the congestion avoidance threshold in
the next recovery cycle will bem := dw2 e. It will take approx-
imately dlog2me round trip times (each of length�) to reach
the congestion avoidance threshold. Under the assumption that
no loss occurs during the slow start phase, congestion avoidance
starts atk0 = k + 3 + dlog2me, and we can determine the dis-
tribution of ~Zk0 .

With the above description in mind, defineT0 = t0 = 0 andX0 = ~Z0 = (1; 0; 0; r0; r0) (4)3TCP samples some round trip times (RTT’s) of transmitted packets, and uses
an exponentially weighted moving average for estimating anaverage RTT and a
measure of variation of RTT. The retransmission time out (RTO) is then obtained
from these two statistics. It is not possible to capture thismechanism in a simple
Markov model. Hence in our simulations, we modified TCP code so that the
RTO was fixed at two times the RTT.

Fork � 1,Tk = 8>>>><>>>>: Tk�1 +� if no loss occurs
in (Tk�1; Tk�1 +�)Tk�1 + (3 + dlog2 w2 e)� if loss occurs
in (Tk�1; Tk�1 +�)and
the loss window isw

(5)
andXk = ~ZTk . For a particular realization ofXk, we will writeXk = x wherex = (a; b; d; r; s). Definep(x) = Prfloss occurs during(Tk; Tk +�) j Xk = xg (6)
and Uk = (Tk+1 � Tk)� for k � 0 (7)

GivenXk = x, we haveUk = 1 w.p.1� p(x) (8)
We now proceed to analyze the evolution offXk; k � 0g.

The bottleneck link modulating process, as mentioned ear-
lier, is a two state Markov chain embedded atftk; k � 0g
taking values infr0; r1g. Let p01; p10 be the transition prob-
abilities of the Markov chain. Notice thatSk = Rk�1, hence(Rk; Sk) is also a Discrete time Markov chain (DTMC). LetQ be the transition probability matrix for(Rk; Sk). Then,Qn(i1j1; i2j2) =PrfRk+n = i2; Sk+n = j2 j Rk = i1; Sk =j1g, wherei1; j1; i2; j2 2 fr0; r1g.

As explained above, givenXk = (Ak ; Bk; Dk; Rk; Sk), the
TCP congestion window isWk = Ak +Bk +Dk (9)

For particularXk = (a; b; c; r; s), Xk+1 can be determined
using the probabilistic model of window evolution during the
congestion avoidance phase. Consider the evolution ofAk,
the segmentation buffer queue process. If no loss occurs in(Tk; Tk+1), Ak+1 = (a+ d+Nk � �s )+ (10)

whereNk is the increment in the TCP window in the interval,
and is characterized as follows: During(Tk; Tk+1), for each
ACK arriving at the source (say, at timet), the window size
increases by one with probability1Wt . However, we further as-
sume that the window size increases by one with probability1Wk
(whereWk = a + b + d), i.e., the probability does not change
after every arrival but, instead, we use the window atTk. Then,
with this assumption, due tod arrivals to the source queue, the
window size increases by the random amountNk. We see that
for d ACKs, the maximum increase in window size isd. Let
us define ~Nk such that ~Nk � Binomial(d; 1a+b+d ). Then ,Nk = min( ~Nk;Wmax � (a + b + d)). We can similarly get
recursive relations forBk+1 andDk+1 [19].
Let us now define�(x;w) =

Prfwindow achieved isw j Xk = x; loss in(Tk; Tk +�)g
(11)

When no loss occurs,Uk is given by Equation 8. When loss
occurs, givenXk = x = (a; b; c; i1; j1), the next cycle be-
gins after the recovery from loss which includes the next slow
start phase. Suppose that the window was2m when loss oc-
curred. Then, the next congestion avoidance phase will be-
gin when the TCP window size in the slow start phase after
loss recovery reachesm. This will take dlog2me cycles. At



the end of this period, the state of various queues is given by(Ak ; Bk; Dk) = (0; 0;m). The channel state at the start of the
next cycle can be described by the transition probability matrix
of the modulating Markov chain. Hence,Uk = 3 + dlog2me w.p. p(x):�(x; 2m) (12)
and Xk+1 = (0; 0;m; i2; j2) w.p.p(x):�(x; 2m):Q(3+log2m)(i1; j1; i2; j2) (13)

From the above discussion, it is clear that givenXk, the
distribution ofXk+1 can be computed without any knowledge
of its past history. Hence,fXk; k � 0g is a Markov chain.
Further, givenXk, the distribution ofTk+1 can be computed
without any knowledge of past history. Hence, the processf(Xk; Tk); k � 0g is a Markov Renewal Process (MRP) (See
[21]). It is this MRP that is our model for TCP/ABR.

C. Computation of Throughput

Given the Markov Renewal Processf(Xk; Tk); k � 0g, we
associate with thekth cycle (Tk; Tk+1) a “reward”Vk that ac-
counts for the successful transmission of packets. Let�(x) de-
note the stationary probability distribution of the Markov chainfXk; k � 0g. Denote by
TCP=ABR, the throughput of TCP
over ABR. Then, by the Markov renewal-reward theorem ([21]),
we have 
TCP=ABR = E�VE�U (14)

whereE�(�) denotes the expectation w.r.t. the stationary distri-
bution�(x).

The distribution�(x) is obtained from the transition proba-
bilities in Section III-B. We haveE�V =Xx �(x)V (x) (15)

whereV (x) is the expected reward in a cycle that begins withX = x. Denote byA(x), B(x) andD(x) the values ofA, B
andD in the statex. Then, in an interval(Tk; Tk + �) where
no loss occurs, we takeV (x) = D(x) w.p. 1� p(x) (16)
Thus for lossless intervals the reward is the number of acknowl-
edgments returned to the source; note that this actually accounts
for packets successfully received by the receiver in previous in-
tervals.

Loss occurs only if the ABR source is sending at the high rate
and the link is transmitting at the low rate. When loss occurs
in (Tk; Tk + �), we need to account for the reward in the in-
terval starting fromTk until Tk+1 when slow-start ends. Note
that atTk the congestion window isA(x) +B(x) +D(x). The
first component of the reward isD(x); all theB(x) buffered
packets will result in ACKs, causing the left edge of the TCP
window to advance. Since the link rate is half the source rate,
loss will occur when2(Bmax � B(x)) packets enter the link
buffer from the ABR source; these packets succeed and cause
the left edge of the window to further advance. Further, we as-
sume that the window grows by 1 in this process; hence, follow-
ing the lost packet, at mostA(x) + B(x) + D(x) + 1 packets
can be sent. Thus we bound the reward before timeout occurs byD(x)+B(x)+2(Bmax�B(x))+A(x)+B(x)+D(x)+1 =A(x) + 2D(x) + 2Bmax + 1. After loss and timeout, the ensu-
ing slow-start phase successfully transfers some packets (as de-
scribed earlier). Hence, an upper bound on the “reward” when

Ct

Ct

Constant  Rate

t

Arrival  Process

Bmax

Fig. 6. Single server queue with time varying service capacity, being fed by a
constant rate source.

loss occurs isA(x)+2D(x)+2Bmax+1+Sslowstart(x), whereSslowstart(x) =Xw �(x;w)(2log2 w2 � 1) (17)

the summation indexw being over all window sizes. Actually,
this is an optimistic reward as some of the packets will be trans-
mitted again in the next cycle even though they have success-
fully reached the receiver. We could also have a conservative
accounting, where we assume that if loss occurs, all the packets
transmitted in that cycle are retransmitted in future cycles. In the
numerical results, we shall compare the throughputs with these
two bounds. It follows thatE�V =Xx �(x)((1 � p(x))D(x)+p(x)(A(x) + 2D(x) + 2Bmax + 1 +Xw �(x;w)(2log2(w2 ) � 1))) (18)

Similarly we have E�U =Xx �(x)U(x) (19)

whereU(x) is the mean cycle length whenX = x at the begin-
ning of the cycle. From the analysis in Section III-B, it follows
thatU(x) = � 1 w.p. 1� p(x)Pw(3 + dlog2 w2 e)�(x;w) otherwise

(20)
Hence,E�U =Xx �(x)((1�p(x))+p(x)Xw �(x;w)(3+dlog2w2 e))

(21)

D. TCP without ATM/ABR

Without the ABR rate control, the source host would transmit
at the full rate of its link; we assume that this link is much faster
than the bottleneck link and model it as infinitely fast. The sys-
tem model is then very similar to the previous case, the only dif-
ference being that we have eliminated the segmentation buffer.
The assumptions we make in this analysis, however, lead to an
optimistic estimate of the throughput. The analysis is analogous
to that provided above.

IV. TCP/ABR WITH EFFCAP FEEDBACK

We now develop another kind of rate feedback. To motivate
this approach, consider a finite buffer single server queue with
a stationary ergodic service process (see Figure 6). Suppose
that the ABR source sent packets at a constant rate. Then, we
would like to find that rate which maximizes TCP throughput.
Hence, let the input process to this queue be aconstant rate
deterministic arrival process. Given the buffer sizeBmax and
a desired Quality of Service (QoS) (say a cell loss probability� �), we would like to know the maximum rate of the arrival
process such that the QoS guarantee is met.



We look at a discrete time approach to this problem (see [20]);
in practice, the discrete time approach is adequate as the rate
feedback is only updated at multiples of some basic measure-
ment interval. Consider a slotted time queueing model where
we can serviceCi packets in sloti and the buffer can holdBmax
packets.fCig is a stationary and ergodic process; letEC be the
mean of the process andCmin be the minimum number of pack-
ets that can be served per slot. A constant number of packets
(denoted by
) arrive in each slot. We would like to find
max
such that the desired QoS (cell loss probability� �) is achieved.
In [20], the following asymptotic condition is considered. IfX
is a random variable that represents the stationary queue length,
then, with� > 04,limBmax!1 1Bmax logP (X > Bmax) < �� (22)

i.e., for largeBmax the loss probability is better thene��Bmax .
It is shown that this performance objective is met if
 < �1� limn!1 1n+ 1 logEe��Pni=0 Ci (23)

For the desired QoS we need� = �log�Bmax . Let us denote the
expression on the right hand side of Equation 23 as�eff. Then,�eff can be called theeffective capacityof the server. If�! 1,
then�eff ! EC and as�! 0, �eff ! Cmin which is what we
intuitively expect. For all other values of�, �eff 2 (Cmin; EC).

Let us apply this effective capacity approach to our problem.
Let the ABR source (see Figure 3) adapt to the effective band-
width of the bottleneck link server. In our analysis, we have
assumed a Markov modulated bottleneck link capacity, changes
occurring at most once every� units of time,� being the round
trip propagation delay. Hence, we have a discrete time model
with 
 being the number of packet arrivals to the bottleneck link
in � units of time andCi being the number of packets served
in that interval. We will compute the effective capacity of the
bottleneck link server using Equation 23. However, before we
can do this, we still need to determine the desired QOS, i.e,� or
equivalently,�.

To find �, we conduct the following experiment. We let
the ABR source transmit at some constant rate, say�; � 2(EC;Cmin). For a given Markov modulating process, we find
that� which maximizes TCP throughput. We will assume that
this is the effective capacity of the bottleneck link. Now, using
Equation 23, we can find the smallest� that results in an effec-
tive capacity of this�. If the value of� so obtained turns out to
be consistent for a wide range of Markov modulating processes,
then we will use this value of� as the QoS requirement for TCP
over ABR.

The above discrete time queueing model for TCP over ABR
can be analyzed in a manner analogous to that in Section III-
B. We find from the analysis that for several sets of parameters,
the value of� which maximizes TCP throughput is consistently
very large (about 60-70) ([19]). This is as expected since TCP
performance is very sensitive to loss.

A. Algorithm for Effective Capacity Computation

In practice, we do not knowa priori the statistics of the modu-
lating process. Hence, we need an on-line method of computing
the effective bandwidth. In this section, we develop an algorithm4All logarithms are taken to the basee

M  Samples

N  Averages

time

Fig. 7. Schematic of the windows used in the computation of the effective
capacity based rate feedback.

for computing the effective capacity of a time varying bottleneck
link carrying TCP traffic. The idea is based on Equation 23, and
the observation at the end of the previous section that� is very
large.

We take the measurement interval to bes time units;s is also
the update interval of the rate feedback. We shall approximate
the expression for effective bandwidth in Equation 23 by replac-
ing n!1 by a large finiteM .�eff � �1M� logEe��PMi=1 Ci (24)

What we now have is an effective capacity computation per-
formed overMs units of time. We will assume that the process
is ergodic and stationary. Hence, we approximate the expecta-
tion by the average ofN sets of samples, each set taken overMs units of time. Note that since the process is stationary and
ergodic, theN intervals need not be disjoint for the following
argument to work. Then, denotingCij as theith link capacity
value (i 2 f1;Mg) in thejth block ofM intervals (j 2 f1; Ng),
we have�eff � �1M� log 1N NXj=1 e��PMi=1 Cij (25)= �1M� log 1N � 1M� log NXj=1 e��PMi=1 Cij (26)

(27)
As motivated above, we now take� to be large. This yields��!1 �1M� log e��(minj2NPMi=1 Cij)

(28)= minj2N 1M MXi=1 Cij (29)

We notice that this essentially means thatwe average capacities
overN sliding blocks, each block representingMs units of time,
and feed back the minimum of these values(see Figure 7).

The formula that has been obtained (Equation 29) has a par-
ticularly simple form. The above derivation should be viewed
more as a motivation for this formula. The formula, however,
has independent intuitive appeal; see below. In the derivation it
was required thatM andN should be large. We can, however,
study the effect of the choice ofM andN (large or small) on the
performance of effective capacity feedback. This is done in Sec-
tion VI, where we also provide guidelines for selecting values ofM andN under various situations.

The formula in Equation 29 is intuitively satisfying; we will
call it EFFCAPfeedback. Consider the case when the network
changes are very slow. Then, allN values of the average ca-
pacity will be the same, and each one will be equal to the ca-
pacity of the bottleneck link. Hence, the rate that is fed back to
the ABR source will be the instantaneous free capacity of the
bottleneck link; i.e., in this situation EFFCAP is the same as



INSTCAP. When the network variations are very fast, EFFCAP
will be close to the mean capacity of the bottleneck link. Hence,
EFFCAP behaves like INSTCAP for slow network changes and
adapts to the mean bottleneck link capacity for fast changes.
For intermediate rates of changes, EFFCAP is (necessarily) con-
servative and feeds back theminimumlink rate.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we first compare our analytical results for the
throughput of TCP, without ABR and with ABR with INSTCAP
feedback, with simulation results from a hybrid TCP simulator
involving actual TCP code, and a model for the network im-
plemented in the loopback driver of a Linux Pentium machine.
We show that the performance of TCP improves when ABR is
used for end-to-end data transport below TCP. We then study
the performance of the EFFCAP scheme and compare it with
the INSTCAP scheme.

We recall from the previous section that the bottleneck link
is Markov modulated. In our analysis, we have assumed that
the modulating chain has two states which we call the high state
and the low state. In the low state, with some link capacity being
used by higher priority traffic, the link capacity is some fraction
of the link capacity in the high state (where the full link rate is
available). We will assume that this fraction is 0.5. To reduce
the number of parameters we have to deal with, we will also
assume that the mean time in each state is the same, i.e., the
Markov chain is symmetric. We denote the mean time in each
state by� , and denote the mean time in each state normalized
to � by  , i.e., := �� . For example, if� is 200msec, then = 2 means that the mean time per state is 400msec. Note that
our analysis only applies to > 1; in this section we provide
simulation results for a wide range of , much smaller than 1,
close to 1, and much larger than 1. A large value of means that
the network changes are slow compared to�, whereas << 1
means that the network transients occur several times per round
trip time. In the Linux kernel implementation of our network
simulator, the Markov chain can make transitions at most once
every 30msec. Hence we take this also to be the measurement
interval, and the explicit rate feedback interval (i.e.,s = 30ms).

We denote one packet transmission time at the bottleneck link
in thehigh rate stateasone time unit. Thus, in all the results
presented here, the packet transmission time in the low rate state
is 2 time units. Thus if� is given in these time units then the
bandwidth-delay product in the high rate state is� packets, and
in the low rate state it is�2 packets.

We plot the bottleneck link efficiency vs. mean time that
it spends in each state (i.e., ). We defineefficiencyas the
throughput as a fraction of the mean capacity of the bottle-
neck link. We include the TCP/IP headers in the throughput,
but account for ATM headers as overhead. We use the words
throughput and efficiency interchangeably. With the modulating
Markov chain spending the same time in each state, the mean
capacity of the link is 0.75.

Finally, before presenting the results, we note that� is an
absolute parameter in the curves we present since it governs the
round trip “pipe”. Thus, although is normalized to�, the
curves do not yield values for fixed and varying�. Separate
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Fig. 8. Analysis and Simulation results: INSTCAP feedback.Throughput of
TCP over ABR: The round trip propagation delay is 40 time units. The
bottleneck link buffers are either 10 or 12 packets.

curves need to be plotted if� is changed.

A. Results for INSTCAP Feedback

Figure 8 shows the throughput of TCP over ABR with the
INSTCAP scheme5. Here, we compare an optimistic analysis, a
conservative one (see Section III-C), and the test-bed (i.e., sim-
ulation) results for different buffer sizes. In this example, the
bandwidth delay product in the high rate state is 40 packets, and
the buffer sizes considered are 10 and 12 packets, respectively
50% and 60% of the bandwidth delay product in the low rate
state.

In our analysis, the processes are embedded at multiples of
one round trip propagation delay, and the feedback from the
bottleneck link is sent once every RTT. This feedback reaches
the ABR source after one round trip propagation delay. In the
simulations, however, feedback is sent to the ABR source ev-
ery 30msec. This reaches the ABR source after one round trip
propagation delay.

We see that, except for very small , the analysis and the
simulations match to within a few percent. Both the analyses are
less than the observed throughputs by about 10-20% for small . In our analysis we have assumed that packets leave back
to back from the ABR source. When the bottleneck link rate
changes from high to low, as the packets arrive back to back,
and the source sends at twice the rate of the bottleneck link,
for every two packets arriving to the bottleneck link, one gets
queued. However, in reality, the packets need not arrive back
to back and hence, the queue buildup is slower. This means
that the probability that packet loss occurs at the bottleneck link
buffer is actually lower than in our analytical model. This effect
becomes more and more significant as the rate of bottleneck link
variations increases. However, we observe from the simulations
that this effect is not significant for most values of .

Figure 9 shows the throughput of TCPwithoutABR. We can
see that the simulation results give a throughput of upto 20%5Even if ! 1, the throughput of TCP over ABR will not go to 1 because
of ATM overheads. For every 53 bytes transmitted, there are 5bytes of ATM
headers. Hence, the asymptotic throughput is approximately 90%.



0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 20 40 60 80 100 120 140 160 180 200

E
ff

ic
ie

n
c
y

Mean time per state (rtd)

"TCP Analysis, 10 packets"
"TCP Analysis, 12 packets"
"TCP testbed, 10 packets"
"TCP testbed, 12 packets"

Fig. 9. Analysis and Simulation results; throughput of TCPwithoutABR : The
round trip propagation delay is 40 time units. The bottleneck link buffers
are either 10 or 12 packets.

less than the analytical ones (note the scales of Figures 9 and 8
are different). This occurs due to two reasons.

(i) We assumed in our analysis that no loss occurs in the slow-
start phase. It has been shown in [15] that if the bottleneck link
buffer is less than13 of the bandwidth-delay product (which cor-
responds to about 13 packets or 6500 byte buffer in the high rate
state), loss will occur in the slow-start phase.
(ii) We optimistically compute the throughput of TCP by using
an upper bound on the “reward” in the loss cycle.

We see from Figures 8 and 9 that ABR makes TCP throughput
insensitive to buffer size variations. However, with TCP alone,
there is a worsening of throughput with buffer reduction. This
can be explained by the fact that once the ABR control loop has
converged, the buffer size is immaterial as no loss takes place
when source and bottleneck link rate are the same. However,
without ABR, TCP loses packets even when no transients occur.

An interesting result from this study is that TCP dynamics do
not play an important part in the overall throughput for large .
This is intuitively understandable for the reason described above
(i.e., the TCP dynamics are “smoothed out” at the ABR buffer
at the source, once the ABR loop has converged). This point can
also be seen from the fact that even though our analysis of TCP
window dynamics is approximate, it leads to a surprisingly good
match with the simulations for TCP/ABR. However, as noted
before, in the case of TCP alone, the simulation and analysis do
not match very well, as the TCP dynamics plays an important
role in the overall throughput.

B. Results for EFFCAP and INSTCAP Feedback

In Figure 10, we use results from the test-bed to compare
the relative performance of EFFCAP and INSTCAP feedback
schemes for ABR. Recall that the EFFCAP algorithm has two
parameters, namelyM , the number of samples used for each
block average, andN , the number of blocks ofM samples over
which the minimum is taken. In this figure, the EFFCAP scheme
usesM = 7, i.e, we average over one round trip propagation de-
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Fig. 11. Simulation results; Comparison of the EFFCAP and INSTCAP feed-
back schemes for TCP over ABR for various bottleneck link buffers (8-12
packets).� is 40 time units. Here,N = 49 andM = 7 (see Figure 7). In
this figure, we compare their performances for small values of  .

lay6 worth of samples. We also maintain a window of 8� worth
of averages, i.e, we maintainN = (8 � 1) � 7 = 49 averages
over which the bottleneck link returns the minimum to the ABR
source. (We will discuss issues regarding choice ofM andN
in Section VI below.) The source adapts to this rate. In the case
of the INSTCAP scheme, in the simulation, the rate is fed back
every 30msec.

We can see from Figure 10 that for large , the throughput
with EFFCAP is worse than that with the INSTCAP scheme by
about 3-4%. This is because of the conservative nature of the
EFFCAP algorithm; it takes the minimum of the available ca-
pacity over several blocks of time in an interval, and hence may
feed back a lower rate than necessary. This result also shows that
when is large since rate changes are infrequent it is sufficient
to feedback the short term average rate.6A new sample is generated every 30msec. The� is 200msec in this example.
Hence, M = 200/30 = 6.667 which we round up to 7.
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Fig. 13. Simulation results; Comparison of throughput of TCP over ABR with
effective capacity scheme, instantaneous rate feedback scheme and TCP
without ABR for a buffer of 10 packets, the other parameters remaining the
same as in other simulations.

However, we can see from Figure 11 that for small , the
EFFCAP algorithm improves over the INSTCAP approach by
10-20%. This is a significant improvement and it seems worth-
while to lose a few percent efficiency for large to gain a large
improvement for small . When is close to 1, if the short
term average rate is fed back (as INSTCAP does) then there
are frequent mismatches between the source rate and the bottle-
neck service rate. The EFFCAP algorithm takes a minimum of
the service rate averages over several intervals, and hence most
probably feeds back the minimum link rate, thus minimising rate
mismatches. Note that the minimum link rate (0.5) normalised
to the average rate (0.75) is 0.67. We will see in Section VI
that with appropriate choice ofM andN the throughput with
EFFCAP can me made to approach this best case value.

To summarize, in Figures 12 and 13, we have plotted the
throughput of TCP over ABR using the two different feedback
schemes. We have compared these results with the through-

put of TCPwithout ABR. We can see that for� > 20 (Fig-
ure 12) the throughput of TCP improves if ABR is employed for
link level data transport, and the INSTCAP feedback is slightly
better. When� is comparable to the time for which the link
stays in each state (Figure 13) then TCP performs better than
TCP/ABR with INSTCAP feedback. This is because, in this
regime, by feeding back the short-term average rate the source
rate and link rate are frequently mismatched, resulting in losses
or starvation. On the other hand, EFFCAP feedback is able to
keep the throughput better than that of TCP even in this regime.
These observations clearly bring out the merits of the EFFCAP
scheme. Implicitly, EFFCAP feedback adapts to , and per-
forms better than TCP alone over a wide range of . EFFCAP,
however, requires the choice of two parametersM andN ; in the
next section we provide guidelines for this choice.

VI. CHOICE OFM AND N FOR EFFCAP

From Figures 10 and 11, we can identify three broad regions
of performance in relation to .

For = �� very large ( > 50), the rate mismatch occurs for
a small fraction of� . Also the rate mismatches are infrequent,
implying infrequent losses, and higher throughput. Hence, it is
sufficient to track the instantaneous available capacity by choos-
ing small values ofM andN . This is verified from Figure 10
which shows that the INSTCAP feedback performs better in this
region.

On the other hand, when� is a small fraction of� ( < 0:2)
there are frequent rate mismatches but of very small durations
as compared to�. Because of the rapid variations in the capac-
ity, even a smallM provides the mean capacity. Also all theN averages roughly equal the mean capacity. Thus, the source
essentially transmits at the mean capacity in EFFCAP as well as
INSTCAP feedback. Hence a high throughput for both types of
feedback is seen from Figure 11.

For the intermediate values of (0:5 <  < 20), � is compa-
rable to�. Hence rate mismatches are frequent, and persist rela-
tively longer causing the buffer to build up to a larger value. This
leads to frequent losses. The throughput is adversely affected by
TCP’s blind adaptive window control. In this range, we expect
to see severe throughput loss for sessions with large�. There-
fore, in this region, we need to chooseM andN to avoid rate
mismatches. The capacity estimate should yield theminimum
capacity (i.e., the smaller of the two rates in the Markov pro-
cess), implying the need for smallM and largeN . A smallM
helps to avoid averaging over many samples and hence helps to
pick up the two rates of the Markov chain, and a largeN helps
to pick out the minimum of the rates.

The selection ofM andN cannot be based on the value of alone, however.� is an absolute parameter in TCP window
control and has a major effect on TCP throughput, and hence on
the selection ofM andN . The above discussion motivates a
small value ofM for all the ranges of , a smallN for large ,
and largeN for  close to 1 or smaller than 1. We also note that
small values of are more likely to occur in practice.

In the remainder of this section we present simulation results
that support the following rough design rule. If the measurement
interval iss, then takeM to bed�s e, i.e., the averages should
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Fig. 14. Efficiency vs for increasing values ofN . M : � andN :2�; 4�; 8�. We take� = 200ms. ThusM = 7 andN = 7; 14; 49. �
is varied from 32ms to 40s.

be over one round trip time. TakeN to be in the range8d�s e
to 12d�s e; i.e., multiple averages should be taken over 8 to 12
round trip times, and the minimum of these fed back.

We note here that the degradation of throughput in the inter-
mediate range of values of depends on the buffers available at
the bottleneck link. This aspect is studied in [12].

A. Simulation Results and Discussion

Simulations were carried out on the hybrid simulator that was
also used in Section V. As before, the capacity variation pro-
cess is a two state Markov chain. In the high state, the capacity
value is 100KB/sec (KB= Kilo Bytes) while in the low state it
is 50KB/sec. The mean capacity is thus 75KB/sec. In all the
simulations, the measurement and feedback intervals = 30ms
and link buffer is 5KB (or 10 packets).

We introduce the following notation in the simulation results.M : � means that each average is calculated overd�s e mea-
surement intervals.N : k� means that(k� 1)�d�s e averages
are compared (or the memory of the algorithm isk round trip
times). For example, let� = 200ms ands = 30ms, then,M : � ) M = 7 measurement intervals,N : 2� ) N =(2 � 1) � 7 = 7 (i.e., minimum of 7 averages). Similarly,N : 8� ) N = (8 � 1) � 7 = 49 (i.e., minimum of 49
averages).

A.1 Study ofN
Case 1: Fixed�; varying � . Figure 14 shows the effect ofN
on the throughput for a given�, when� (or equivalently the
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Fig. 15. Efficiency vs. . � is 100ms.� is varied (right to left) from 50ms to
500ms.M : �.
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Fig. 16. Efficiency vs. . � is 1000ms.� is varied (right to left) from 50ms to
500ms.M : �

rate of capacity variation) is varying. These results corroborate
the discussion at the beginning of Section VI for fixed�. No-
tice that when0:3 <  < 1, as expected, an improvement in
efficiency is seen for largerN .
Case 2: Fixed� ; varying �. Figures 15 and 16 show the Ef-
ficiency variation with for different values ofN when� is
fixed and� is varied. Note that,N is different for different�s
on aN : k� curve. For example,N on theN : 4� curve for� = 50ms and� = 100ms is respectively 6 and 12.

Notice that compared to Figure 14, Figures 15 and 16 show
different efficiency variations with . This is because, in the for-
mer case� is varied and� is constant, whereas in the latter case� is fixed and� varied. As indicated in Section VI,� is an ab-
solute parameter which affects the throughput ( = 2 in Figure
15 corresponds to�=50ms and in Figure 16 it corresponds to
500ms). The considerable throughput difference demonstrates
the dependence on the absolute value of�.

In Figure 15, a substantial improvement in the throughput
is seen asN increases. In addition, a largerN gives better
throughput over a wider range of�. This is because, for a given�, a largerN tracks the minimum capacity value better. The
minimum capacity is 50KB/sec, which is 66% of the mean ca-
pacity 75KB/sec. Hence, asN increases efficiency increases to
0.6. Similarly in Figure 16, for < 8 larger values ofN im-
prove the throughput. When > 10, we see that smallerN
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Fig. 17. Efficiency vsM . � is 1000ms and� takes values- 50ms, 100ms and
200ms. The top graph hasN : 2� and the bottom graphN : 12�.

performs better, but the improvement is negligible.
Note that for large , N as low as4� to 6� yields high

throughput whereas for small , N needs to be considerably
higher (10� to 12�) to achieve high throughput. This can be
explained as follows. We useM : �, which implies that for
small , the average over� yields the average rate, whereas for
large it yields the peak or minimum rate. Thus for large , the
minimum over just few�s is adequate to yield a high through-
put, whereas for small many more averages need to be mini-
mized over to get the minimum rate. Notice, however, that for
large increasingN does not seriously degrade efficiency.

In conclusion, the choice ofN is based on and�, but a
value ofN in the range8d�s e to 12d�s e is a good compromise.

A.2 Study ofM
It is already seen from Figure 10 that for > 60, a small

value ofM should be selected. To study the effect ofM on the
lower ranges of ,M is varied from 1 to 10 measuring intervals
(i.e.,s). Also, two settings ofN are considered to differentiate
its effect. The results are shown in Figure 17 (� = 1000ms) and
Figure 18 (� = 100ms). The values of� are 50ms, 100ms and
200ms. Thus the range of (= ��) is 5 to 20 in Figure 17, and
0.5 to 2 in Figure 18.

Recall that, in the intermediate range of the bottleneck ca-
pacity estimate should yield the minimum capacity. With smallM , the minimum value can be tracked better. This is seen from
Figure 17 for� = 50 ms ( = 20); the throughput decreases
slowly with increasingM . Notice from Figure 17 that a larger
value ofN improves efficiency, as more samples implies a bet-
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Fig. 18. Efficiency vsM . � is 100ms and� takes values- 50ms, 100ms and
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ter chance of picking up the minimum rate. In Figure 18, forN : 2�, the throughput is insensitive to the variation inM .
Again increasingN improves throughput. Insensitivity toM is
observed in the case ofN : 12� for  = 0:5 but for larger , 1
or 2, i.e.,�=100ms or 50ms, a 10-15% decrease in the through-
put is seen for larger values ofM . This is becauseN : 12� is
not sufficient to track the minimum with larger values ofM .

We conclude that in the intermediate range of , the through-
put is not very sensitive toM . For small� and larger (e.g.� = 50ms, = 20) a smallM performs better since it is pos-
sible to track the instantaneous rate. In general, a small value ofM improves the throughput in all the ranges. In Figures 17 and
18,s = 30ms and we haved�s e equal to 2, 4, and 7. We notice
that, as a rule of thumb,M : � gives good performance in each
case.

B. Implementation of EFFCAP when� is Not Known

The simulation results presented in Sections VI-A.1 and VI-
A.2 have supported the guidelines for choosingM andN pre-
sented in Section VI. We find that these parameters depend on
the round trip time� for the connection, a parameter that will
not be known at the switch at which the EFFCAP feedback is
being computed. However,� would be (approximately) known
at the source node. This knowledge could come either during
the ATM connection setup, or from the RTT estimate at the TCP
layer in the source. Hence one possibility is for the network to
provide INSTCAP feedbacks (i.e., the short term average capac-
ity over the measurement intervals), and the source node can
then easily compute the EFFCAP feedback value. The INST-
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Fig. 20. Comparison between Efficiency of sessions with TCP alone and TCP
over ABR employing EFFCAP feedback (Case 1:Mi : �i).

CAP feedback can be provided in ATM Resource Management
(RM) cells ([1]).

VII. TCP/ABR WITH EFFCAP FEEDBACK: FAIRNESS

It is seen that TCP alone is unfair towards sessions that have
larger round trip times. It may be expected however, that TCP
sessions over ABR will get a fair share of the available capacity.
In [19], the fairness of the INSTCAP feedback was investigated
and it was shown that for slow variations of the available capac-
ity, TCP sessions over ABR employing the INSTCAP feedback
achieve fairness. In this section we study the fairness of TCP
sessions over ABR with the EFFCAP feedback scheme

Denote by�1 and�2, the round-trip times of Session 1 and
Session 2 respectively. Other notations are as described earlier
(subscripts denote the session number). In the simulations, we
use�1 = 240ms and�2 = 360ms. The link buffer size is
9000 bytes (18 packets). In the following graphs is � (mean
time per state of the Markov chain) divided by larger�i, i.e.,�2 = 360ms. Simulations are carried out by calculating the
EFFCAP by two different ways as explained below.

A. Case 1: Effective Capacity withMi : �i
In this case, we calculate the EFFCAP for each session inde-

pendently. This is done by selectingMi proportional to�i, that
is (with a 30ms update interval) we selectM = 8 for Session
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Fig. 21. Efficiency vs (mean time per state normalized to�2 = 360ms).M = (�1+�2)2 = 10 measurement intervals.N = 110 averages. Each
session is fed back the fair share (half) of the EFFCAP calculated.
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Fig. 22. Comparison between Efficiency of sessions with TCP alone and TCP
over ABR employing EFFCAP feedback (Case 2:M = �1+�22 ).

1 andM = 12 for Session 2. We takeNi : 12�i, i.e.,N1 is
88 andN2 is 132 (see section VI).EFFCAPi is computed withMi andNi; sessioni is fedback12 of EFFCAPi.

Figure 19 shows the simulation results for � 1. Fig-
ure 20 shows the comparison of TCP throughputs and TCP/ABR
throughputs. It can be seen that for very small values of 
( < 0:3), the sessions receive equal throughput. However, for0:3 <  < 20 unfairness is seen towards the session with larger
propagation delay. This can be explained from the discussion in
Section VI. In this range of , due to frequent rate mismatches
and hence losses, TCP behavior is dominant. A packet drop
leads to greater throughput decrease for a session with larger�
than for a session with smaller�. The throughputs with TCP
over ABR are, however, fairer than with TCP alone which re-
sults in grossly unfair throughputs.

B. Case 2: Effective Capacity withM : (�1+�2)2
In this simulationM corresponds to the average of�1

and�2, i.e., 300ms (10 measurement intervals). WithN :12 (�1+�2)2 , we haveN=110. By choosingM andN this way,
the rate calculation is made independent of individual round-trip
times.

Figure 21 shows results for < 1. Figure 22 shows re-
sults for TCP as well as TCP/ABR. We notice that EFFCAP
calculated in this way yields somewhat better fairness than the



scheme used in Case 1. It is also seen that better fairness is ob-
tained even in the intermediate range of . However, there is a
drop in the overall efficiency. This is because the throughput of
the session with smaller� is reduced.

There is a slight decrease in the overall efficiency with TCP
over ABR; but note that with TCP over ABR the link actually
carries 10% more bytes (the ATM overhead) than with TCP
alone! We have also found that for < 20 EFFCAP gives
relatively better fairness than INSTCAP, based on the results for
the latter that were reported in [19].

Finally, we observe that if EFFCAP is implemented with the
approach suggested in Section VI-B then the Case 1 (Mi : �i)
discussed in this section is actually achieved.

VIII. C ONCLUSIONS

In this paper we set out to understand if running an adaptive
window congestion control (TCP) over an endpoint-to-endpoint
explicit rate control (ATM/ABR) is beneficial for end-to-end
throughput performance. We have studied two kinds of explicit
rate feedback, INSTCAP, in which the short term average capac-
ity of the bottleneck link is fed back, and EFFCAP, in which a
measure motivated by a large deviations effective service capac-
ity, and based on the longer term history is fed back. We have
seen, from the analysis and simulation results, that the through-
put of TCP over ABR depends on the relative rate of capacity
variation with respect to the round trip delay in the connection.
For slow variations of the link capacity (the capacity varies over
periods of over 20 times the round trip delay) the improvement
with INSTCAP is significant (25% to 30%), whereas if the rate
variations are over durations comparable to the round trip de-
lay then the TCP throughput with ABR can be slightly worse
than with TCP alone. An interesting observation is that TCP
dynamics do not appear to play an important part in the overall
throughput when the capacity variations are slow.

EFFCAP rate feedback has the remarkable property of au-
tomatically adapting what it feeds back to the rate of varia-
tion of the bottleneck link capacity, and thus achieves higher
throughputs than INSTCAP, always beating the throughput of
TCP alone. The EFFCAP computation involves two parametersM andN ; at each update epoch EFFCAP feeds back the mini-
mum ofN short term averages, each taken overM measurement
intervals. For EFFCAP to display its adaptive behaviour, these
parameters need to be chosen properly. Based on extensive sim-
ulations, we find that, as a broad guideline (for the buffer sizes
that we studied) for ideal performance EFFCAP should be used
with each average being taken over a round trip time, and the
minimum should be taken over several averages taken over the
previous 8 to 12 round trip times.

Finally, we find that TCP over ABR with EFFCAP feedback
provides throughput fairness between sessions that have differ-
ent round trip times.
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