
1Performance Analysis of Microcellisationfor Supporting Two Mobility Classesin Cellular Wireless NetworksK. Maheshwari and Anurag KumarAbstract| We study the call blocking performance ob-tained by microcellising a macrocell network. Each macro-cell is partitioned into microcells, and some of the channelsoriginally allocated to the macrocell are assigned to the mi-crolayer cells according to a reuse pattern. The arrivingcalls are classi�ed as fast or slow ; fast calls are always as-signed only to macrocell channels, whereas for slow calls amicrocell channel is �rst sought. Slow calls may be allowedto overow to the macrolayer, but may be repacked to va-cated microcell channels. Calls can change their mobility classduring a conversation. We develop an approximate analy-sis for computing the slow and fast call blocking probabili-ties in such a system. We adopt the technique of analysingan isolated macrocell with the Poisson arrival assumption,and then iterating on the stationary analysis of the isolatedmacrocell to obtain stationary results for the multicell sys-tem. Simple, but accurate approximations are developedfor analysing the isolated macrocell and its associated mi-crocells. The analyses based on the approximate isolated cellmodel are validated against simulations of a multicell model.I. IntroductionIn cellular wireless mobile telephony systems, a decreasein the size of the cells allows more frequency reuse in agiven area. With the decrease in size of the cells, however,there is an increase in the number of cell boundaries thata mobile unit crosses. These boundary crossings stimulatehando�s and location tracking operations. Thus the sig-nalling capacity of the signalling processors (in the BaseStations and the Mobile Switching Centres) can limit thecall handling capacity of a cellular system as the cell sizeis decreased. These issues are discussed in [7].One way of controlling the increase of signalling traf-�c, while deriving the frequency reuse advantage of smallercells, is to consider a cellular (macrocellular) network, andsubdivide the large cells into smaller microcells (see [14]).Radio channels are allocated to macrocells and to micro-cells. Each mobile call is then classi�ed as belonging to oneof two mobility classes, fast and slow. A call that originatesat or terminates on a slow mobile (henceforth referred toas a slow call) is allocated to a channel in the microcell inwhich the mobile is currently located, whereas a fast call isallocated to a macrocell. It can be expected that, with ap-propriate engineering of such a system, more tra�c can behandled, with a given number of channels and a requiredgrade of service, while limiting the increase of signallingK. Maheshwari is currently at Lucent Technologies Bell Laborato-ries, Holmdel, N.J., 07733, USA; email: mahe@lucent.comAnurag Kumar is with the Dept. of Electrical CommunicationEngg., Indian Institute of Science, Bangalore, 560012, INDIA; e-mail:anurag@ece.iisc.ernet.in. A part of his work on this paper was doneduring his sabbatical at the Wireless Information Network Labora-tory (WINLAB), Rutgers University, N.J.

tra�c on the network. See [3], [1], [9], [22] for further dis-cussions of such multitier cellular network architectures.The main contribution of this paper is to develop an ap-proximate analysis for calculating the probabilities of callblocking in a model of a microcellular network; the anal-ysis is veri�ed by simulations of the multicell model. Thescenario that we are concerned with is that there is a macro-cellular network, with a given frequency allocation to eachcell. Each macrocell is then microcellised, and the originalfrequencies assigned to each cell are partitioned betweenthe microcells and the original macrocell1. A call that ishandled by a channel in a macrocell is said to be in themacrolayer while a call that is handled by a channel in amicrocell is said to be in the microlayer.For the purpose of this study, we assume that a speedthreshold, used for classifying the mobiles, has been deter-mined. A call is identi�ed as fast or slow by the cellularsystem. Approaches for carrying out such classi�cation areproposed in [10], [13], [22]; we assume, as in [9], that suchclassi�cation has already been done on call arrival. A fastcall is allocated to a macrolayer channel in the macrocellthat it is located, and a call that is identi�ed as slow isallocated to a microlayer channel in the microcell that itis located. A call is blocked in a layer if all the channelsin that layer are occupied. A slow call that is blocked inthe microlayer is attempted to be assigned a channel in themacrolayer. These calls are said to overow from the mi-crolayer to the macrolayer. A slow call is thus blocked inthe system only if channels in both the macrocell and themicrocell (in which it is located) are occupied. A fast callis blocked if all the channels in the macrocell to which itbelongs are occupied. Overow of slow calls to the macro-layer may give them undue advantage over the fast calls;to reduce this advantage, one possibility is that if there areslow calls in the macrolayer from a particular microcell,one of these calls is moved to the microlayer whenever acall departs from that microcell. We call this procedurerepacking.In reality, mobiles do not move with constant speeds.A speed change occurs when a mobile moves from a morecrowded area to a less crowded area or if a mobile encoun-ters a tra�c signal. This aspect is also included in ourmodel by allowing calls to undergo mobility change; i.e., a1Clearly, there are, other, more e�cient, channel allocationschemes, and our analysis approach applies to any static allocationscheme. The particular allocation that we have described here isperhaps the �rst that a cellular operator may adopt, as it does notdisturb an already established frequency plan.



2fast call can become a slow call and vice-versa.We make the standard stochastic assumptions; i.e., Pois-son new call arrivals, exponential channel holding times,exponential cell sojourn times. While the entire multicel-lular system can be characterised by a Markov process withmany dimensions and a complex state space, obtaining per-formance measures directly from this characterisation is anintractable problem. Our approximate analysis approachis an extension of the iterative technique that has beenused in the past for macrocellular networks (see, for exam-ple, [8], [16], [9], [5]). Each cell is analysed in isolation,assuming Poisson processes for hando� arrivals into thecell. Blocking probabilities from this analysis yield hand-o� arrival rates for the next iteration. These iterationsare continued until an appropriate convergence criterionis met. The main e�ort in adapting this standard ap-proach to our problem is the isolated macrocell analysis,especially when overows, repacking, and mobility changesare introduced. We develop approximations for these anal-yses, and show that the numerical results obtained comparefavourably with those obtained from a detailed simulation.Whereas the analysis is based on iterative calculations onan isolated cell, the simulation is of a multimacrocell sys-tem, and actually simulates call handovers between cells,slow call overow and repacking between macrocells andmicrocells, and mobility changes.Related work on this problem has appeared in [21], [10],[9], [22], [4], [13], [5]. In [21] a cellular system model withcall overow and repacking between two layers of overlap-ping cells is considered. There are no call mobility con-siderations in this paper. The technique is based on theobservation that, with repacking, the underlying Markovchain is equivalent to that of a certain circuit switchednetwork. The Erlang �xed point approach is used to ap-proximately analyse this network. The approach, however,leads to a number of \link" constraints that is exponen-tial in the number of cells. The accuracy of the results isfound to vary from 15% to 40% depending on the numberof channels. In [9] a hierarchical model with three layersis considered; there are two call classes, and calls can over-ow to higher layers. Overow processes are modeled asinterrupted Poisson processes (IPP) and are not repacked.Mobility changes are not considered, and no simulation re-sults are provided. In [4], three types of calls are consideredin a single cell with a two-tier architecture. The types ofcalls are classi�ed on the basis of their access to the dif-ferent tiers. The model does not include handovers, orrepacking. In [5] and [10] a nonhomogenous system (cellsizes are di�erent, arrival rates vary from cell to cell, ar-bitrary routing between cells, and a general overlap struc-ture between layers) is analysed by iterating all the cellstogether. In [5] the overow processes between layers aremodelled by using two moments, whereas in [10] the com-posite overow processes are approximated as Poisson. In[10], calls are identi�ed as being fast or slow dependingon their sojourn time in a cell; a call identi�ed as fast ishanded over to a higher layer macrocell. These papers do

not consider repacking, and only analytical approximationsare presented without validating simulation results.In [22], a procedure for identifying the mobility class ofa call (i.e., fast call or slow call) is proposed. A mobiledetermines its mobility based on its microcell sojourn time.This information is used to determine the base station (atthe macrocell or at the microcell) which will handle thecall during origination or hando� of the call. A similarapproach for identifying fast calls is proposed in [13], and inaddition analysis of grade-of-service is done for a two layersystem. The latter paper, however, does not consider slowcall repacking and mobility changes; also only analyticalresults are presented.The remainder of the paper is organised as follows. InSection II we describe the model, list the notation used, andde�ne the performance measures. An approximate analysisfor this model is developed in Section III. In Section IV weprovide numerical results that show how accurate the anal-ysis is in comparison with simulations of the model. Theconclusions and an outline of further work are presented inSection V.II. The Model, Notation and TerminologyA. Handovers, Repacking and SignallingWe de�ne a hando� (or handover) as any event thatcauses the system to seek a new channel for an existing callin the system. Hando�s occur due to cell boundary cross-ings (i.e., a \radio{reason" hando�), mobility changes, orrepacking. A radio{reason hando� occurs whenever a slowcall crosses a microcell boundary, or a fast call crosses amacrocell boundary.When a fast call changes mobility to become a slow call,an attempt is made to assign it to a channel in the microcellin which it is located. If this attempt fails, then the callis retained in the macrolayer. When a slow call in themicrolayer changes mobility, an attempt is made to assignit to a channel in the macrolayer. If this attempt fails,the call is not retained in the microlayer but is dropped.If this call is retained in the microlayer, it will encountera large number of cell boundary crossings. This is notdesirable since, after adding substantially to the signallingtra�c, it is very likely to get dropped anyway. No harm isdone by dropping the call provided the overall call droppingprobability is better than the operator's promised grade-of-service (say, e.g., 0.1%). Channel reservation for fastcalls in the macrolayer can be used to control this droppingprobability. We have not considered channel reservation inthis paper; but see [19].If a slow call in the macrolayer moves across a microcellboundary, then an attempt is always made to hand the callover to a microcell channel. If there is no such channel, thenthe slow call is retained in the macrolayer.Handovers are also caused by the repacking of slow callsoccupying macrolayer channels; i.e., slow calls that are as-signed channels in the macrolayer are moved back to themicrolayer on availability of channels in their respectivemicrocells. Channels in the macrolayer are thus freed up.



3Note that the repacking of a slow call in this way is trig-gered by a slow call departure from a microcell; a slow callin the macrolayer does not need to constantly monitor theoccupancy of its microcell. Thus slow calls are handled in amacrocell only when their corresponding microcell is fullyoccupied. This increases the capacity of the system, butadditional signalling will be incurred due to the channelreassignments.Channel reassignments and hando�s cause signallingtra�c, and hence load the call processing systems. Theset of events that contribute to the signalling tra�c arenew call arrivals, cell boundary crossings, mobility changesand repacking.B. Model Parameters and NotationNew call arrival processes for the various macrocells areindependent Poisson processes. Each arrival into a macro-cell is fast or slow with a certain probability. The proba-bility that an arriving call is fast or slow may be di�erentin di�erent macrocells. A call arriving to a macrocell isassumed to be located in a particular microcell within themacrocell with a certain probability. The conversation timefor a call, and a mobile's sojourn time in a cell are assumedto be exponentially distributed. Further, the intervals atwhich a mobile changes its mobility are also assumed to beexponentially distributed. In practice, these intervals willinclude the time to reliably detect the mobility change.Macrocells are numbered and are indexed by integersf1; 2; :::g. There aremi microcells in the ith macrocell. Themicrocells in the ith macrocell are numbered using doubleindices (i; j); 1 � j � mi. De�neNi = the number of channels assigned to macrocell i in themacrolayerni;j = the number of channels assigned to microcell j inmacrocell i�i = the total arrival rate of new calls (fast and slow) inmacrocell i�i = the probability that a new call in macrocell i is a fastcall!i;j = the probability that a call originating in macrocelli is physically located in microcell j��1 = the mean conversation time of a call in the system;taken to be 1 always; thus all times are normalised to themean call duration.��1i;j = the mean sojourn time of a slow call in the microcell(i; j)��1i = the mean sojourn time of a fast call in the macrocelli� = the rate of change of mobility of fast calls = the rate of change of mobility of slow callsThe mobility change model is to be understood as follows:a call that is now a slow call, will become a fast call after arandom time that is exponentially distributed with mean1=, provided, of course, that the conversation lasts thatlong. We further de�ne:Ri;k = the probability that a call leaving macrocell i entersmacrocell k

r(i;j);(k;l) = the probability that a call leaving microcell(i; j) enters microcell (k; l)Performance Measures: In this paper we analyse themodels to obtain the new call blocking probability for eachcall class (i.e., slow or fast); i.e., the probability that anew call of that class is blocked on arrival to the system.We denote the blocking probabilities by Bfast and Bslow.Other performance measures of interest would be: hand-o� blocking probabilities, call dropping probabilities, andthe system signalling rate for setting up new calls, and forhandling hando�s.III. Analysis of the ModelA. The Approximate Analysis ApproachThere are M cells, indexed by i 2 f1; 2; : : : ;Mg, andcell i has mi microcells, indexed by j 2 f1; 2; : : : ;mig. Wede�ne the following stochastic processes for t � 0.For 1 � i �M , de�neX(i)(t) = number of fast calls in the macrolayer of cell i,Y (i)(t) = number of slow calls in the macrolayer of celli,and, for 1 � j � mi,Y (i)j (t) = number of slow calls in the macrolayer of celli that are located (at time t) in microcell (i; j); (of course,Y (i)(t) =Pj=mij=1 Y (i)j (t) ),Z(i)j (t) = number of slow calls in the microlayer that arelocated (at time t) in microcell (i; j),and denote by�(i)(t) = (X(i)(t); ((Y (i)j (t); Z(i)j (t)); 1 � j � mi)).With our stochastic assumptions (Poisson new call ar-rivals, exponentially distributed channel holding times,exponentially distributed cell sojourn times, and Marko-vian call routing between cells), the stochastic processf(�(i)(t); 1 � i � M); t � 0g is a Markov process. Thenumber of calls in each layer is restricted by the total num-ber of available channels in that layer. Hence we have a�nite state space for this process. For �nite and positivevalues of all the rate parameters, this Markov process isirreducible and hence positive recurrent; thus a stationarydistribution exists. In principle, the stationary blockingand dropping probabilities can be obtained from this sta-tionary distribution. Owing to the several special featuresof this model (hando�s, overows, repacking, and mobilitychange), the stationary distribution does not have a \prod-uct form". Further, owing to the large size of the statespace, direct numerical computation is intractable. Con-sequently, we resort to an approximate analysis techniquesimilar to the one adopted by several previous researchersin this area (for example, [8], [16]).The process in the cell i, i.e., f�(i)(t)g is analysed in iso-lation, assuming that the arrival process of hando�s fromthe neighbouring cells is Poisson. This is done for everycell, and, using the intercell routing probabilities, hando�rates between the various cells are obtained. The isolatedcell analyses are repeated with these new hando� rates.This iterative process is begun with some initial value of



4hando� rates entering each cell (e.g., zero rates). If this it-erative calculation converges (as it does in all the cases thatwe have studied) then the limiting probability distributionprovided by the iteration at the ith cell is taken to be thestationary distribution of the ith marginal of the processf�(i)(t); 1 � i � Mg. Since new call arrivals are Pois-son, this yields an approximation for the new call blockingprobability.In this paper we (i) develop the isolated cell analysiswith Poisson arrivals, with macrocells, microcells, repack-ing and mobility changes, and (ii) examine the accuracyof this approximate analysis procedure for a homogeneouscellular network (i.e., all cells are identical, having the samenumber of microcells, arrival rate, mean call holding timeand sojourn time, and also the same number of channels inthe macrolayer and microlayer). Such a homogenous modelcan be used to model the central cells in a large array ofcells in which the nonhomogeneity is only in the boundarycells. Note that the models analysed in [9] and [13] are alsohomogenous.B. Additional Notation for the Analysis of an Isolated Cellin the Homogeneous ModelFor the homogeneous model, in the stationary regime, wedrop the superscript (i) from the various notations. We de-note the stationary marginal random variable for fX(i)(t)gby X , for fY (i)(t)g by Y , for fY (i)j (t)g by Yj , and that forfZ(i)j (t)g by Zj . Also, for the homogeneous case, the nota-tion in Section II-B yields Ni = N;ni;j = n;mi = m;�i =�; �i = �; !i;j = 1m ; �i;j = �;�i = �.De�ne �o = arrival rate of new fast calls in a macrocell;these are serviced in the macrolayer (thus, �o = ��); �h =arrival rate of handed-o� fast calls in the macrolayer; �m =arrival rate of fast calls in the macrolayer due to mobilitychange of slow calls in the microlayer; �f = total arrivalrate of fast calls in the macrolayer. Hence�f = �o + �h + �m (1)We also de�ne the following arrival rates of slow calls. o = arrival rate of new slow calls in a microcell (hence o = �(1��)m );  h = arrival rate of slow hando� calls in amicrocell;  m = arrival rate of slow calls in a microcell dueto change of mobility of fast calls in the macrolayer;  =the total arrival rate of slow calls in a microcell. Hence =  o +  h +  m (2)Further, we denote by �s the rate of arrival of overow slowcalls to a macrocell. The rates �h; �m; �s;  h and  m are apriori unknown and are calculated iteratively after assum-ing an initial value for them. The dependence of these rateson the various random variables de�ned in Section III-A isshown in Section III-B.1.B.1 Calculation of Various Stationary RatesThe rate at which fast calls hando� from a macrocellis �. A handed o� call can enter any one of its l neigh-bours with equal probability. All the cells are assumed tobe identical and hence E(X) (see the stationary marginalrandom variables de�ned above) is taken as the expected

number of fast calls in any cell in the macrolayer. It isclear that in the stationary regime, the arrival rate due tohando�s from a single neighbour cell is E(X)�=l. Thesearrivals occur from all the l neighbours of a cell. Hence�h = E(X)� (3)E(Y ) is the expected number of slow calls in the macro-layer, and E(Z) is the expected number of slow calls ina microcell. Assuming homogeneity among the microcellswithin a cell also, we have E(Yj) = E(Y )m , 1 � j � m.Since slow calls occupying macrolayer channels are alwaysattempted to be handed o� to the microlayer when theycross a microcell boundary, we have h = (E(Z) + E(Y )m )� (4)Also slow calls from any of the m microcells of a macrocellmay become fast calls at rate . Therefore�m = mE(Z) (5)Since all the microcells in a cell are considered to be iden-tical, a fast call in the macrocell is located in any one ofthe microcells with probability 1=m. E(X)� is the rate atwhich fast calls in the macrolayer generate slow calls dueto mobility change. Hence m = E(X)m � (6)E(X); E(Y ) and E(Z) are again functions of the net ar-rival and net service rates of fast and slow calls in a cell.Hence these can be computed iteratively, and then used tocompute the blocking probabilities.C. Analysis of the Isolated Cell Model Without RepackingIn this model, a slow call that arrives in a cell and isserved in the macrolayer, owing to the nonavailability ofa channel in the microlayer, is retained in the macrolayeruntil it requires radio-reason hando�, or crosses a microcellboundary, or until it completes the conversation. If theslow call crosses a microcell boundary (even if it is in thesame macrocell) then a channel is �rst sought for it in themicrocell that it enters.The isolated cell model comprises m groups of n serverseach, corresponding to the microcells, and one group ofN servers corresponding to the macrolayer channels. Slowcalls arrive to the microcell j; 1 � j � m; in a Poissonprocess at the rate  ; fast calls arrive to the macrolayerchannels in a Poisson process at the rate �f . A slow call�nding its microcell full overows to the macrocell chan-nels. A fast call holds a macrocell channel for an expo-nentially distributed duration with rate �+�, but changesclass to slow at the rate �. Similarly, a slow call in themacrolayer holds a channel for an exponentially disributedtime with rate � + �, but changes mobility at the rate .Observe that, without mobility changes, this model is justthe classical overow model that arises in telephone trunkengineering. Owing to the large number of microcells, weassume that the overow process is Poisson. We will showhow this approximation works in comparison with simula-tions. In contrast in [9] the overow process is modelled byan IPP; for our situation, where we are modelling severalnew features, considering the additional state of the IPPwould further complicate the analysis. Simulations showthat our approximations are adequate.
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2 3 nFig. 1. Transition rate diagram for the microcell process Z(t), with no repackingC.1 Stationary Analysis of the MicrolayerFor a microcell in isolation, assuming Poisson arrival pro-cesses, fZ(t)g is a Markov chain on f0; 1; :::; ng, with thetransition rate diagram shown in Figure 1; here  is asde�ned in Section III-B.Hence, the stationary probability, P (Z = n) is calculatedfrom the Erlang formula, ErlangB(a; n), which is de�nedas ErlangB(a; n) = an=n!Pi ai=i! ; (7)where a is the o�ered load in Erlangs, and is given for ourmodel as a =  �+�+ .Finally, E(Z) (as needed in Equations 4 and 5) is com-puted, using Little's theorem, asE(Z) =  (�+ � + ) (1� P (Z = n)) (8)C.2 Stationary Analysis of the MacrolayerSlow calls blocked from microcells, or those changing mo-bility, arrive into the macrolayer. Hence in the isolated cellmodel, the process f(X(t); Y (t))g depends on the processfZ(t)g. If the number of microcells in a macrocell is large,then we can expect that the dependence of the macrolayerprocess on any particular microcell will be small, and alsothe microcells will be weakly dependent among themselves.With this in mind, we approximate this dependence by us-ing the stationary probabilities obtained for fZ(t)g, andhence model f(X(t); Y (t))g as a Markov chain with statespace S = f(nf ; ns);nf + ns � Ng.The macrolayer has new fast call arrivals in a Poissonstream. A fast call can leave the macrolayer for one of threereasons: on call completion, or on cell boundary crossing,or on a mobility change with the probability that the mi-crocell in which it is located has a free channel. To ac-count for this last possibility, we need the conditional prob-ability distribution of fZ(t)g, conditioned on the states ofthe process fX(t); Y (t)g. However, as stated earlier, asan approximation, we use the stationary probabilities ofthe process fZ(t)g. Hence the rate at which a fast callleaves the macrolayer due to mobility change is calculatedas �(1� P (Z = n)). A slow call leaves the macrolayer ei-ther on call completion or on cell boundary crossing; fromthe point of view of a single isolated cell model, a slow call,in the macrolayer, that crosses its microcell boundary isseen as leaving the macrolayer (since an attempt is madeto serve it in the microlayer of the neighbouring cell; seeSection II); actually if the neighbouring microcell is fullthen the call may be retained in the macrolayer, but thiswill be viewed as a new overow arrival from the microlayerin our analysis. Let �f denote the total rate at which a fast

call leaves a macrocell in the macrolayer, and �s denote thetotal rate at which a slow call leaves the macrolayer. Fromthe arguments above, we have the relations:�f = �+�+ �(1� P (Z = n)) (9)�s = �+ � (10)Slow calls arrive into the macrolayer when the microcellin which they are located has no free channels. New andhanded o� slow calls arrive to each microcell at the rate o + h. Hence the rate of arrival of overow slow calls tothe macrolayer is�s = m( o +  h)P (Z = n) (11)The arrival rate of fast calls to the macrolayer, �f , is givenby Equation 1 and the expressions in Section III-B.1.A fast call becomes a slow call and is retained in themacrolayer if all the channels in its corresponding microcellin the microlayer are occupied. As above, we assume that afast call that becomes slow �nds its corresponding microcellfull with probability P (Z = n). Further, a slow call in themacrolayer retains its channel if it becomes fast. Withthese observations we de�ne the ratesfs = �P (Z = n) (12)sf =  (13)
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Also from Little's theorem we have:E(X) = a1(1� P (X + Y = N)) (19)E(Y ) = a2(1� P (X + Y = N)) (20)The expected values E(Z) (given by Equation 8), E(X)and E(Y ) are used to calculate the arrival rates due tohando�s and mobility changes in the macrolayer and themicrolayer as described in Section III-B.1. With these newrates, the next iteration is performed. Starting with �h =0; �m = 0;  h = 0;  m = 0 the iterations are continueduntil the change in the rates is less than a small � > 0.When the iterations terminate, the �nal values for thesingle isolated cell analysis yield the desired blocking prob-abilities. The fast call blocking is equal to the probabilitythat the macrocell is full and is given by the Equation 18.The slow call blocking is approximated by the product ofmacrocell blocking and microcell blocking. HenceBfast = P (X + Y = N) (21)Bslow = P (Z = n)P (X + Y = N) (22)D. Analysis of the Isolated Cell Model with RepackingRepacking refers to the policy that a slow call using amacrocell channel is shifted to a channel in the microcellin which it is located as soon as one frees up. Thus if a slowcall is occupying a macrolayer channel, it implies that itsmicrocell is full. Repacking is similar to a hando� from thepoint of view of the signalling required to achieve it. Hencethere is the question of the improvement in the blockingperformance due to repacking versus the increase in thesignalling load. The \aggressive" repacking strategy thathas been described here may not be the best to adopt, as itmay cause excessive signalling load without much gain inblocking performance. For a performance study of various\lazy" repacking strategies see [20]. We proceed in thispaper with the assumption of aggressive repacking.We �rst obtain an approximation to the blocking prob-abilities when there are no mobility changes, and later in-clude mobility changes. Without mobility change, the iso-lated cell model comprises m banks of n servers each, cor-responding to the microcells, and one bank of N serverscorresponding to the macrolayer channels. Slow calls ar-rive to the microcell j; 1 � j � m; in a Poisson processat the rate  (see Section III-B); fast calls arrive to themacrolayer channels in a Possion process at the rate �f . Aslow call �nding its microcell full overows to the macro-cell channels. When a slow call departs from a microcell, aslow call located in that microcell that is holding a macro-cell channel is moved to the vacated microcell channel. Aslow call holds a channel (microcell or macrocell) for anexponentially distributed time with rate �+ �. A fast callholds a macrocell channel for an exponentially distributedduration with rate � + �. De�ne Xj(t) = Yj(t) + Zj(t)for 1 � j � m; i.e., Xj(t) is the total number of slow callsin microcell j at time t. Note that, owing to repacking,Zj(t) = minfXj(t); njg and Yj(t) = Xj(t) � Zj(t). It isclear that the process f(X(t); Xj(t); 1 � j � m)g has aproduct form stationary distribution since we have a mul-ticlass resource sharing model with a coordinate convexpartial sharing policy (see [11]). In principle, the blocking



7probabilities can be computed from this product form dis-tribution. Since this is a partial sharing policy, Kaufman'srecursion does not apply. For the large numbers of channels(order of 100), and the large numbers of microcells that wewill consider, direct computation is not tractable. We willuse this product form distribution, however, to make cer-tain exact arguments in the approximate analysis that wenow develop. In [21], the product form is observed to beequivalent to that of a circuit switched network, and anErlang �xed point iteration is used; an accuracy of 15% to40% is reported.D.1 Stationary Analysis of the MicrolayerAs before, we �rst consider a microcell process fZj(t)g,for some j; 1 � j � m. We model fZj(t)g approximatelyas a Markov chain on the state space f0; 1; : : : ; ng. WhenZj = n, the macrolayer holds at least one slow call that be-longs to this microcell with probability P (Yj > 0=Zj = n).Hence, owing to repacking, the transition rate from thestate Zj = n to Zj = n � 1 is P (Yj = 0=Zj = n)n(�+ �).The remaining transition rates are una�ected by repack-ing and are as in Figure 4. For the purpose of blockingprobability calculations in later sections, we need to obtainthe conditional probability P (Zj = n j Yj = 0). Observethat, owing to the fact that slow calls are always o�eredto the microcell �rst, and owing to repacking, when theset of states with Yj > 0 is exited then Zj = n; further,the set of states with Yj > 0 is entered only from the setof states with Zj = n. It follows that the process fZj(t)gconditioned on Yj(t) = 0 is just the Erlang-B process witho�ered load  �+� and number of servers n. HenceP (Zj = n j Yj = 0) = ErlangB( =(�+ �); n) (23)Observe that we do not have P (Yj = 0 j Zj = n); hencethe analysis of the Markov chain for Z(t) is not possible.We will see, however, that this analysis is not necessary forthe calculation of blocking probabilities.D.2 Stationary Analysis of the MacrolayerAs in Section III-C.2, we analyse the processf(X(t); Yj(t); 1 � j � mg by approximating its interac-tions with f(Zj(t); 1 � j � m)g using stationary probabil-ity distributions.When Yj = 0, a slow call from microcell j is o�ered to themacrolayer only when it is blocked in the microcell j intowhich it arrives. This happens with probability P (Zj =n j Yj = 0), which has been obtained above. When Yj > 0,since repacking is done, the microcell j must be full, andevery slow call arrival to this microcell will overow intothe macrolayer. Thus, de�ning B = P (Zj = n j Yj = 0),the transition rate from state (x; y1; y2; : : : ; yj = 0; : : : ; ym)to (x; y1; y2; : : : ; yj = 1; : : : ; ym) is  B while the transitionrate from states Yj = k to Yj = k + 1 is  for 1 � k � N .We now develop an approximate analysis for the processf(X(t); Y (t) = Pmi=1 Yj(t))g, which has the state space,S = f(nf ; ns);nf + ns � Ng.De�ne the random process K(t) = Pj=mj=1 IfYj>0g(t);where If�g(t) is the indicator process of the set f�g. Thus,

K(t) is the number of microcells that have slow calls inthe macrolayer. Observe that, given the process K(t), wecan obtain the transition rates for the coordinate Y (t) ofthe process fX(t); Y (t)g. When K(t) = k and Y (t) = ns,we see that overowed slow calls arrive into the macro-layer from k microcells with a total arrival rate k , whilecalls arrive from the remaining microcells with arrival rate(m� k)B . Therefore the net arrival rate of slow calls tothe macrolayer when Y (t) = ns and K(t) = k is given by,�ns;k = k +B(m� k) (24)Let �s = (� + �). When a slow call departs from one ofthese k microcells, a slow call that belongs to that microcellis moved from the macrolayer to the microlayer. Due tothis repacking, the rate of departure of a slow call from themacrolayer when (Y (t) = ns;K(t) = k) is given by�ns;k = ns�s + kn�s (25)This is because a slow call departs from the macrolayereven if one of the n calls in any of the k full microcellsdeparts.Unless we keep track of Yj(t); 1 � j � m, we do notknow the value of K(t). To obtain an approximate anal-ysis of f(X(t); Y (t))g, we estimate a value for K(t), givenY (t), and use this estimate in the transition rate formulasshown above. Thus given the number of slow calls in themacrolayer we want to obtain an estimate of the numberof microcells they belong to.We do this by considering an urn model with m urns(corresponding to them microcells), into which ns(= Y (t))balls are placed in succession as follows; at the end ofplacing the ns balls, the number of nonempty urns cor-responds to K. The �rst ball is thrown into any one ofthe urns with equal probability (this corresponds to thefact that the �rst slow call to be handled by the macro-layer comes from any of the microcells with equal prob-ability). Now, given that there are exactly j microcellsthat have at least one slow call in the macrolayer, the rateof arrival, into the macrolayer, of a slow call from any ofthese j cells is j while the rate from the other cells is(m � j)B . Thus the next slow call arrives from thesej cells with probability j=(j + (m � j)B). The probabil-ity that the next slow call is from the rest of the cells is(m � j)B=(j + (m � j)B). Hence in the urn analogy, ifthere are j occupied urns, the next ball is thrown in such away that the number of occupied urns increases by 1 withprobability (m � j)B=(j + (m� j)B). Note that, since Bwill be small, the next ball is thrown into occupied urnswith a much larger probability than the unoccupied urns.Let p(i)j be the probability that there are j non-emptyurns after i balls are thrown into the urns in the mannerdescribed. These can be recursively calculated with thefollowing equations (�(�) are indicator functions)p(i)j = p(i�1)(j�1) (m� j + 1)B(j � 1 + (m� j + 1)B)�j�i�j�m +p(i�1)j j(j + (m� j)B)�j<i�j�m (26)We know that p(1)1 = 1 and p(0)0 = 1.Finally, given Y (t) = ns, we estimate the value of K(t)as the expected number of non-empty urns in the above
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(µ+σ)3 P(Yj = 0 | Zj = n)(µ+σ) n(µ+σ)Fig. 4. Transition rate diagram for the microcell process fZ(t)g, with repacking (mobility change not considered).urn experiment; i.e., we de�nekns = j=mXj=1 p(ns)j j (27)and use this value for k in Equations 24 and 25, givenY (t) = ns, to obtain the transition rates for the Y (t) coor-dinate of the process f(X(t); Y (t))g. Equation 27 requiresthe computation of p(i)j for all possible values of i and j.This can be avoided by using a recursion for directly com-puting kns (this is provided in [17]). Thus, we have approx-imated the process f(X(t); Y (t))g by a Markov chain withthe transition rates shown in Figure 5; here �f = �+�.
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Fig. 5. Transition rate diagram for the macrocell processf(X(t); Y (t))g, with repackingObserve that we have a two class blocking model in whichthe arrival rates and the service rates of each class dependonly on the marginal number in that class. Hence, thestationary distribution has the following product form (see[12]). For (nf ; ns) 2 fx; y : x � 0; y � 0; x+ y � Ng�(nf ; ns) = G�1g(nf ; ns) (28)where g(nf ; ns) = (�f=�f )nf =nf !� i=nsYi=1 �i�1=�i (29). �ns and �ns are as given in Equations 24 and 25, withk = kns . G is the normalisation constant given asG = X(nf ;ns) g(nf ; ns) (30)The probability that all the channels are occupied in themacrolayer is thusP (X + Y = N) = Xnf+ns=N �(nf ; ns) (31)

D.3 Blocking Probabilities for Fast and Slow CallsIterative application of the above analysis provides anapproximation to the stationary probability distributionfor the process f(X(t); Y (t))g. The blocking probabilityfor fast calls is the probability that all the channels in themacrolayer are occupied. HenceBfast = P (X + Y = N) (32)Slow calls are blocked if the microcell to which they ar-rive and the macrolayer channels are full. Since all themicrocells are considered to be identical, the blocking prob-ability for slow calls arriving into any microcell isBslow = P (Zj = n;X + Y = N) (33)Writing out the right hand side of Equation 33, we getP (Zj = n;X + Y = N) =P (Zj = n; Yj = 0; X + Y = N) +P (Zj = n; Yj > 0; X + Y = N)= ns=NXns=0 fP (Zj = n; Yj = 0; Y = ns; X = N � ns) +P (Zj = n; Yj > 0; Y = ns; X = N � ns)g (34)The product form for the stationary distribution off(X(t); Yj(t) + Zj(t); 1 � j � m)g can now be used toestablish certain conditional independences (shown in Ap-pendix A, Lemma A.1). These are used to yield the follow-ing simpli�cations.P (Zj = n; Yj = 0 j Y = ns; X = N � ns) =P (Zj = n; Yj = 0 j Y = ns)= P (Zj = n j Yj = 0; Y = ns)P (Yj = 0 j Y = ns)= P (Zj = n j Yj = 0)P (Yj = 0 j Y = ns) (35)SimilarlyP (Zj = n; Yj > 0 j Y = ns; X = N � ns) =P (Zj = n j Yj > 0; Y = ns)P (Yj > 0 j Y = ns)(36)Hence, we getBslow = ns=NXns=0 P (Y = ns; X = N � ns)�fP (Zj = n j Yj = 0)P (Yj = 0 j Y = ns) +P (Zj = n j Yj > 0; Y = ns)P (Yj > 0 j Y = ns)g(37)P (Y = ns; X = N � ns) is obtained from the stationarydistribution Equation 28 (see [17]). Also P (Zj = n=Yj =0) = ErlangB( =(� + �); n) as shown in Section III-D.1.Obviously, P (Zj = n j Yj > 0; Y = ns) = 1, owing tothe repacking policy. Finally, recalling the de�nition of theprocess K(t), from Section III-D.2, and letting K denotethe stationary random variable for K(t), we haveP (Yj > 0 j Y = ns) = 1mE(K j Y = ns) (38)



9and, of course,P (Yj = 0 j Y = ns) = 1� P (Yj > 0 j Y = ns) (39)We approximate E(K j Y = ns) with kns from Equa-tion 27.Hence we have all the ingredients to compute Bslow fromEquation 37.D.4 Including Mobility Changes in the Analysis withRepackingWhen there are mobility changes in the system, themodel for the macrolayer has a transition structure with\diagonal" transitions due to change of type of calls. Sincethe transition rates in the Y (t) coordinate are not simplyproportional to ns, the product form distribution now failsto hold. Further, we do not have an analysis of the micro-cell process Z(t); hence we cannot obtain arrival rates ofslow calls due to mobility change as we did in the case withno repacking.We develop an approximation for the blocking probabil-ities by viewing a change of mobility as an arrival of a callof the other type. Each slow call arrival is viewed as anarrival of a slow call, and also an arrival of a fast call withthe probability that the slow call will change class before itterminates or leaves the microcell in which it arrived. Thechannel holding times of these two arrivals are adjusted sothat the total o�ered Erlang load due to slow calls remainsunchanged. The same is done for fast calls.Let �s = � + � and �f = � + �. De�ne psf = =(�s +); psf is the probability that a slow call changes mobilitybefore it terminates or hands-o�. Thus if �f is the totalarrival rate of fast calls in a macrocell and  that of slowcalls in a microcell, then, after including mobility change,the net arrival rate into the fast call stream is taken as �1,where �1 = �f +m psf (40)Similarly if �2 is the net arrival rate of slow calls into them microcells in a macrocell, then�2 = m + �fpfs (41)where pfs = �=(�f + �). We now obtain the modi�edchannel holding rates. Let xf denote the mean durationof stay of the fast part of a call in the macrocell. It staysfor at least a mean duration of 1=(�f + �). Then, withprobability pfs it becomes a slow call which again becomesa fast call with probability psf . Hence with the probabilitypfspsf , the fast call returns to the system as a fast call andtakes an additional duration xf to leave the system. Hencexf = 1=(�f + �) + pfspsf � xf (42)Therefore xf = 1�f + �(1� psf ) (43)Also �1 = 1=x. From this we obtain�1 = �f + (1� psf )� (44)A similar expression can be obtained for the mean durationof stay of a slow call (as a slow call) in a microcell, �nallyyielding �2 = �s + (1� pfs) (45)Now �1 and �2 can be considered to be the net arrival ratesof fast and slow calls respectively in a macrocell. Similarly

�1 and �2 can be considered as the net termination rates ofthe calls in the macrocell. Thus the macrolayer model withmobility changes is analysed by replacing, in the previousanalysis,  with �2=m, �f with �1, and �f ; �s with �1; �2.IV. Comparison of Analysis and SimulationRecall that our analysis approach involves two levelsof approximations. The isolated cell analysis is approx-imate, even for Poisson arrivals and exponential servicetimes. The multicell analysis is approximate because thehandover processes are modelled approximately as Poissonprocesses, with rates determined from the stationary anal-ysis of the isolated cells. It is important to understandthe contribution of the errors in the numerical results fromeach of these major approximation steps. In Section IV-Bwe show numerical results obtained from the analysis of asingle macrocell in isolation. We compare these analyticalresults with those from a single macrocell simulation withPoisson call arrivals. Overow and repacking within themacrocell are modelled; the number of microcells and thechannel partitioning is varied. These results serve to vali-date the approximations used in the analysis that we havedeveloped for an isolated cell.In Section IV-C we show numerical results obtained fromthe analysis and simulation of a multicell system, for vary-ing arrival rates, and mobility parameters. Whereas theanalysis is just iterative calculations on a single macrocell,the multicell simulation models a system of 64 macrocellseach with a number of microcells. In the simulation, the as-sumptions of Poisson new call arrivals, exponential channelholding times, exponential cell sojourn times, and exponen-tial time interval between mobility changes are identical tothose in the analysis. However, call mobility, hando�s toneighbouring cells, repacking of slow calls, overow andmobility changes are all actually simulated. In the simula-tion, for example, handover calls are routed to neighbour-ing cells in each layer, and are then handled in the neigh-bouring cells; when slow calls located in a microcell are inthe macrolayer and a slow call departs from that microcell,then a slow call from the macrolayer is repacked; if a slowcall in the macrolayer moves to a new microcell with a freechannel, the slow call is repacked; etc. Thus the details ofthe movement and state changes of the calls are simulatedexactly as they would be in the full multicell Markov pro-cess �(i)(t) = (X(i)(t); ((Y (i)j (t); Z(i)j (t)); 1 � j � mi)) (seeSection III).A. System Parameters for the Numerical ResultsThe number of channels allocated to each (macro)cell is80; with a reuse factor of 3 between the macrocells, thiswould mean that there are 240 channels available in thesystem. Non-overlapping channel sets are assigned to themacrolayer and the microlayer. A reuse factor of 4 is as-sumed in the microlayer; hence the set of channels allocatedto the microlayer is partitioned into 4 sets. It follows thatN + 4n = 80. When a macrocell is divided into m micro-cells, the area of the microcell is 1=m times the area of the



10macrocell. Hence the linear distance that a mobile travelsto leave a microcell is 1=p(m) times the linear distancethe same mobile travels to leave a macrocell. Assumingthat fast mobiles are 5 times as fast as the slow mobiles,the sojourn rates of the fast and slow calls (in macrocellsand microcells, respectively) are related by � = �pm=5.We also take the mobility change parameters to be relatedby � = 5.Since the value of ��1 (the mean conversation time) istaken as 1, the values of the cell sojourn rates and the ratesof change of mobility are normalised to the mean conversa-tion time. Thus, for example, � is the average number ofmacrocells that a fast call crosses during its conversationtime.B. Validation of the Isolated Cell AnalysisTABLE ISingle macrocell without repacking; � = 0; � = 0; m = 16;N = 56; n = 6Load (erlangs) Analysis SimulationBfast Bslow Bfast Bslow150 0.3347 0.0797 0.3323 0.0849140 0.2720 0.0572 0.2703 0.0631130 0.2028 0.0370 0.2006 0.0397120 0.1307 0.0201 0.1288 0.0224110 0.0649 0.0082 0.0673 0.0098TABLE IISingle macrocell with repacking; � = 0; � = 0; m = 16;N = 56; n = 6Load (erlangs) Analysis SimulationBfast Bslow Bfast Bslow150 0.2268 0.1055 0.2316 0.0984140 0.1754 0.0757 0.1771 0.0696130 0.1215 0.0480 0.1246 0.0433120 0.0710 0.0253 0.0680 0.0228110 0.0303 0.0093 0.0305 0.0085TABLE IIISingle macrocell without repacking; � = 0; � = 0; m = 36;N = 64; n = 4Load (erlangs) Analysis SimulationBfast Bslow Bfast Bslow150 0.1790 0.0268 0.1856 0.0273140 0.1204 0.0158 0.1291 0.0177130 0.0667 0.0075 0.0688 0.0096120 0.0268 0.0025 0.0305 0.0028115 0.0065 0.0005 0.0082 0.0008Tables I, II, III, and IV show slow call blocking andfast call blocking versus Erlang o�ered load, in an isolatedcell; results are shown from our approximate analysis and

TABLE IVSingle macrocell with repacking; � = 0; � = 0; m = 36;N = 64; n = 4Load (erlangs) Analysis SimulationBfast Bslow Bfast Bslow150 0.0951 0.0262 0.1041 0.0257140 0.0564 0.0140 0.0645 0.0156130 0.0268 0.0058 0.0328 0.0063120 0.0092 0.0017 0.0104 0.0016115 0.0045 0.0007 0.0051 0.0007from a simulation of the isolated cell model. The speci�cparameters are given in the �gure captions; in each case,the fraction of arrivals that are fast calls is 0.4. Results areshown with and without slow call repacking. Observe thatthe analysis, in spite of the many approximations made, isquite accurate.Owing to the fact that slow calls can use macrocell chan-nels, their blocking probability is much smaller than thatof fast calls. This discrepancy, which will result in ine�-cient system sizing, is corrected by channel reservation (foran analysis with reservation see [19]).Note that repacking of slow calls will always help to re-duce the blocking probability of fast calls, but may in-crease or decrease the blocking probability of slow calls.The blocking probability can increase since without repack-ing new slow calls can use free channels in the microlayer,which would have been �lled up by repacking. Blocking is abursty phenomenon, however; when there are free channelsin a microcell, and slow calls from that microcell occupymacrolayer channels, then repacking these calls helps slowcalls arriving at other microcells that may be experienc-ing a period of blocking. The latter e�ect is expected topredominate when the number of microcells is large, andthe blocking probability of slow calls at their microcells islarge; in this scenario there is a large probability that atany time some microcell is overowing. Observe that form = 16; N = 56; n = 6, introducing repacking increasesthe blocking of slow calls but substantially reduces that offast calls. For m = 36; N = 64; n = 4, however, there isa slight decrease in slow call blocking when repacking isintroduced.C. Analysis and Simulation Results for the Multicell ModelA multiple macrocell system is analysed using our it-erative analysis, and using a multicell simulation; graphsbetween the Erlang load and the blocking probability areplotted for the parameter values m = 16; N = 60; n =5; and  = 0:4. The simulation is done for a homogeneoussystem with 64 macrocells.Figures 6, 7, 8, and 9, show the results without slowcall repacking. Although, done for the multicell case, since� = � = 0, Figure 6 is just another case of the single cellresults presented in the previous section; we provide this�gure for comparison with the results for the same systemparameters with mobility. In Figures 7 and 8, there is
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Fig. 6. Multicell system without repacking; � = 0; � = 0
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Fig. 10. Multicell system with repacking; � = 0;� = 0
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Fig. 11. Multicell system with repacking; � = 0:5;� = 0useful in an iterative system sizing process.In each case, introducing repacking substantially reducesfast call blocking, and increases or slightly reduces theblocking probability of slow calls. Since we do not havechannel reservation in these results, slow call blocking ismuch lower than fast call blocking. Increasing the mobil-ity rate is seen to reduce the blocking probability; this isbecause with increasing mobility some calls are dropped be-fore they complete conversation, thus reducing the overalloccupancy of the channels. We are not controlling drop-ping probability in these results, as our objective here isonly to validate the analysis against simulations.
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Fig. 13. Multicell system with repacking; � = 0:5; � = 2:0V. ConclusionWe have studied the performance of microcellisation ina cellular network, in which the mobiles can be classi�edas fast or slow. We have developed approximate analysesfor calculating the slow and fast call blocking probabilities,and have validated the analyses against a detailed multicellsimulation. The approximate analysis is an iterative pro-cedure that utilises an analysis of an isolated cell. We �ndthat in spite of the many approximations made, the anal-ysis results compare well with the simulations. For a largenumber of microcells, exact analysis of even the isolatedmacrocell processes is intractable; we are able to obtainapproximations that require the analysis of no more than2-dimensional Markov chains. Such analyses are useful inan iterative procedure for sizing a cellular system to achievea desired grade of service, since their computation time ismuch smaller than that for simulations.It is a relatively straight-forward matter to obtain ap-proximations for dropping probabilities and signalling ratesfrom the analysis [17]. Our analysis procedure in this paperdoes not permit reservations for fast calls or handovers; theisolated cell analysis needs to be enhanced to accommodatethis feature. It is also interesting to explore \lazy" repack-ing policies. The latter two issues have been addressed inour more recent work reported in [19] and [20]. In thesereferences we have also studied the use of these analyticaltechniques for system design, i.e., choice of the number of

microcells and channel partitioning. More e�cient policiesfor channel allocation to the macrolayer and the microlayerneed to be explored. AppendixI. Appendix: Proofs of certain conditionalindependence relations for the analysis withrepackingAs observed above in the main text (Section III-D),the process fX(t); Xj(t); 1 � j � mg has a productform stationary distribution. The stationary probabilityof fX(t) = x0; X1(t) = x1; X2(t) = x2; : : : ; Xm(t) = xmgis of the form�(x0; x1; x2; : : : ; xm) =1G (�0(x0)�1(x1)�2(x2) : : : �m(xm)) (A.1)where G is a normalisation constant, and x =(x0; x1; x2; : : : ; xm) is in the state space S = fx : 0 �x0 � N; 0 � xj � nj + N; 1 � j � m;x0 +Pmj=1 xj �N +Pmj=1 njg. Let (X;X1; : : : ; Xm) denote the stationaryrandom vector for the process fX(t); Xj(t); 1 � j � mg.Let S � f0; 1; 2; : : : ; nj +Ng be a set of values that Xjcan take.Lemma A.1: P (Xj 2 S j mXi=1 Yi = y;X = x) =P (Xj 2 S j mXi=1 Yi = y) (A.2)Proof: From the product form distribution, we haveP (Xj 2 S; mXi=1 Yi = y;X = x) =1G Xfx:xj2S;Pmi=1 yi=y;x0=xg�0(x0)�1(x1) : : : �m(xm)P ( mXi=1 Yi = y;X = x) =1G Xfx:Pmi=1 yi=y;x0=xg�0(x0)�1(x1) : : : �m(xm)We denote the set fx(0) = (x1; x2; : : : ; xm) : (x0 =x; x1; x2; : : : ; xm) 2 S; xj 2 S;Pmi=1 yi = yg by A(x) andthe set fx(0) = (x1; x2; : : : ; xm) : (x0 = x; x1; x2; : : : ; xm) 2S;Pmi=1 yi = yg by B(x). Observe that A(x) and B(x) donot depend on x. Denoting these sets by A and B, we haveP (Xj 2 S;Pmi=1 Yi = y;X = x)P (Pmi=1 Yi = y;X = x) =Pfx(0)2Ag �1(x1) : : : �m(xm)Pfx(0)2Bg �1(x1) : : : �m(xm) (A.3)We now obtain an expression for P (Xj 2 S jPmi=1 Yi = y).Recall that x = (x0; x1; x2; : : : ; xm). We haveP (Xj 2 S; mXi=1 Yi = y)=P ( mXi=1 Yi = y) =Pfx:xj2S;Pmi=1 yi=yg �0(x0)�1(x1) : : : �m(xm)Pfx:Pmi=1 yi=yg �0(x0)�1(x1) : : : �m(xm)
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