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Abstract— We study the call blocking performance ob-
tained by microcellising a macrocell network. Each macro-
cell is partitioned into microcells, and some of the channels
originally allocated to the macrocell are assigned to the mi-
crolayer cells according to a reuse pattern. The arriving
calls are classified as fast or slow; fast calls are always as-
signed only to macrocell channels, whereas for slow calls a
microcell channel is first sought. Slow calls may be allowed
to overflow to the macrolayer, but may be repacked to va-
cated microcell channels. Calls can change their mobility class
during a conversation. We develop an approximate analy-
sis for computing the slow and fast call blocking probabili-
ties in such a system. We adopt the technique of analysing
an isolated macrocell with the Poisson arrival assumption,
and then iterating on the stationary analysis of the isolated
macrocell to obtain stationary results for the multicell sys-
tem. Simple, but accurate approximations are developed
for analysing the isolated macrocell and its associated mi-
crocells. The analyses based on the approximate isolated cell
model are validated against simulations of a multicell model.

I. INTRODUCTION

In cellular wireless mobile telephony systems, a decrease
in the size of the cells allows more frequency reuse in a
given area. With the decrease in size of the cells, however,
there is an increase in the number of cell boundaries that
a mobile unit crosses. These boundary crossings stimulate
handoffs and location tracking operations. Thus the sig-
nalling capacity of the signalling processors (in the Base
Stations and the Mobile Switching Centres) can limit the
call handling capacity of a cellular system as the cell size
is decreased. These issues are discussed in [7].

One way of controlling the increase of signalling traf-
fic, while deriving the frequency reuse advantage of smaller
cells, is to consider a cellular (macrocellular) network, and
subdivide the large cells into smaller microcells (see [14]).
Radio channels are allocated to macrocells and to micro-
cells. Each mobile call is then classified as belonging to one
of two mobility classes, fast and slow. A call that originates
at or terminates on a slow mobile (henceforth referred to
as a slow call) is allocated to a channel in the microcell in
which the mobile is currently located, whereas a fast call is
allocated to a macrocell. It can be expected that, with ap-
propriate engineering of such a system, more traffic can be
handled, with a given number of channels and a required
grade of service, while limiting the increase of signalling
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traffic on the network. See [3], [1], [9], [22] for further dis-
cussions of such multitier cellular network architectures.

The main contribution of this paper is to develop an ap-
proximate analysis for calculating the probabilities of call
blocking in a model of a microcellular network; the anal-
ysis is verified by simulations of the multicell model. The
scenario that we are concerned with is that there is a macro-
cellular network, with a given frequency allocation to each
cell. Each macrocell is then microcellised, and the original
frequencies assigned to each cell are partitioned between
the microcells and the original macrocell'. A call that is
handled by a channel in a macrocell is said to be in the
macrolayer while a call that is handled by a channel in a
microcell is said to be in the microlayer.

For the purpose of this study, we assume that a speed
threshold, used for classifying the mobiles, has been deter-
mined. A call is identified as fast or slow by the cellular
system. Approaches for carrying out such classification are
proposed in [10], [13], [22]; we assume, as in [9], that such
classification has already been done on call arrival. A fast
call is allocated to a macrolayer channel in the macrocell
that it is located, and a call that is identified as slow is
allocated to a microlayer channel in the microcell that it
is located. A call is blocked in a layer if all the channels
in that layer are occupied. A slow call that is blocked in
the microlayer is attempted to be assigned a channel in the
macrolayer. These calls are said to overflow from the mi-
crolayer to the macrolayer. A slow call is thus blocked in
the system only if channels in both the macrocell and the
microcell (in which it is located) are occupied. A fast call
is blocked if all the channels in the macrocell to which it
belongs are occupied. Overflow of slow calls to the macro-
layer may give them undue advantage over the fast calls;
to reduce this advantage, one possibility is that if there are
slow calls in the macrolayer from a particular microcell,
one of these calls is moved to the microlayer whenever a
call departs from that microcell. We call this procedure
repacking.

In reality, mobiles do not move with constant speeds.
A speed change occurs when a mobile moves from a more
crowded area to a less crowded area or if a mobile encoun-
ters a traffic signal. This aspect is also included in our
model by allowing calls to undergo mobility change; i.e., a

IClearly, there are, other, more efficient, channel allocation
schemes, and our analysis approach applies to any static allocation
scheme. The particular allocation that we have described here is
perhaps the first that a cellular operator may adopt, as it does not
disturb an already established frequency plan.



fast call can become a slow call and vice-versa.

We make the standard stochastic assumptions; i.e., Pois-
son new call arrivals, exponential channel holding times,
exponential cell sojourn times. While the entire multicel-
lular system can be characterised by a Markov process with
many dimensions and a complex state space, obtaining per-
formance measures directly from this characterisation is an
intractable problem. Our approximate analysis approach
is an extension of the iterative technique that has been
used in the past for macrocellular networks (see, for exam-
ple, [8], [16], [9], [5]). Each cell is analysed in isolation,
assuming Poisson processes for handoff arrivals into the
cell. Blocking probabilities from this analysis yield hand-
off arrival rates for the next iteration. These iterations
are continued until an appropriate convergence criterion
is met. The main effort in adapting this standard ap-
proach to our problem is the isolated macrocell analysis,
especially when overflows, repacking, and mobility changes
are introduced. We develop approximations for these anal-
yses, and show that the numerical results obtained compare
favourably with those obtained from a detailed simulation.
Whereas the analysis is based on iterative calculations on
an isolated cell, the simulation is of a multimacrocell sys-
tem, and actually simulates call handovers between cells,
slow call overflow and repacking between macrocells and
microcells, and mobility changes.

Related work on this problem has appeared in [21], [10],
[9], [22], [4], [13], [5]. In [21] a cellular system model with
call overflow and repacking between two layers of overlap-
ping cells is considered. There are no call mobility con-
siderations in this paper. The technique is based on the
observation that, with repacking, the underlying Markov
chain is equivalent to that of a certain circuit switched
network. The Erlang fixed point approach is used to ap-
proximately analyse this network. The approach, however,
leads to a number of “link” constraints that is exponen-
tial in the number of cells. The accuracy of the results is
found to vary from 15% to 40% depending on the number
of channels. In [9] a hierarchical model with three layers
is considered; there are two call classes, and calls can over-
flow to higher layers. Overflow processes are modeled as
interrupted Poisson processes (IPP) and are not repacked.
Mobility changes are not considered, and no simulation re-
sults are provided. In [4], three types of calls are considered
in a single cell with a two-tier architecture. The types of
calls are classified on the basis of their access to the dif-
ferent tiers. The model does not include handovers, or
repacking. In [5] and [10] a nonhomogenous system (cell
sizes are different, arrival rates vary from cell to cell, ar-
bitrary routing between cells, and a general overlap struc-
ture between layers) is analysed by iterating all the cells
together. In [5] the overflow processes between layers are
modelled by using two moments, whereas in [10] the com-
posite overflow processes are approximated as Poisson. In
[10], calls are identified as being fast or slow depending
on their sojourn time in a cell; a call identified as fast is
handed over to a higher layer macrocell. These papers do

not consider repacking, and only analytical approximations
are presented without validating simulation results.

In [22], a procedure for identifying the mobility class of
a call (i.e., fast call or slow call) is proposed. A mobile
determines its mobility based on its microcell sojourn time.
This information is used to determine the base station (at
the macrocell or at the microcell) which will handle the
call during origination or handoff of the call. A similar
approach for identifying fast calls is proposed in [13], and in
addition analysis of grade-of-service is done for a two layer
system. The latter paper, however, does not consider slow
call repacking and mobility changes; also only analytical
results are presented.

The remainder of the paper is organised as follows. In
Section II we describe the model, list the notation used, and
define the performance measures. An approximate analysis
for this model is developed in Section III. In Section IV we
provide numerical results that show how accurate the anal-
ysis is in comparison with simulations of the model. The
conclusions and an outline of further work are presented in
Section V.

II. THE MODEL, NOTATION AND TERMINOLOGY
A. Handovers, Repacking and Signalling

We define a handoff (or handover) as any event that
causes the system to seek a new channel for an existing call
in the system. Handoffs occur due to cell boundary cross-
ings (i.e., a “radio reason” handoff), mobility changes, or
repacking. A radio-reason handoff occurs whenever a slow
call crosses a microcell boundary, or a fast call crosses a
macrocell boundary.

When a fast call changes mobility to become a slow call,
an attempt is made to assign it to a channel in the microcell
in which it is located. If this attempt fails, then the call
is retained in the macrolayer. When a slow call in the
microlayer changes mobility, an attempt is made to assign
it to a channel in the macrolayer. If this attempt fails,
the call is not retained in the microlayer but is dropped.
If this call is retained in the microlayer, it will encounter
a large number of cell boundary crossings. This is not
desirable since, after adding substantially to the signalling
traffic, it is very likely to get dropped anyway. No harm is
done by dropping the call provided the overall call dropping
probability is better than the operator’s promised grade-
of-service (say, e.g., 0.1%). Channel reservation for fast
calls in the macrolayer can be used to control this dropping
probability. We have not considered channel reservation in
this paper; but see [19].

If a slow call in the macrolayer moves across a microcell
boundary, then an attempt is always made to hand the call
over to a microcell channel. If there is no such channel, then
the slow call is retained in the macrolayer.

Handovers are also caused by the repacking of slow calls
occupying macrolayer channels; i.e., slow calls that are as-
signed channels in the macrolayer are moved back to the
microlayer on availability of channels in their respective
microcells. Channels in the macrolayer are thus freed up.



Note that the repacking of a slow call in this way is trig-
gered by a slow call departure from a microcell; a slow call
in the macrolayer does not need to constantly monitor the
occupancy of its microcell. Thus slow calls are handled in a
macrocell only when their corresponding microcell is fully
occupied. This increases the capacity of the system, but
additional signalling will be incurred due to the channel
reassignments.

Channel reassignments and handoffs cause signalling
traffic, and hence load the call processing systems. The
set of events that contribute to the signalling traffic are
new call arrivals, cell boundary crossings, mobility changes
and repacking.

B. Model Parameters and Notation

New call arrival processes for the various macrocells are
independent Poisson processes. Each arrival into a macro-
cell is fast or slow with a certain probability. The proba-
bility that an arriving call is fast or slow may be different
in different macrocells. A call arriving to a macrocell is
assumed to be located in a particular microcell within the
macrocell with a certain probability. The conversation time
for a call, and a mobile’s sojourn time in a cell are assumed
to be exponentially distributed. Further, the intervals at
which a mobile changes its mobility are also assumed to be
exponentially distributed. In practice, these intervals will
include the time to reliably detect the mobility change.

Macrocells are numbered and are indexed by integers
{1,2,...}. There are m; microcells in the i’* macrocell. The
microcells in the i*" macrocell are numbered using double
indices (i,j),1 < j < m;. Define
N; = the number of channels assigned to macrocell i in the
macrolayer
n;; = the number of channels assigned to microcell j in
macrocell ¢
A; = the total arrival rate of new calls (fast and slow) in
macrocell ¢
¢; = the probability that a new call in macrocell 7 is a fast
call
w;,; = the probability that a call originating in macrocell
1 is physically located in microcell j
pu~! = the mean conversation time of a call in the system;
taken to be 1 always; thus all times are normalised to the
mean call duration.

0, j = the mean sojourn time of a slow call in the microcell

(i,5)

E;l = the mean sojourn time of a fast call in the macrocell
i

I' = the rate of change of mobility of fast calls

v = the rate of change of mobility of slow calls

The mobility change model is to be understood as follows:
a call that is now a slow call, will become a fast call after a
random time that is exponentially distributed with mean
1/, provided, of course, that the conversation lasts that
long. We further define:

R; 1 = the probability that a call leaving macrocell ¢ enters
macrocell k

T(i,j), (k) = the probability that a call leaving microcell
(i, 7) enters microcell (k,1)

Performance Measures: In this paper we analyse the
models to obtain the new call blocking probability for each
call class (i.e., slow or fast); i.e., the probability that a
new call of that class is blocked on arrival to the system.
We denote the blocking probabilities by By,s and Bgoey-
Other performance measures of interest would be: hand-
off blocking probabilities, call dropping probabilities, and
the system signalling rate for setting up new calls, and for
handling handoffs.

III. ANALYSIS OF THE MODEL

A. The Approzimate Analysis Approach

There are M cells, indexed by i € {1,2,...,M}, and
cell ¢ has m; microcells, indexed by j € {1,2,...,m;}. We
define the following stochastic processes for ¢ > 0.

For 1 <i < M, define

X (¢) = number of fast calls in the macrolayer of cell 7,

Y (@) (t) = number of slow calls in the macrolayer of cell
Z,
and, for 1 < 5 < m,
vy (t) = number of slow calls in the macrolayer of cell

j
i that are located (at time t) in microcell (i, j); (of course,

v = 5 v @),
Z](z) (t) = number of slow calls in the microlayer that are

located (at time t) in microcell (i, j),
and denote by

€01 = (XD @), (v ), 2 (1)1 < j < ma)).

With our stochastic assumptions (Poisson new call ar-
rivals, exponentially distributed channel holding times,
exponentially distributed cell sojourn times, and Marko-
vian call routing between cells), the stochastic process
{(€9D(t),1 < i < M),t > 0} is a Markov process. The
number of calls in each layer is restricted by the total num-
ber of available channels in that layer. Hence we have a
finite state space for this process. For finite and positive
values of all the rate parameters, this Markov process is
irreducible and hence positive recurrent; thus a stationary
distribution exists. In principle, the stationary blocking
and dropping probabilities can be obtained from this sta-
tionary distribution. Owing to the several special features
of this model (handoffs, overflows, repacking, and mobility
change), the stationary distribution does not have a “prod-
uct form”. Further, owing to the large size of the state
space, direct numerical computation is intractable. Con-
sequently, we resort to an approximate analysis technique
similar to the one adopted by several previous researchers
in this area (for example, [8], [16]).

The process in the cell i, i.e., {£()(t)} is analysed in iso-
lation, assuming that the arrival process of handoffs from
the neighbouring cells is Poisson. This is done for every
cell, and, using the intercell routing probabilities, handoff
rates between the various cells are obtained. The isolated
cell analyses are repeated with these new handoff rates.
This iterative process is begun with some initial value of



handoff rates entering each cell (e.g., zero rates). If this it-
erative calculation converges (as it does in all the cases that
we have studied) then the limiting probability distribution
provided by the iteration at the ith cell is taken to be the
stationary distribution of the ith marginal of the process
{€0)(#),1 < i < M}. Since new call arrivals are Pois-
son, this yields an approximation for the new call blocking
probability.

In this paper we (i) develop the isolated cell analysis
with Poisson arrivals, with macrocells, microcells, repack-
ing and mobility changes, and (ii) examine the accuracy
of this approximate analysis procedure for a homogeneous
cellular network (i.e., all cells are identical, having the same
number of microcells, arrival rate, mean call holding time
and sojourn time, and also the same number of channels in
the macrolayer and microlayer). Such a homogenous model
can be used to model the central cells in a large array of
cells in which the nonhomogeneity is only in the boundary
cells. Note that the models analysed in [9] and [13] are also
homogenous.

B. Additional Notation for the Analysis of an Isolated Cell
in the Homogeneous Model

For the homogeneous model, in the stationary regime, we
drop the superscript (i) from the various notations. We de-
note the stationary marginal random variable for {X () (¢)}
by X, for {Y (1)} by Y, for {¥,” (1)} by Y}, and that for
{Zj(l) (t)} by Z;. Also, for the homogeneous case, the nota-
tion in Section II-B yields N; = N,n; ; = n,m; = m,\; =
A,¢i = QS,(.ULJ‘ = %;Uz’,j =0, El =3.

Define A\, = arrival rate of new fast calls in a macrocell;
these are serviced in the macrolayer (thus, A, = A¢); Ay =
arrival rate of handed-off fast calls in the macrolayer; \,,, =
arrival rate of fast calls in the macrolayer due to mobility
change of slow calls in the microlayer; Ay = total arrival
rate of fast calls in the macrolayer. Hence

>\f:>\o+>\h+>\m (1)
We also define the following arrival rates of slow calls.
1, = arrival rate of new slow calls in a microcell (hence
P = %), 1y = arrival rate of slow handoff calls in a
microcell; 1, = arrival rate of slow calls in a microcell due
to change of mobility of fast calls in the macrolayer; ¢ =
the total arrival rate of slow calls in a microcell. Hence

Y =%+ Yn+tm (2)
Further, we denote by As the rate of arrival of overflow slow
calls to a macrocell. The rates Ay, Ay, As, ¥y, and ¢, are a
priori unknown and are calculated iteratively after assum-
ing an initial value for them. The dependence of these rates
on the various random variables defined in Section ITI-A is
shown in Section III-B.1.

B.1 Calculation of Various Stationary Rates

The rate at which fast calls handoff from a macrocell
is ¥. A handed off call can enter any one of its [ neigh-
bours with equal probability. All the cells are assumed to
be identical and hence E(X) (see the stationary marginal
random variables defined above) is taken as the expected

number of fast calls in any cell in the macrolayer. It is
clear that in the stationary regime, the arrival rate due to
handoffs from a single neighbour cell is E(X)X/l. These

arrivals occur from all the [ neighbours of a cell. Hence
An = E(X)Z (3)
E(Y) is the expected number of slow calls in the macro-
layer, and E(Z) is the expected number of slow calls in
a microcell. Assuming homogeneity among the microcells

X 1<) <m

within a cell also, we have E(Y;) = —~
Since slow calls occupying macrolayer channels are always
attempted to be handed off to the microlayer when they
cross a microcell boundary, we h%/eY
v = (B(2) + ) (@

Also slow calls from any of the m microcells of a macrocell
may become fast calls at rate . Therefore

A = mE(Z)y (5)
Since all the microcells in a cell are considered to be iden-
tical, a fast call in the macrocell is located in any one of
the microcells with probability 1/m. E(X)T is the rate at
which fast calls in the macrolayer generate slow calls due
to mobility change. Hence

m = m r (6)
E(X),E(Y) and E(Z) are again functions of the net ar-
rival and net service rates of fast and slow calls in a cell.
Hence these can be computed iteratively, and then used to
compute the blocking probabilities.

0.9)

C. Analysis of the Isolated Cell Model Without Repacking

In this model, a slow call that arrives in a cell and is
served in the macrolayer, owing to the nonavailability of
a channel in the microlayer, is retained in the macrolayer
until it requires radio-reason handoff, or crosses a microcell
boundary, or until it completes the conversation. If the
slow call crosses a microcell boundary (even if it is in the
same macrocell) then a channel is first sought for it in the
microcell that it enters.

The isolated cell model comprises m groups of n servers
each, corresponding to the microcells, and one group of
N servers corresponding to the macrolayer channels. Slow
calls arrive to the microcell j,1 < 7 < m, in a Poisson
process at the rate 1; fast calls arrive to the macrolayer
channels in a Poisson process at the rate Ay. A slow call
finding its microcell full overflows to the macrocell chan-
nels. A fast call holds a macrocell channel for an expo-
nentially distributed duration with rate u+ 3, but changes
class to slow at the rate I'. Similarly, a slow call in the
macrolayer holds a channel for an exponentially disributed
time with rate p + o, but changes mobility at the rate ~.
Observe that, without mobility changes, this model is just
the classical overflow model that arises in telephone trunk
engineering. Owing to the large number of microcells, we
assume that the overflow process is Poisson. We will show
how this approximation works in comparison with simula-
tions. In contrast in [9] the overflow process is modelled by
an IPP: for our situation, where we are modelling several
new features, considering the additional state of the IPP
would further complicate the analysis. Simulations show
that our approximations are adequate.
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Fig. 1. Transition rate diagram for the microcell process Z(t), with no repacking

C.1 Stationary Analysis of the Microlayer

For a microcell in isolation, assuming Poisson arrival pro-
cesses, {Z(t)} is a Markov chain on {0,1,...,n}, with the
transition rate diagram shown in Figure 1; here v is as
defined in Section III-B.

Hence, the stationary probability, P(Z = n) is calculated
from the Erlang formula, Erlangg(a,n), which is defined

as Il

a"/n!
VLS 7)
> at/il
where a is the offered load in Erlangs, and is given for our
model as a = HL

+o+

Erlangg(a,n) =

5
Finally, E(Z) (as needed in Equations 4 and 5) is com-
puted, using Little’s theorem, as

_ ¥ _
E(Z) = m(l - P(Z =n)) (8)

C.2 Stationary Analysis of the Macrolayer

Slow calls blocked from microcells, or those changing mo-
bility, arrive into the macrolayer. Hence in the isolated cell
model, the process {(X(¢),Y(¢))} depends on the process
{Z(t)}. If the number of microcells in a macrocell is large,
then we can expect that the dependence of the macrolayer
process on any particular microcell will be small, and also
the microcells will be weakly dependent among themselves.
With this in mind, we approximate this dependence by us-
ing the stationary probabilities obtained for {Z(¢)}, and
hence model {(X(t),Y(t))} as a Markov chain with state
space S = {(nf,ns);ny +ns < N}

The macrolayer has new fast call arrivals in a Poisson
stream. A fast call can leave the macrolayer for one of three
reasons: on call completion, or on cell boundary crossing,
or on a mobility change with the probability that the mi-
crocell in which it is located has a free channel. To ac-
count for this last possibility, we need the conditional prob-
ability distribution of {Z(¢)}, conditioned on the states of
the process {X(¢),Y(t)}. However, as stated earlier, as
an approximation, we use the stationary probabilities of
the process {Z(t)}. Hence the rate at which a fast call
leaves the macrolayer due to mobility change is calculated
as I'(1 — P(Z = n)). A slow call leaves the macrolayer ei-
ther on call completion or on cell boundary crossing; from
the point of view of a single isolated cell model, a slow call,
in the macrolayer, that crosses its microcell boundary is
seen as leaving the macrolayer (since an attempt is made
to serve it in the microlayer of the neighbouring cell; see
Section II); actually if the neighbouring microcell is full
then the call may be retained in the macrolayer, but this
will be viewed as a new overflow arrival from the microlayer
in our analysis. Let p1y denote the total rate at which a fast

call leaves a macrocell in the macrolayer, and s denote the
total rate at which a slow call leaves the macrolayer. From
the arguments above, we have the relations:
Hf = p+X+T(1— P(Z =n)) (9)
Hs =p+o0 (10)
Slow calls arrive into the macrolayer when the microcell
in which they are located has no free channels. New and
handed off slow calls arrive to each microcell at the rate
1, + Y. Hence the rate of arrival of overflow slow calls to
the macrolayer is
As = m(Y, + ) P(Z =n) (11)
The arrival rate of fast calls to the macrolayer, s, is given
by Equation 1 and the expressions in Section III-B.1.

A fast call becomes a slow call and is retained in the
macrolayer if all the channels in its corresponding microcell
in the microlayer are occupied. As above, we assume that a
fast call that becomes slow finds its corresponding microcell
full with probability P(Z = n). Further, a slow call in the

macrolayer retains its channel if it becomes fast. With
these observations we define the rates
Vs = 'P(Z =n) (12)
Ysf =7 (13)
NO
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Fig. 2. Transition rate diagram for macrocell process {(X(t), Y (¢))},
with no repacking

It is now clear that, with the assumptions made and the
notation defined, {(X (¢),Y (¢))} has the transition diagram
shown in Figure 2.

It is easily seen that the transition diagram in Figure 2 is
the same as that of the closed Markovian queueing network
shown in Figure 3. There are two nodes, 1 and 2; node 1
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Fig. 3. Equivalent product form queueing network model, for the
Markov chain in Figure 2

represents the arrival process and node 2 the service pro-
cess. There are three types of calls: the incoming calls that
are only at node 1, and fast and slow calls that are at node
2. The service rate at node 1is A; + A¢; customers at node
1 depart as fast or slow calls according to the probabilities
ay and a, where ay = )‘fo)‘s, as = 1 — ay. The service
rates at node 2 are pu¢ + v¢5, and ps+s¢, for fast and slow
calls, respectively. The mobility changes are taken care of
by class changes. The value py, indicates the probability
that a fast call leaving node 2 returns to node 2 as a slow
call; here, pps = Nf]f;fs. Similarly we obtain pss. We can
use the BCMP theorem [6] to show that there is a product
form solution for the stationary distribution of the process
{(X(t),Y(t))}. The product form stationary distribution
of the random vector (X,Y) is

(a1)" /ng! x (az)™ /!

Tl ) = e e g x (@) gt Y
where,

a; = (/\f + /\spsf)/(:uf + (1 _psf)’)/fs) (15)

az = (/\s + /\fpfs)/(,us + (1 - pfs)’)/sf) (16)

Given w(-,-), the new call blocking at the macrolayer is

given by
>

P(X+Y=N)= w(ng,ns) (17)
ng+ns=N

C.3 Calculations from m(ny,ns)

The problem of finding P(X+Y = N) is the same as that
of finding the blocking probability in an Erlang-B model in
which two classes of customers arrive in Poisson processes;
one class brings a load of a; Erlangs and the other a load of
as Erlangs. We can merge the two Poisson streams into one
with a holding time distribution that is the probabilistic
mixture of the two, and which brings a load of a; +a». Since
the Erlang blocking formula is insensitive to the holding
time distributions and depends only on the load, we have
(exactly)

(a1 + as)V /N!

P =N = o +a)i /i

(18)

Also from Little’s theorem we have:
EX)=a(1-P(X+Y =N)) (19)
E(Y)=a(1-P(X+Y =N)) (20)

The expected values E(Z) (given by Equation 8), E(X)
and E(Y) are used to calculate the arrival rates due to
handoffs and mobility changes in the macrolayer and the
microlayer as described in Section ITI-B.1. With these new
rates, the next iteration is performed. Starting with Ay =

0, A\, = 0,¢p = 0,¢,, = 0 the iterations are continued

until the change in the rates is less than a small € > 0.

When the iterations terminate, the final values for the
single isolated cell analysis yield the desired blocking prob-
abilities. The fast call blocking is equal to the probability

that the macrocell is full and is given by the Equation 18.

The slow call blocking is approximated by the product of

macrocell blocking and microcell blocking. Hence

Bfast:P(X+Y:N) (
leow:P(Z:ﬂ)P(X+Y:N) (22)
D. Analysis of the Isolated Cell Model with Repacking

Repacking refers to the policy that a slow call using a
macrocell channel is shifted to a channel in the microcell
in which it is located as soon as one frees up. Thus if a slow
call is occupying a macrolayer channel, it implies that its
microcell is full. Repacking is similar to a handoff from the
point of view of the signalling required to achieve it. Hence
there is the question of the improvement in the blocking
performance due to repacking versus the increase in the
signalling load. The “aggressive” repacking strategy that
has been described here may not be the best to adopt, as it
may cause excessive signalling load without much gain in
blocking performance. For a performance study of various
“lazy” repacking strategies see [20]. We proceed in this
paper with the assumption of aggressive repacking.

We first obtain an approximation to the blocking prob-
abilities when there are no mobility changes, and later in-
clude mobility changes. Without mobility change, the iso-
lated cell model comprises m banks of n servers each, cor-
responding to the microcells, and one bank of IV servers
corresponding to the macrolayer channels. Slow calls ar-
rive to the microcell j,1 < 7 < m, in a Poisson process
at the rate ¢ (see Section III-B); fast calls arrive to the
macrolayer channels in a Possion process at the rate Ay. A
slow call finding its microcell full overflows to the macro-
cell channels. When a slow call departs from a microcell, a
slow call located in that microcell that is holding a macro-
cell channel is moved to the vacated microcell channel. A
slow call holds a channel (microcell or macrocell) for an
exponentially distributed time with rate u+ o. A fast call
holds a macrocell channel for an exponentially distributed
duration with rate g + ¥. Define X;(t) = Y;(t) + Z;(¢)
for 1 < j < m;ie., X;(t) is the total number of slow calls
in microcell j at time ¢. Note that, owing to repacking,
Zj(t) = IIllIl{XJ(t)T]J} and Y}(t) = X](t) — Z](t) It is
clear that the process {(X(t),X;(t),1 < j < m)} has a
product form stationary distribution since we have a mul-
ticlass resource sharing model with a coordinate convex
partial sharing policy (see [11]). In principle, the blocking



probabilities can be computed from this product form dis-
tribution. Since this is a partial sharing policy, Kaufman’s
recursion does not apply. For the large numbers of channels
(order of 100), and the large numbers of microcells that we
will consider, direct computation is not tractable. We will
use this product form distribution, however, to make cer-
tain exact arguments in the approximate analysis that we
now develop. In [21], the product form is observed to be
equivalent to that of a circuit switched network, and an
Erlang fixed point iteration is used; an accuracy of 15% to
40% is reported.

D.1 Stationary Analysis of the Microlayer

As before, we first consider a microcell process {Z;(t)},
for some j,1 < j < m. We model {Z;(t)} approximately
as a Markov chain on the state space {0,1,...,n}. When
Z; = n, the macrolayer holds at least one slow call that be-
longs to this microcell with probability P(Y; > 0/Z; = n).
Hence, owing to repacking, the transition rate from the
state Z; =nto Z; =n—1is P(Y; =0/Z; = n)n(u + o).
The remaining transition rates are unaffected by repack-
ing and are as in Figure 4. For the purpose of blocking
probability calculations in later sections, we need to obtain
the conditional probability P(Z; = n | Y; = 0). Observe
that, owing to the fact that slow calls are always offered
to the microcell first, and owing to repacking, when the
set of states with Y; > 0 is exited then Z; = n; further,
the set of states with Y; > 0 is entered only from the set
of states with Z; = n. It follows that the process {Z;(t)}
conditioned on Yj(t) = 0 is just the Erlang-B process with
offered load u% and number of servers n. Hence

P(Z; =n|Y; = 0) = Erlangs(/(u+0),n)  (23)
Observe that we do not have P(Y; = 0 | Z; = n); hence
the analysis of the Markov chain for Z(t) is not possible.
We will see, however, that this analysis is not necessary for
the calculation of blocking probabilities.

D.2 Stationary Analysis of the Macrolayer

As in Section III-C.2, we analyse the process
{(X(%),Y;(t),1 < j < m} by approximating its interac-
tions with {(Z;(t),1 < j < m)} using stationary probabil-
ity distributions.

When Y; = 0, a slow call from microcell j is offered to the
macrolayer only when it is blocked in the microcell j into
which it arrives. This happens with probability P(Z; =
n | Y; = 0), which has been obtained above. When Y; > 0,
since repacking is done, the microcell j must be full, and
every slow call arrival to this microcell will overflow into
the macrolayer. Thus, defining B = P(Z; = n | Y; = 0),
the transition rate from state (z,y1,y2,...,¥; =0,...,Ym)
rate from states Y; =k toY; =k+1is¢yp for 1 <k < N.

We now develop an approximate analysis for the process
{(X(),Y(t) = >, Y;(t)}, which has the state space,
S ={(ny,ns);ny +n, <N}

Define the random process K (t) = jjln Ity >0y (t);
where I;.1(#) is the indicator process of the set {-}. Thus,

K(t) is the number of microcells that have slow calls in
the macrolayer. Observe that, given the process K(t), we
can obtain the transition rates for the coordinate Y'(t) of
the process {X (¢),Y(¢t)}. When K(t) = k and Y (t) = n,
we see that overflowed slow calls arrive into the macro-
layer from k microcells with a total arrival rate ki, while
calls arrive from the remaining microcells with arrival rate
(m — k)B1). Therefore the net arrival rate of slow calls to
the macrolayer when Y (t) = ns; and K(t) = k is given by,
An,.k =k + B(m — k) (24)
Let us = (u + o). When a slow call departs from one of
these k microcells, a slow call that belongs to that microcell
is moved from the macrolayer to the microlayer. Due to
this repacking, the rate of departure of a slow call from the
macrolayer when (Y (t) = ng, K(t) = k) is given by
fin, k = Nsfts + knps (25)
This is because a slow call departs from the macrolayer
even if one of the n calls in any of the k full microcells
departs.

Unless we keep track of Y;(¢),1 < j < m, we do not
know the value of K(t). To obtain an approximate anal-
ysis of {(X(t),Y(t))}, we estimate a value for K (t), given
Y'(t), and use this estimate in the transition rate formulas
shown above. Thus given the number of slow calls in the
macrolayer we want to obtain an estimate of the number
of microcells they belong to.

We do this by considering an wrn model with m urns
(corresponding to the m microcells), into which ng(= Y (¢))
balls are placed in succession as follows; at the end of
placing the ng balls, the number of nonempty urns cor-
responds to K. The first ball is thrown into any one of
the urns with equal probability (this corresponds to the
fact that the first slow call to be handled by the macro-
layer comes from any of the microcells with equal prob-
ability). Now, given that there are exactly j microcells
that have at least one slow call in the macrolayer, the rate
of arrival, into the macrolayer, of a slow call from any of
these j cells is ji while the rate from the other cells is
(m — j)Bt. Thus the next slow call arrives from these
j cells with probability j/(j + (m — 7)B). The probabil-
ity that the next slow call is from the rest of the cells is
(m — j)B/(j + (m — j)B). Hence in the urn analogy, if
there are j occupied urns, the next ball is thrown in such a
way that the number of occupied urns increases by 1 with
probability (m — j)B/(j + (m — j)B). Note that, since B
will be small, the next ball is thrown into occupied urns
with a much larger probability than the unoccupied urns.
Let pg.z) be the probability that there are j non-empty
urns after ¢ balls are thrown into the urns in the manner
described. These can be recursively calculated with the
following equations ((.) are indicator functions)

@ _ iy _ (m-—j+1B o o

Pir = PG =1+ (m—j+1)B) isidsm T
G-n__ T 5 s 2
Pi G+ =B ism (26)

We know that pgl) =1 and p((]0 =1
Finally, given Y (t) = ns, we estimate the value of K(t)
as the expected number of non-empty urns in the above
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urn experiment; i.e., we define

j=m

kn, = > ")

and use this value for k ir{_]%)quations 24 and 25, given

Y (t) = ns, to obtain the transition rates for the Y (¢) coor-

dinate of the process {(X (¢),Y (¢))}. Equation 27 requires

the computation of p;z) for all possible values of 7 and j.

This can be avoided by using a recursion for directly com-

puting k,,, (this is provided in [17]). Thus, we have approx-

imated the process {(X(t),Y(¢))} by a Markov chain with
the transition rates shown in Figure 5; here py = pu + X.

(27)
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B
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0 A U7 T
Ht 2 Ny
Fig. 5. Transition rate diagram for the macrocell process

{(X(t),Y(t))}, with repacking

Observe that we have a two class blocking model in which
the arrival rates and the service rates of each class depend
only on the marginal number in that class. Hence, the
stationary distribution has the following product form (see
[12]). For (ng,ns) € {z,y:2 >0,y >0,z +y < N}

m(ng,ng) =G 'g(ng,n) (28)

where _
1=nNng
g(ng,ns) = (Ag/pg)" [ngl X H i1/ pi

=1

. An, and p,, are as given in Equations 24 and 25, with

k = k,,. G is the normalisation constant given as
G = g(ng,ny)

(29)

(30)

(ng,ms)
The probability that all the channels are occupied in the

macrolayer is thus Z

P(X+Y =N) = (31)
ng+ns=N

m(ng,ms)

D.3 Blocking Probabilities for Fast and Slow Calls

Iterative application of the above analysis provides an
approximation to the stationary probability distribution
for the process {(X(¢),Y(¢))}. The blocking probability
for fast calls is the probability that all the channels in the
macrolayer are occupied. Hence

Bfyst = P(X +Y = N) (32)

Slow calls are blocked if the microcell to which they ar-
rive and the macrolayer channels are full. Since all the
microcells are considered to be identical, the blocking prob-
ability for slow calls arriving into any microcell is

leow:P(Zj:n,X+Y:N) (33)
Writing out the right hand side of Equation 33, we get
P(Z;j=n,X+Y =N)=

P(Zj=n,Y;=0,X+Y =N) +

P(Z;=n,Y; >0,X+Y =N)

ns=N

= Y {P(Z=nY;=0Y=n,X=N-n,)+

ns=0

P(Z;=n,Y;>0,Y =ns, X =N —ny)} (34)
The product form for the stationary distribution of
{(X(®),Y;(t) + Z;(t),1 < j < m)} can now be used to
establish certain conditional independences (shown in Ap-
pendix A, Lemma A.1). These are used to yield the follow-
ing simplifications.

P(Z;=nY;=0|Y =n;, X =N —ng,) =

P(Z;=n,Y; =0|Y =n,)
= P(Zj=n|Y;=0,Y =n)P(Y; =01]Y =n,)
= P(Z;=n|Y;=0P(Y;=0[Y =n)  (33)
Similarly
P(Z;=n,Y;>0|Y =ns, X =N —n,) =
P(Zij=n]Y;>0,Y=n,)P(Y; >0|Y =ny)

(36)
Hence, we get
ns=N
Bsiow = Z P(Y =ns X = N_ns)'
ns=0

(P(Zj=n|Y;=0)P(Y;=0|Y =n,) +
P(Zij=n]Y;>0,Y =n)P(Y; >0|Y =n,)}
(37)
P(Y =ngs, X = N — ny) is obtained from the stationary
distribution Equation 28 (see [17]). Also P(Z; = n/Y; =
0) = Erlangg(¢¥/(u + 0),n) as shown in Section III-D.1.
Obviously, P(Z; = n | ¥Y; > 0,Y = ny) = 1, owing to
the repacking policy. Finally, recalling the definition of the
process K (t), from Section III-D.2; and letting K denote
the stationary random variable for K(t), we have

P(Y;>0]Y =n)=—B(K|Y =n)  (38)



and, of course,

PY;=0]|Y =ns)=1—-PY; >0|Y =ny) (39)
We approximate E(K | Y = ng) with k,, from Equa-
tion 27.

Hence we have all the ingredients to compute Bgjyy, from
Equation 37.

D.4 Including Mobility Changes in the Analysis with
Repacking

When there are mobility changes in the system, the
model for the macrolayer has a transition structure with
“diagonal” transitions due to change of type of calls. Since
the transition rates in the Y (¢) coordinate are not simply
proportional to ng, the product form distribution now fails
to hold. Further, we do not have an analysis of the micro-
cell process Z(t); hence we cannot obtain arrival rates of
slow calls due to mobility change as we did in the case with
no repacking.

We develop an approximation for the blocking probabil-
ities by viewing a change of mobility as an arrival of a call
of the other type. Each slow call arrival is viewed as an
arrival of a slow call, and also an arrival of a fast call with
the probability that the slow call will change class before it
terminates or leaves the microcell in which it arrived. The
channel holding times of these two arrivals are adjusted so
that the total offered Erlang load due to slow calls remains
unchanged. The same is done for fast calls.

Let pus = p+ 0 and py = p+ X. Define psp = v/(ps +
7); Psf is the probability that a slow call changes mobility
before it terminates or hands-off. Thus if A; is the total
arrival rate of fast calls in a macrocell and 1 that of slow
calls in a microcell, then, after including mobility change,
the net arrival rate into the fast call stream is taken as Aq,
where

A= )\f + mz/)psf (40)
Similarly if A5 is the net arrival rate of slow calls into the
m microcells in a macrocell, then

Ao = m + A\pys (41)
where pg, = I'/(uy + I'). We now obtain the modified
channel holding rates. Let z; denote the mean duration
of stay of the fast part of a call in the macrocell. It stays
for at least a mean duration of 1/(uy + I'). Then, with
probability p; it becomes a slow call which again becomes
a fast call with probability pss. Hence with the probability
DysDs¢, the fast call returns to the system as a fast call and
takes an additional duration z; to leave the system. Hence

zp =1/(us + 1)+ prspsy X ay (42)
Therefore .
rp=—— 43
T+ T = pyy) (43)
Also p; = 1/z. From this we obtain
= pyp+ (1 —psp)T (44)

A similar expression can be obtained for the mean duration
of stay of a slow call (as a slow call) in a microcell, finally
yielding

2 = fis + (1 = pys)y (45)
Now A; and A5 can be considered to be the net arrival rates
of fast and slow calls respectively in a macrocell. Similarly

1 and po can be considered as the net termination rates of
the calls in the macrocell. Thus the macrolayer model with
mobility changes is analysed by replacing, in the previous
analysis, ¢ with Xo/m, Ay with Ay, and py, ps with g, po.

IV. COMPARISON OF ANALYSIS AND SIMULATION

Recall that our analysis approach involves two levels
of approximations. The isolated cell analysis is approx-
imate, even for Poisson arrivals and exponential service
times. The multicell analysis is approximate because the
handover processes are modelled approximately as Poisson
processes, with rates determined from the stationary anal-
ysis of the isolated cells. It is important to understand
the contribution of the errors in the numerical results from
each of these major approximation steps. In Section IV-B
we show numerical results obtained from the analysis of a
single macrocell in isolation. We compare these analytical
results with those from a single macrocell simulation with
Poisson call arrivals. Overflow and repacking within the
macrocell are modelled; the number of microcells and the
channel partitioning is varied. These results serve to vali-
date the approximations used in the analysis that we have
developed for an isolated cell.

In Section IV-C we show numerical results obtained from
the analysis and simulation of a multicell system, for vary-
ing arrival rates, and mobility parameters. Whereas the
analysis is just iterative calculations on a single macrocell,
the multicell simulation models a system of 64 macrocells
each with a number of microcells. In the simulation, the as-
sumptions of Poisson new call arrivals, exponential channel
holding times, exponential cell sojourn times, and exponen-
tial time interval between mobility changes are identical to
those in the analysis. However, call mobility, handoffs to
neighbouring cells, repacking of slow calls, overflow and
mobility changes are all actually simulated. In the simula-
tion, for example, handover calls are routed to neighbour-
ing cells in each layer, and are then handled in the neigh-
bouring cells; when slow calls located in a microcell are in
the macrolayer and a slow call departs from that microcell,
then a slow call from the macrolayer is repacked; if a slow
call in the macrolayer moves to a new microcell with a free
channel, the slow call is repacked; etc. Thus the details of
the movement and state changes of the calls are simulated
exactly as they would be in the full multicell Markov pro-
cess €0(1) = (XD (), (V" (0), 2} (1)).1 < j < ma)) (see
Section III).

A. System Parameters for the Numerical Results

The number of channels allocated to each (macro)cell is
80; with a reuse factor of 3 between the macrocells, this
would mean that there are 240 channels available in the
system. Non-overlapping channel sets are assigned to the
macrolayer and the microlayer. A reuse factor of 4 is as-
sumed in the microlayer; hence the set of channels allocated
to the microlayer is partitioned into 4 sets. It follows that
N + 4n = 80. When a macrocell is divided into m micro-
cells, the area of the microcell is 1/m times the area of the
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macrocell. Hence the linear distance that a mobile travels
to leave a microcell is 1/\/(m) times the linear distance
the same mobile travels to leave a macrocell. Assuming
that fast mobiles are 5 times as fast as the slow mobiles,
the sojourn rates of the fast and slow calls (in macrocells
and microcells, respectively) are related by o = Xy/m/5.
We also take the mobility change parameters to be related
by I' = 5.

Since the value of =1 (the mean conversation time) is
taken as 1, the values of the cell sojourn rates and the rates
of change of mobility are normalised to the mean conversa-
tion time. Thus, for example, ¥ is the average number of
macrocells that a fast call crosses during its conversation

TABLE IV
SINGLE MACROCELL with REPACKING; X = 0; I' = 0; m = 36;
N =64,n=4
Load (erlangs) Analysis Simulation

Bfast leow Bfast leow

150 0.0951 | 0.0262 || 0.1041 | 0.0257

140 0.0564 | 0.0140 || 0.0645 | 0.0156

130 0.0268 | 0.0058 || 0.0328 | 0.0063

120 0.0092 | 0.0017 || 0.0104 | 0.0016

115 0.0045 | 0.0007 || 0.0051 | 0.0007

time.

B. Validation of the Isolated Cell Analysis

TABLE T
SINGLE MACROCELL without REPACKING; ¥ = 0; I' = 0; m = 16;
N=56n=6
Load (erlangs) Analysis Simulation
Bfast leow Bfast leow
150 0.3347 | 0.0797 || 0.3323 | 0.0849
140 0.2720 | 0.0572 || 0.2703 | 0.0631
130 0.2028 | 0.0370 || 0.2006 | 0.0397
120 0.1307 | 0.0201 || 0.1288 | 0.0224
110 0.0649 | 0.0082 || 0.0673 | 0.0098
TABLE 11
SINGLE MACROCELL with REPACKING; X = 0; I' = 0; m = 16;
N =56;n=6
Load (erlangs) Analysis Simulation
Bfast leow Bfast leow
150 0.2268 | 0.1055 || 0.2316 | 0.0984
140 0.1754 | 0.0757 || 0.1771 | 0.0696
130 0.1215 | 0.0480 || 0.1246 | 0.0433
120 0.0710 | 0.0253 || 0.0680 | 0.0228
110 0.0303 | 0.0093 || 0.0305 | 0.0085
TABLE III
SINGLE MACROCELL without REPACKING; 3 = 0; ' = 0; m = 36;
N =64, n=4
Load (erlangs) Analysis Simulation
Bfast leow Bfast leow
150 0.1790 | 0.0268 || 0.1856 | 0.0273
140 0.1204 | 0.0158 || 0.1291 | 0.0177
130 0.0667 | 0.0075 || 0.0688 | 0.0096
120 0.0268 | 0.0025 || 0.0305 | 0.0028
115 0.0065 | 0.0005 || 0.0082 | 0.0008

Tables I, II, ITI, and IV show slow call blocking and
fast call blocking versus Erlang offered load, in an isolated
cell; results are shown from our approximate analysis and

from a simulation of the isolated cell model. The specific
parameters are given in the figure captions; in each case,
the fraction of arrivals that are fast calls is 0.4. Results are
shown with and without slow call repacking. Observe that
the analysis, in spite of the many approximations made, is
quite accurate.

Owing to the fact that slow calls can use macrocell chan-
nels, their blocking probability is much smaller than that
of fast calls. This discrepancy, which will result in ineffi-
cient system sizing, is corrected by channel reservation (for
an analysis with reservation see [19]).

Note that repacking of slow calls will always help to re-
duce the blocking probability of fast calls, but may in-
crease or decrease the blocking probability of slow calls.
The blocking probability can increase since without repack-
ing new slow calls can use free channels in the microlayer,
which would have been filled up by repacking. Blocking is a
bursty phenomenon, however; when there are free channels
in a microcell, and slow calls from that microcell occupy
macrolayer channels, then repacking these calls helps slow
calls arriving at other microcells that may be experienc-
ing a period of blocking. The latter effect is expected to
predominate when the number of microcells is large, and
the blocking probability of slow calls at their microcells is
large; in this scenario there is a large probability that at
any time some microcell is overflowing. Observe that for
m = 16, N = 56,n = 6, introducing repacking increases
the blocking of slow calls but substantially reduces that of
fast calls. For m = 36, N = 64,n = 4, however, there is
a slight decrease in slow call blocking when repacking is
introduced.

C. Analysis and Simulation Results for the Multicell Model

A multiple macrocell system is analysed using our it-
erative analysis, and using a multicell simulation; graphs
between the Erlang load and the blocking probability are
plotted for the parameter values m = 16,N = 60,n =
5, and v = 0.4. The simulation is done for a homogeneous
system with 64 macrocells.

Figures 6, 7, 8, and 9, show the results without slow
call repacking. Although, done for the multicell case, since
o = X = 0, Figure 6 is just another case of the single cell
results presented in the previous section; we provide this
figure for comparison with the results for the same system
parameters with mobility. In Figures 7 and 8, there is
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mobility, but no mobility change (in Figure 7, ¥ = 0.5;
hence with m = 16, the value of o = 0.4; in Figure 8,
¥ =3 and 0 = 24). In Figure 9 there is mobility and
mobility change; here I' =2, v = 0.4.

In Figures 10, 11, 12, and 13 we provide results with
repacking of slow calls. FEach of the figures for the cases
without repacking has a corresponding figure here, and the
results between these should be compared.

Observe, first of all, that the analysis results compare
well with those obtained from the simulation. Analysis
has the major advantage of requiring just a few minutes
of computation time, versus the several hours required for
accurate simulation. Thus such an analysis can be very
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useful in an iterative system sizing process.

In each case, introducing repacking substantially reduces
fast call blocking, and increases or slightly reduces the
blocking probability of slow calls. Since we do not have
channel reservation in these results, slow call blocking is
much lower than fast call blocking. Increasing the mobil-
ity rate is seen to reduce the blocking probability; this is
because with increasing mobility some calls are dropped be-
fore they complete conversation, thus reducing the overall
occupancy of the channels. We are not controlling drop-
ping probability in these results, as our objective here is
only to validate the analysis against simulations.
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V. CONCLUSION

We have studied the performance of microcellisation in
a cellular network, in which the mobiles can be classified
as fast or slow. We have developed approximate analyses
for calculating the slow and fast call blocking probabilities,
and have validated the analyses against a detailed multicell
simulation. The approximate analysis is an iterative pro-
cedure that utilises an analysis of an isolated cell. We find
that in spite of the many approximations made, the anal-
ysis results compare well with the simulations. For a large
number of microcells, exact analysis of even the isolated
macrocell processes is intractable; we are able to obtain
approximations that require the analysis of no more than
2-dimensional Markov chains. Such analyses are useful in
an iterative procedure for sizing a cellular system to achieve
a desired grade of service, since their computation time is
much smaller than that for simulations.

It is a relatively straight-forward matter to obtain ap-
proximations for dropping probabilities and signalling rates
from the analysis [17]. Our analysis procedure in this paper
does not permit reservations for fast calls or handovers; the
isolated cell analysis needs to be enhanced to accommodate
this feature. It is also interesting to explore “lazy” repack-
ing policies. The latter two issues have been addressed in
our more recent work reported in [19] and [20]. In these
references we have also studied the use of these analytical
techniques for system design, i.e., choice of the number of

microcells and channel partitioning. More efficient policies
for channel allocation to the macrolayer and the microlayer
need to be explored.

APPENDIX

I. APPENDIX: PROOFS OF CERTAIN CONDITIONAL
INDEPENDENCE RELATIONS FOR THE ANALYSIS WITH
REPACKING

As observed above in the main text (Section III-D),
the process {X(¢),X;(t),1 < j < m} has a product
form stationary distribution. The stationary probability
of {X(t) = ﬂ?o,Xl(t) = ﬂ?l,XQ(t) = ZIo,.. Xm(t) = mm}
is of the form

W(zo, z1,2,. .., Tm) =

1

5(%(%0)(151 (z1)¢p2(x2) .. dm(zm)) (A
where (G is a mnormalisation constant, and =z
(z0,%1,%2,...,%m) is in the state space S = {z : 0
g < N,0<z; <n;j+N,1<j< m,:ng—l—z;nzlxj
N+370 nj}. Let (X, Xi,..., X;,,) denote the stationary
random vector for the process {X (), X;(t),1 < j < m}.

Let S € {0,1,2,...,n; + N} be a set of values that X;

can take.

Lemma A.1:

—_
~

INIA

P(X; €S| YVi=y, X =)=
i=1
P(X; €S| Vi=y)
i=1
Proof: From the product form dzistribution, we have

P(X;€8,) YVi=y X=a)=

i=1
1
G D

{a:a;€8,) " yi=y,mo=a}

(A.2)

Bo(z0)1(21) - - Py (Tim)

PO Y=g X =)=
i=1

1

G >
{a:) 7" vi=ywo=z}
We denote the set {z(®) = (x1,20,...,2m) : (zo =
T,T1,Ta,...,Tm) € S,x; € 8,3 y; =y} by A(z) and
the set {2(®) = (z1,22,...,2,) : (L0 = 2,1, T2, ..., %) €
S, 3" yi =y} by B(z). Observe that A(z) and B(z) do
not depend on z. Denotin%these sets by A and B, we have
PX;eS i Yi=yX=1)
Z{g(U)eA} (151 (2131) s ¢m(wm)

Z{E(O)EB} ¢1 (Tl) R ¢m (Tm)
We now obtain an expression for P(X; € S| > 1" Y = y).

Recall that z = (zg,z1, 9, ..., Tm). We have
m

m

P(X; € 8.3 Vi=y)/P(Y V=) =

do(zo)d1 (1) .. b (Tm)

(A.3)

Z{g:wjes,zznzl yi=y} bo ($0)¢1 (371) o Om (wm)
Die3 " =yt P0(20)01(21) - - P (@)




From the definition of the sets A(x) and B(z) above, we

have,
m

P(X; €8, Vi=y)/P(Y Vi=y) =

=1 =1
SN (60(50) X0 catan @1(1) - G (om))

ot (90(00) Sy ey 91(1) - - ()

(A.4)
Since A(z) and B(z) do not depend on z, Equation A.4
yields

P(X; €83 Vi=y) | P Vi=y) =
i=1 i=1
ZE(O]EA $1(21) - .. Pm(Tm)

Zg(O)EB $1(21) - O (T)
From Equations A.3 and A.5 we have the result. O
It follows that
P(Zij=n,Y;=0]|Y =ns, X =N —n,) =
P(Z;=n,Y; =0|Y =ny)
Similarly, it can also be shown that
P(Zj=n,Y;>0|Y =ns, X =N —n,) =
P(Z;=n,Y; >0|Y =ny)

(A.5)
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