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Limits and models in fluid mechanics*
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Abstract. A framework is presented for examining the effectiveness of
limiting and modelling arguments used in the analysis of fluid flows. It
consists of examining the consequences of the arguments on the flow
problem as a whole and breaking down the limiting/modelling process
into a sequence of steps and associated sequence of flow problems,
termed here as ‘lidels’. The notion of validity of lidels is given. Several
examples are given to explain the present approach.
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- 1. Introduction

Limiting and modelling arguments are probably the most fascinating elements in
the wizardry used in the analyses of flow problems. These flexible instruments
enable fluid dynamicists to apply physical and mathematical ingenuity to highlight
key features of the problem at hand and to strip it of essentially secondary features.
The resulting simplification often facilitates analysis and computation and gives
valuable insight into the nature of fluid flows. Occasionally, however, the results
are intriguing and it may not be evident whether we can accept them as
manifestations of real flows. -

A typical limiting argument applied to a governing equation or initial or
boundary condition seeks to obtain a statement that is exact in a chosen limit. The
statement is also expected to be a good approxxmatlon when the parameters are
close to the limiting values. The argument can in general be executed formally and
systematically by using asymptotic expansions to indicate the conditions under
which the resulting statement is a good approximation or to obtain improved
approximations. A modelling argument, on the other hand, relies on physical or
mathematical judgement, experimental information, and, in some cases, on
analogies, and it leads to a statement that is taken as a part of the problem. Unlike
limiting arguments, there is usually no indication of conditions under which it is
_exactly or approximately correct. Also, there are no general systematic ways of
constructing improved models. Furthermore, some of the resulting statements may
contain parameters or functions that are chosen.subsequently depending on the
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particular class of problems one is dealing with. Thus there is generally much
greater understanding and agreement about the limiting arguments* and the range
over which they provide useful approximations, although there have been quite a
few surprises when apparently straightforward limiting arguments have been
applied to seemingly innocuous problems.

Although these arguments are qualitatively different, it is proposed to consider
them together in this work for several reasons. First, they often alter the nature of
the problem as a whole and their effectiveness is best judged by the information
provided by the modified problem. Second, there are instances when we have to
use both limiting and modelling arguments (e.g. turbulent boundary layer) and a
common methodology of examining the consequences would be useful. Third,
there seems to be enough scope for extending certain ideas such as validity, which
have been fruitfully applied to limiting arguments, to the modelling arguments. The
last reason is the main motivating factor of the present approach. which, one hopes,
would lead to a sharpening of the acceptance standards of modelling arguments.

Let us recall a few classical examples. The low Reynolds number analysis of
Stokes, based essentially on a limiting argument, led to the formula for the drag of
a spherical particle that has been widely used. However, when a similar argument

~was applied to a circular cylinder, it led to nonexistence of a solution. This type of
difficulty was resolved much later by using methods of singular perturbations
inspired by boundary layer analysis. ;

The problem of steady attached flow past a streamlined body for an
incompressible fluid at large Reynolds number was historically first attacked by
solving the corresponding inviscid flow problem in two dimensions. An additional
condition, known as the Kutta condition, has to be imposed to determine the
circulation around the aerofoil. This could be interpreted as the application of
limiting arguments coupled with a modelling argument. One could advance limiting
arguments to obtain the Kutta condition as a conclusion, although such a systematic
argument is not known to the author. |

While the correctness of the Kutta condition has.never been seriously questioned
for the original class of problem for which it was proposed, it should be noted that
neither is a higher order Kutta condition available nor is it clear what should be a
similar argument or statement when the aerofoi] is oscillating or when there is an
oscillating flow about a stationary aerofoil. Flow visualisation studies seem to show
that the stagnation point, under certain conditions, is not at the trailing edge, but
near it. Yet inviscid analysis based on the Kutta condition has been immensely
useful in aeronautics and indeed it has been widely applied to cases where the
aerofoil has a small base or when there is a small separated region near the trailing
edge.

The well-known analysis of von Karman for a vortex street deals with a model
problem in which not only the viscous diffusion of vorticity is not considered, but
also vorticity is taken to be concentrated, illustrating that not only governing

equations but also initial or boundary conditions may be modified by these
arguments.

"Limiting arguments are related to so-called rational appioximations (Van Dyke 1964, p. 3) which can
be distinguished from other, irrational, approximations. These approximations can be distinguished
from ‘models’ in several ways as was done by Ojhi (1982, p. 105) for. turbulent flows.
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Free streamline models, beginning with ‘the Kirchoff model, specify the
displacement effect of the wake in a separated flow past a body usually in terms of a
boundary condition on the separating streamline. This family of models illustrates
another rather common feature of model problems, namely incompleteness, as one
quantity, typically base pressure, has to be specified. This type of input is
problem-specific. Of course, there are well-known cases of incompleteness, which
call for general inputs. The problem of calculating mean flow and moments of low
order in stationary turbulent flows is bedevilled by the absence of a physically
sound and mathematically sufficiently general closure hypothesis, although several
well-known closure hypotheses have been useful in practical applications and also
in clarifying some features of the flow. ,

As explained above, we are concerned here with examining limiting arguments
and model arguments together on the basis of their consequences on the problem as
a whole. It is expedient to call the modified problem a lide! (a word coined by the
combination of ‘limit’ and ‘model’) to distinguish the argument from the resulting
problem and to emphasise a common framework for considering both types of
arguments. The plan is to present first a general framework, which is followed by
the notion of validity and a classification scheme to handle similarities of structures
in a systematic way. The general methodology of examining the consequences of
the arguments in several stages is finally illustrated by several examples.

2.. Framework

The main idea is to consider arguments of limiting or modelling character together
and to examine the resulting modified problem, which is termed as-a ‘lidel’ or a
‘lidel problem’. The arguments which make assumptions about solutions of the
original problem are also included. For instance, if it is argued that the flow, which
is subjected to time-independent boundary conditions, and which starts from a
given initial condition, approaches a steady flow at large times, the resulting steady
flow problem is considered a lidel for large time behaviour. One case study is given
later to indicate several types of large time behaviour that can arise in flow
problems. Similarly, if a boundary layer for given initial conditions and a suitable
pressure distribution tends to become similar, the problem of obtaining a similarity
solution is considered as a lidel for large downstream distances.

Classical hydrodynamic stability problems of boundary layers formulated for
early stages of transition employ several ingredients such as undisturbed parallel
flow, small disturbance of assumed form, modelling of spatial growth by temporal
growth, which can be considered as limiting or modelling arguments; the
stability problem is then regarded as a lidel for a certain class of disturbances and a
certain range of downstream distance. When the analysis is applied to the flow
resulting from a vibrating ribbon, an additional ingredient which changes a forced
oscillation problem into a free oscillation problem is needed, which can also be
regarded as a modelling. argument.

Since the limiting modelling process frequently leads to incompleteness, hypoth-
eses or statements of a general nature that are added to complete the problem are
treated as parts of the lidel. On the other hand, information about numerical values
of certain parameters, which are problem-specific, or which are not obtained by the
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argument but by comparison of the results with experimental data or cher
solutions, is termed as auxiliary input. Some inputs are matters of convenience
(e.g. wall functions in certain turbulent flow computations) and some are §uch that
the final results are not supposed to be sensitive to the chosen values provided they
are in certain ranges (e.g. velocity profiles in integral models of boundary laye.rs).
This type of information which is necessary but which is not central to the hd.el~
problem is also treated as auxiliary input (see figure 1). Arguments uged in
replacing partial differential equations and the initial and the boundqry condxtlc?ns
by finite difference statements are also considered here as limitxng/modelllng
arguments. Grid size, coefficients of terms added for damping out certain efffacts
(that is, numerical viscosity), and relaxation factor etc. are examples of auxiliary
inputs. | .
A few points have to be noted about the present approach. First, there is no
restriction on the mathematical form of the lidel problem. Second, the expected
correspondence between the solutions of the lidel and the original problem can
vary from being exact for certain conditions, certain values of parameters, or in
certain limits, to mere qualitative similarity. Since this range of correspondence
may appear too broad to some readers, the need for such flexibility is showp by an
example. The problem of a two-dimensional inviscid layer of constant vorticity with
a slip at the wall responding to a small initial disturbance at the surface of the
rotational region was formulated (e.g. Pullin 1981) to simulate dominant features
of a turbulent boundary layer at large Reynolds number. Clearly, the correspond-
ence between the results of this problem and real boundary layers can at best be
qualitative. We regard this problem as a lidel of real turbulent boundary layers for
large Reynolds numbers. Third, a clear distinction is made between the statement
of a lidel and a method for its solution. However, it should be pointed out that some
arguments which change the nature of the problem are conventionally regarded as

original modified
problem problem
governing derived
equations, | A statements,
initial and closure
boundary conditions
conditions T
‘ auxiliary
input
8 B|
. C .
solution |e—— = _ _lsolution

~ 7

\ ‘ / Figure 1. General framework for
C C examining consequences of limit-
\ real / _ ing and modelling arguments. A
flow arguments, B analysis or com-

putation, C correspondence.
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a part of the method of solution of the original problem. For instance, there is a
class of methods of obtaining approximate solutions of boundary layers in which
the partial differential equations are first replaced by a few integral relations, then
some additional statements are added and then one proceeds to solve ordinary

differential equations. We first note that what is actually solved is a substitute ..,

problem and not the original problem. We regard the first two parts as not really
part of the method of solution of the original problem governed by partial
differential equations but as modelling arguments that replace the original problem
by a substitute problem. It should be emphasised that the change in the
mathematical structure is evidently accompanied by the change in the nature of
information. For instance, Newton’s laws and energy conservation would hold for
the layer as a whole but not for its individual parts.

The next major idea is to split the limiting/modelling process into a sequence of
steps or stages and to examine the solutions of problems before and after a step.
Although such splitting may not always be possible, it can give useful understanding
of the limiting/modelling process. In some instances, examination of the solution of
the problem prior to a limiting/modelling stage reveals conditions when the model
is likely to be valid. For instance, the problem of steady incompressible inviscid
flow past an aerofoil can be obtained in two steps or stages. First, one considers the
large-time behaviour for a viscous fluid initially at rest and takes a large-time limit.

~Second, one allows the viscosity to approach zero or the Reynolds number to
approach infinity without stretching coordinates and one adds the Kutta condition.
The problem obtained at the end of the first step is a lidel that is capable of
describing viscous effects in the boundary layer and the wake in the absence of
unsteadiness. The problem obtained at the end of the second step, that is, the
inviscid flow problem, is also a lidel in the present context. In order to understand
what the second step does, one can compare the problems at the end of the first and
the second stage. '

Consider the discrete potential vortex model classically used in the computation-
al studies of the stability of a mixing layer. One can visualise three steps of the
limiting/modelling process starting from an initial value problem of a viscous layer
of finite thickness. First, viscosity is allowed to approach zero. Second, the
thickness of the layer is allowed to approach zero, so that the thin layer is replaced
by a velocity discontinuity, a vortex sheet. Third, the vortex sheet is replaced by a
set of initially equidistant discrete (potential) vortices of equal strength. The

problem at the end of the second step has no length scale, while a length scale, the -
initial distance between neighbouring discrete vortices, is introduced in the last

step. Little wonder that the vortex sheet is unstable to disturbances of any wave
length (Kelvin-Helmholtz instability) and the discrete vortex calculation, if
performed without numerical fixes, shows that the layer crosses itself after some
time.

In some instances, when the model is thought to be fully satisfactory, one learns
‘from such examination about some features that the modelling process might have
filtered out. One has to keep in mind that the order of steps may be important and
that there might be more than one acceptable sequence. A few examples are given
later to illustrate the possibilities.

There is another type of splitting that can be thought of. When the incomplete-
ness of the lidel problem is remedied by closure conditions, one can, in some cases,
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compare them with corresponding experimental results or results of problems that
are upstream in the limiting/modelling process. Such direct comparison can tell us
about the range of applicability of the closure conditions. One case study is given
later to illustrate this type of comparison.

Before proceeding further, we need to examine the notion of the validity of a
lidel.

3. Validity

In oider to discuss conditions under which a lidel serves the intended purpose, it
seems desirable to introduce the notion of the validity of a lidel" It is essentially a
generalisation of the idea of validity of an asymptotic expansion. If a standard is
specified for the solution of a lidel and a criterion is specified for the difference
between the standard and the solution of the lidel, we can say that the lidel is valid
if it meets the criterion on comparison with the standard. The standard can be the
solution of the original problem or a problem that is upstream in the limiting/
modelling process or the results of a carefully chosen experiment. If the
correspondence is exact for some conditions or quantitative, but approximate in
some sense, it is easy to see how the criterion can be specified. On the other hand,
it is difficuit to see how qualitative correspondence can be translated into a
criterion. For example, it is difficult to specify when flow visualisation pictures have
the desired correspondence with discrete vortex model prediction. However, it
turns out that it is clear when the lidel solution differs qualitatively from the
standard. For example, if a lidel consisting of closely spaced discrete vortices for a
vortex sheet leads to the sheet crossing itself after a certain time, it is clear that the
lidel cannot be valid for such large times.

We need to bear in mind that the validity of a lidel is usually restricted to a
certain range of parameters or regions in space and time. Also, if the lidel needs
auxiliary input, the validity is subject to the values of adjustable parameters being
chosen in a certain range.

While limiting and modelling arguments might give some information on or
indication of the range of validity, experience has shown it to be quite incomplete.
Therefore, an a posteriori validation exercise is necessary if we do not wish to run
the risk of being misled by some features of the hdel flows into believing that real
flows have those features.

4. Classification of lidels

The lidels can be classified in several ways. For instance, one can differentiate them
on the basis of the nature of correspondence expected, or on the nature of
~ arguments used in-formulating the lidel problems, or on the degrees of freedom of
the lidels as indicated by the number of adjustable parameters. The scheme given
here for flow problems is on the basis of the mathematical form of the lidel

problem. Table 1 gives the classes with illustrative examples, which are largely
self-explanatory. '
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Table 1. Classification of lidels

Class Example

Differential Attached potential flow with Kutta condition

Free streamline models:

Karman vortex street

Discrete vortex models

Flows governed by Euler, boundary layer or parabolised Navier—
Stokes equations

Large Reynolds number = approximations of internal/external
separated flows

Stokes flow

Hydrodynamic stability problems

Reynolds averaged equation models with closure hypotheses

Lorenz convection model

Integral & Control volume analysis

integro-differential Integral models of laminar/turbulent boundary layers
Integral relations for laminar boundary layer
Contour dynamics analysis of flow with distributed vorticity -

Numerical Panel & vortex lattice models
Finite difference models of potential flow, Euler equations, boun-
dary layer equations, parabolised or full Navier-Stokes equations

Mapping Poincaré maps of certain flow problems.

Hybrid Viscous-inviscid interaction
Chapman—Korst model
Large eddy simulation models

5. 'Examples

A few case studies are given to illustrate and elaborate the ideas. in the earlier
sections.

5.1 Vortex interactions

The spatial organisation of rotational regions has been of intense interest since the
early seventies. In nominally 2D mean flow fields, these regions, called “vortices”
for brevity hereafter, undergo striking motions which have been termed pairing,

merging etc. Several investigations model the motion as two-dimensional and.

inviscid, as some of the observed features of flows are believed to be governed by
largely two-dimensional and inviscid processes.

The motion at a point in the interior of such a rotational region can be
decomposed into two parts, one owing to vorticity in that region and the other to
the rest. The second part essentially convects the region and imposes an irrota-
tional straining velocity field.

The first basic model problem A consists of a single vortex, having uniform
vorticity in a region of elliptic shape. The flow outside the region is irrotational.
Also, there is a velocity field with uniform strain rate imposed by boundary
conditions at large distances. The flow field is termed as an elliptic vortex in a

s
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uniform straining field. Following the steady solution studied by Moore & Saffman
(1975), Kida (1981) and Neu (1984) have obtained a class of exact solutions of
Euler equations which are illuminating. We first describe certain features of
solutions before taking up modelling issues.

Asthe boundarv of the rotational region retains its shape and its area is constant,
the velocity field at an instant is characterised by two quantities, namely, the ratio
of the major to the minor axis of the elliptical boundary and the angle made by the
major axis with one principal direction of the strain rate, the parameters of the
problem being vorticity w and the principal value of strain rate y. The problem can
‘be transformed into that of a Hamiltonian system and the phase space trajectory
diagrams are given in figures 2a—e. The radial coordinate r and the angular
coordinate § of a point indicate the ratio of the major to the minor axis and the angle
made by the major axis with the principal axis at any instant. An isolated point
(nodal point) or an intersection of trajectories is a steady state, which may be stable
or unstable depending on whether none or some of the neighbouring trajectories
move away from it. A closed trajectory that goes to all quadrants indicates a
periodic motion in which the major axis rotates around the vortex centre. A closed
trajectory that does not go to all quadrants indicates that the vortex undergoes
angular oscillations. A trajectory that moves indefinitely away from the origin
indicates indefinite increase of the ratio of the major to the minor axis or flattening
out of the ellipse. We thus see from the figures 2a~e that there are many different
types of large-time behaviour that can arise depending on the value of strain rate to

vorticity ratio and the initial condition. We summarise the ranges in which these
types of behaviour can occur.

Steady vortex » ‘ 0<vy/w<015
Oscillating vortex 0<ylow <015
Rotating vortex 0= ylw < 01227
Indefinite flattening of vortex . 0<ylo

Thus an elliptic vortex can undergo simple motions, only if the strain rate is
sufficiently small. If the strain rate is sufficiently large, the vortex invariably flattens
out. .

The second basic model problem B consists of two interacting vortices, initially
of circular cross-section and of uniform vorticity, both having equal circulation and
area. Two models B1 and B2 obtained from B are based on the contour dynamics
method (Zabusky et al 1979) and the discrete vortex model in which distributed
vorticity is modelled by a cluster of concentrated vorticity. Figures 3a & b show that
merging occurs if the initial distance between vortices to diameter ratio is less than
a critical value and simple relative motions occur otherwise. The results of the two

-models B1 and B2 are qualitatively similar, and the critical values obtained by them
are about 1-702 and 1.7.

One may link the problems A and B by arguing that one vortex influences the

- other vortex by imposing a rigid body translation and rotation, and a straining
velocity field. In the simplest case, the strain rate can be taken to be uniform. So
the problem A can be considered as a lidel having qualitative correspondence with
the problem B. Then one expects a correspondence between the parameters of the
_two models. The initial strain rate (at the vortex centre) to vorticity ratio is

2|
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inversely proportional to the square of the distance to the diameter ratio. The
critical value of strain rate/vorticity that allows the elliptic vortex to retain its shape
and rotate is 1-227. This would correspond to the critical value of the initial distance
between vortices to the diameter ratio of 1-01, which is much smaller than 1-7.
There is a qualitative corresondence between the two models in the sense that when
the strain rate is smaller than a certain critical fraction of vorticity, or when the
distance between the two vortices is greater than a particular critical multiple of
vortex diameter, each vortex is able to undergo simple motions with limited
deformation. Limitations on the correspondence arise from non-uniform and time
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Figure 3(a). Interaction of two vortices of equal strength and of initial circular shape of
equal diameter. Results of contour dynamics (Jacob & Pullin 1985). Initial- distance
between vortex centres/diameter has values 1-3293, 1-5066 and 1-7016 in cases (i), (ii) and
(iii), respectively.
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Figure 3(b). Results of discrete vortex model (Tsuboi & Oshima 1985). Distance/diameter |
has values 1-4, 1-7 and 2 in cases (i), (ii) and (iii), respectively.
dependent strain rate fields imposed by the neighbouring vortex and subsequent
non-elliptic shapes in the model B.

There is another aspect of the results of model A which is of interest. The steady
flow solution can be considered to be a candidate lidel for large-time behaviour for
time-independent boundary conditions. Frequently one argues that, for time
independent boundary conditions, the flow may be expected to approach a steady
state or a similarity solution. Sometimes longitudinal distance plays a role similar to
time and one seeks fully developed flow. In turbulent flow investigations, one
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considers stationary flow, self-preserving flow, or equilibrium flow. The results of

the model A show that if such large-time (or large-streamwise distance) lidels are
used, the following possibilities could well arise.
(a) The steady flow solution may exist only for a range of parameters.
(b) In this range, there could be more than one steady flow solution (including
stable and unstable cases).
(c) If the parameter is within the range required for steady flow, initial conditions
for the flow at large-time to approach the steady flow may be restricted to some
range.

Tghe above possibilities have to be kept in mind in interpreting results of simple
large-time lidels, especially for flows with distributed vorticity.

5.2 Attached flow past a body

Attached steady inviscid flow with the Kutta condition as applied to air-flow past an
aerofoil can be considered a lidel obtained in a sequence of three steps, namely (a)
small compressibility effect, (b) large-time after start-up from rest, and (c) small
viscosity. The Kutta condition is needed in the third step for 2D problems.
Another acceptable sequence of steps would be (b).and (c) followed by (a). Several
calculations of the upstream model using this sequence (that is, allowing for

compressibility, with Euler equations) suggest that the problem of incompleteness

does not appear at this stage. Even if the freestream speed is small, the flow near
the body would need to pass through a supersonic pocket, and a shock, to go
around the sharp trailing edge with accompanying drop in total pressure and the
resulting pressure discontinuity near the rear stagnation point on the smooth
surface. This is an example of how one learns about flows as well as the limiting/
modelling processes by splitting into limiting/modelling steps.

5.3 Integral lidels of laminar boundary layers

A large family of methods were developed in the early stages of boundary layer
theory, which model dynamics of the layer as a whole by using momentum,
and in some cases, energy integrals, and additional inputs: The methods were
intended to provide quick, reasonably good approximations. Despite their
simplicity and gross nature of additional information, they ended up providing
rather accurate information on integral parameters. Several variants for turbulent
boundary layers have also enjoyed success and sustained use in applications.

From the present viewpoint, an integral model of a boundary layer consists of
integral relations like momentum and energy integrals, additional inputs in the
form of velocity profile families.or relations amongst integral parameters and
possibly auxiliary inputs. ; - ‘ ' A

One can visualise obtaining such a lidel in three steps. The first one would be to
obtain an integral formulation of the boundary layer problem. There is an integral
transform formulation of the boundary layer problem (Yajnik 1984) that is suitable
for the present purpose. The second step would consist of expansion in the
transform variable, which generates a sequence of integral relations. One truncates

after a few terms. Hence, this second step is essentially based on limiting

arguments. The third step consists of imposing additional conditions. This is viewed
as a modelling step. Traditional integral methods employ the first relation, that is,
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the momentum integral, and, at most, the second relation, which is the energy
integral. There is a considerable variety of additional conditions that have been
used (see, for example, Rosenhead 1963, pp. 292-317). Interestingly, if one retains
a larger number of terms of the expansion, one needs additional conditions that can
provide for such flexibility. The method of weighted residuals (e.g. Dorodnitsyn
1962, Abbott & Bethel 1968) provides for the use of certain polynominal
expressions for this purpose. The above interpretation of integral methods provides
improved understanding. The first step interestingly does not amount to any loss of
information or involve any approximation, as it has been used to obtain a few exact
solutions of the boundary layer problem. The transform formulations have some
additional conceptual interest, as the basic nonlinear transform used in the
formulation is a generalisation of boundary layer thickness and its expansion in the
transform variable generates displacement, momentum and energy thickness, and
similar ‘higher-order’ thicknesses! This example illustrates that examination of
problems upstream in the limiting/modelling process tend to enhance our
understanding.

5.4 Modelling of turbulent boundary layers

The classical modelling process consists of applying order of magnitude arguments
to Reynolds averaged equations and introducing closure conditions of different
kinds. If one carries out the process in two parts, namely, using limiting arguments
“of the boundary layer type, and subsequently invoking various closure hypotheses,
there are some advantages (Yajnik 1970). First, the results of the first step are inde-
pendent of any particular closure condition. Second, the results can be considered
to be exact in the limit of large Reynolds numbers. Third, surprisingly asymptotic
forms similar to well-known empirical laws can be obtained without making any
closure hypotheses. This approach has been extended by many workers to account
for heat transfer, compressibility, spectral domain, moderately large Reynolds
number, non-stationary case etc. This example shows that it is advantageous to
carry out limiting argument stages before modelling stages.

5.5 Wake-boundary layer interaction

Two Stanford conferences have shown how evaluation of calculation methods for
turbulent shear flows needs highly coordinated exercises. The methodology of
evaluating a method consisting of derived equations, closure hypotheses and an
integration procedure certainly shows the effectiveness of the package. In some cases,
however, a simpler exercise aimed at testing components of lidels can be quite
instructive. For instance, in a recent study of the interaction of the turbulent wake
of an aerofoil and a wall boundary layer by Sundaram & Yajnik (1986) one finds
that experimental observations as far downstream as four chords have a trend
similar to the Cebeci-Smith eddy viscosity hypothesis, but the scales are different
(figure 4). The inference is that when simple closure conditions are applied to
‘complex flows arising from the merging of flows of two different types, some
modifications in the closure conditions are called for.

Although here we have split the model problem rather than the modelling
process into components, the basic idea is to break down a complex structure into
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Figure 4. Eddy viscosity distribution in an undisturbed beundary layer in nominally zero
pressure gradient (——), and in an aerofoil wake merging with a. boundary layer (- o -) in
experiments of Sundaram & Yajnik (1986); (——) Cebici-Smith model. 4, height of aero-
foil (NACA 0012) above wall, ¢, aerofoil chord, vy eddy viscosity, u,, skin friction
velocity, &, boundary layer thickness, x, longitudinal distance. '

parts to facilitate investigation and to enhance our understanding of flows as well as
the reasoning used in the analysis of flows.
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