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Abstract. Do the nonlinear terms arising from mortality or self-grazing of
zooplankton have significant effect in suppressing limit cycles or auto-
oscillations of marine ecosystem models that are observed under certain con-
ditions? This question is examined with the help of the phase-plane analysis
of a class of basic marine ecosystem models. It is found that even a rather
small nonlinear term describing nonlinearity in mortality or self-grazing can
effectively alter the linear stability conditions and thereby suppress the limit
cycles.
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1. Imntroduction

It has been reported in the literature (Busenberg et al 1990) that marine ecosystem mod-
els display limit cycles under certain conditions, especially when there is an abundance
of nutrients. It has also been suggested that introduction of nonlinear mortality and/or
self-grazing suppresses such limit cycles (Steele & Henderson 1992). These types of os-
cillations of the models are often believed to be unrealistic and are sometimes encountered.
in simulations for tropical regions. We examine this issue with the help of a class of basic
models. The dynamics of some models of this type were examined in detail by Wroblewski
et al (1988). The present study examines the phase plane trajectories near one of the equi-

“librium points of the system and also its stability. It follows the phase-plane perspective
of Yajnik & Sharada (1992).

2.  The class of basic models

We consider a model class that has the least number of variables and yet incorporates
some of the essential biology. The model is obtained by describing the biomass of all
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autotrophs as the variable P, the biomass of heterotrophs as the variable Z , and the mass
of the nutrients as the variable N. The former two are taken in equivalent nutrient mass.
Itis assumed that all the nutrients limiting the growth of zooplankton are modelled by N.
The governing equations for the basic marine ecosystem model take the following form,

%.‘;=P¢(P, Z,N), (1a)
c;_fzzw(P, Z,N), | (1b)
%]?v=—P¢(P, Z,N)=Zy(P,Z,N) +h(N, 1), (lc)

where ¢ and y are net specific growth rates of phytoplankton and zooplankton respectively.
Itis a general feature of models of living species that ¢ and v lie between maximum and
minimum finite values. In the models that we consider, ¢ and ¢ have the following forms,

¢(P,Z, N)=f(N)~¢—g|(P, 2)Z, | (2a)
V(P Z,N)=(1~-y)g1(P, Z)P — 0(Z) - ygs(P, Z). (2b)

Here, f, g1, g7 and w are respectively the productivity, grazing, self-grazing and zooplank-
ton mortality functions and ¢ is the mortality coefficient for phytoplankton.

The net input function 4 depends on physical processes like diffusion, upwelling etc.
Since we wish to explore conditions arising from internal nonlinear structure, we take
h(N,1) to be zero. It follows from (1) that P + Z + N is a constant and the system is
therefore governed by two equations.

The productivity function f(N, P) is governed by Michaelis~Menten law, and is taken
to be

f=v,N/(ky + N), | (3)

where v, and k; are the asymptotic growth rate and the half-saturation constant respectively.

The effect of changes in light on productivity can be modelled by incorporating a light-

dependent term in the above, which would introduce an indirect dependence on time.
The mortality function o is taken in the form,

w=w+wZ, ' 4)

where w7 and w; are the linear and quadratic mortality coefficients respectively. w, is zero
in the models, where mortality is linear, '

Table1. Models of grazing,
81(P, Z) 82(P, Z)

A, Withour self-grazing

Al. Michaelis—-Menten vg/ (ko + P) 0
A2, Ivlev Ry (1 — exp(—AP)) 0
A3. Mayzaud & Poulet Rn).P(1 — exp(—AP)) 0
B. With self-grazing

B1. Nonswitching Uep1/(ka+ p1 P + py2) vgp2/(ky + pi P + p2Z)
B2. Switchin YgP1 P : vepaZ
8 ky(p1 P+pyZ)+p) P24 1p 72 k2 (p1 P+pyZ)+py P24 py 22
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Figure 1. Phase plane of the basic model Al (k; = 0.5, k, = 1, & = 0.05, v = 1,

y = 0.3, vp = 0.6, w1 = 0.05). The equilibrium point C shifts to C* when w, changes from
zero to 0.05 and its linear stability characteristics are altered.

~ Several approaches have been tried in modelling grazing and self-grazing. They are

given in table 1. py and p; are preference parameters respectively for phytoplankton and

Jﬁ zooplankton (p; + pz = 1) in the models with self-grazing. Clearly, the models B; and
Bj reduce to A; when p; is set to zero.

3. Phase plane analysis

Qualitative aspects of the dynamics of the model A; can be readily understood with the
help of a phase plane plot. Figure 1 shows the phase plane. The state of the system lies
in the triangle AHG as the total biomass (P + Z) cannot exceed the total nutrient, which
is normalized to unity, and P and Z cannot become negative. Three types of equilibrium
points can-occur where dP/ds and dZ/d¢ are zero. dP/dt is zero on the x-axis and on
BCD where ¢ = 0, and dZ/dt is zero on the y-axis and on ECF where ¥ = 0. Figure
1 shows the three types of equilibrium points A, B and C. A is the intersection of x- and
y-axes, B, the intersection of BCD and x-axis, and C, the intersection of BCD and ECF.
Limit cycles arise when the point C becomes unstable, A and B not being relevant to the
limit cycles.
The following conditions hold at C.

¢(P,Z)=0, (5a)
v (P, Z)=0. (5b)
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The linear stability is determined by the trace of the Jacobian

9 3
o+P% P )
J = ay v |- (6)
Let T be the trace of the Jacobian J. Then,
ap oy
= P—+7Z—, 7
T=(@+V)+ 5P 37 | (7)

where the first two terms vanish at the equilibrium point C. If T is positive, the point C is
unstable. Under such conditions limit cycle occurs in the model. When T is negative, the
point C is stable and there is no question of limit cycles arising.

To examine what happens to the trace T' at the equilibrium point C when w2 is varied,
we consider the total derivative of T’ keeping all other parameters such as vp, vg, k1, k2,
e, w; fixed

dT 9P 3¢ Pa2¢ L 29 0Z
dwy Owp dP aP2dwy;  OPOZ dws
3Z By 3%y OP 3%y 8Z
47 Z .
+8a)2 0Z + OP0Z dwn + dZ?% duwn

(8)

Since the trace is calculated at the equilibrium point C which changes as w2 changes, it
follows from (5a) and (5b) that

3 3P  0p 9Z 39

By — =0, 9
P 9wy " 3Z3ws | D ©a)
3 9P 8y 8Z

yop oydzZ 3 _,

— Ob
0P dwy 0Z dwy Owa (Ob)
In the case of model Al,
0 9
% _o o Yoz
dwy 0wy
ar 329 0¢ | OP 329 ay | oz
=|P e P e 10
dan [ 8P2+8P:\ 8w2+‘: oPaZ }"SZ dwy (10)
dT  —Z(ax? + bxy + cy?
_—Z@? +bry+o) an
dwy d \
where
a=c1(,‘%,

b=2Pcy[c3 + (¢ + &) Z] + ciey (P — Z + ¢y),
c=c?Z(P —Cp),

d =c?c2(x —+ ycl)vgkz(l - ¥),
ci=ki+1—-P—-Z, =k +P,
x=uvpkica, y = vgclr.
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Figure 2. Effect of nonlinear mortality coefficient w, on the trace T for two values of vy
(0.2'and 0.6) (k1, k2, &, vg, ¥, w1 as in figure 1).
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Figure 3. Limit cycle in absence of nonlinear mortality (k1, k2, &, vg, ¥, i as in figure 1;
vp = 0.6, =0).
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Figure 4. Disappearance of limit cycle due to nonlinear mortality (k1, k2, &, vy, ¥, @1 a8
in figure 1; v, = 0.6, wy = 0.02).
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Figure 5. Effect of self-grazing on the trace T (ki, k2, €, vg, ¥, w1 asin figure 1; v, = 0.2
and 0.6). K
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Figure 6. Suppression of limit cycles due to self-grazing (ki, k2, &, vy, ¥, w1 as in figure
1; v, = 0.6, p2 = 0.05).

For example, for v, = 0.6, v =1,k; =05, ky =1,y =03, 01 = 0.05 and ¢ = 0.05,
the equilibrium point C is at P* = 0.077, Z* = 0.3039, dT' /dw; is —0.028.

So the effect of w, in this typical case is to decrease the value of trace and hence the
stability. In general, the sign of dT/dw, depends on (ax? + bxy + by?). Similarly, an
expression for variation of the trace with p, can be obtained for the model Bj.

Figure 2 shows how the sign of the trace changes in the model A; from positive to
negative when nonlinear mortality is introduced, that is, w, changes from zero to a positive
value and figures 3 and 4 show how the limit cycles disappear. Similarly when self-grazing
is introduced, p; in the model B; changes from zero to a positive value and figure 5 shows
the consequential effect on the trace. The resulting suppression of limit cycles is shown in
figure 6.

4. Cdnclusion

It is shown by using phase-plane analysis how nonlinear mortality or self-grazing of zoo-
plankton imparts stability to a class of ecosystem models and suppresses limit cycles.
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