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NONEXISTENCE OF NODAL SOLUTIONS OF ELLIPTIC EQUATIONS
WITH CRITICAL GROWTH IN K2

ADIMURTHI AND S. L. YADAVA

Abstract. Let f(t) = h(t)ebt    be a function of critical growth.   Under a

suitable assumption on h , we prove that

-Au = f(u)    in B(R) C R2 ,

« = 0 ondB(R),

does not admit a radial solution which changes sign for sufficiently small R .

1. Introduction

Let B(R) denote the ball of radius R in R2 with center at zero. Let f(t) -

h(t)ebt be a function of critical growth (see Adimurthi-Yadava [1]). Consider

the following problem

(-Au = f(u)     in B(R),

[ ' ' \      u = 0 on dB(R).

If / satisfies the following condition

„.>-, ,-    log MO
(1.2) hm-^-^co,

t—»oo t

then (1.1) admits an infinite number of radial solutions which change sign (see

Adimurthi-Yadava [1]).
In this note we show that the condition (1.2) is optimal for existence of

infinitely many radial solutions which change sign by proving the following:

Theorem 1. Let f(t) = t\t\meb,2+^", m>0, b > 0 and 0 < ß < 1. Then for

every ß there exists R(ß) > 0 such that for 0 < R < R^ , the problem

i-Au = f(u)     inB(R),

[ ' ' I      w = 0 ondB(R),

does not admit any radial solution which changes sign.

If 1 < ß < 2, then f satisfies (1.2) and hence (1.2) is optimal.

In this connection similar results are available for critical exponent prob-

lems in R", n > 3. There the dimension plays a role in the case of existence
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(see Cerami-Solomini-Struwe [5]) and nonexistence (see Atkinson-Brezis-Peletier

[4]) of radial solutions which change sign.

2. Proof of Theorem 1

Since we are looking for radial solutions, (1.3) becomes

-(«" + \u') = f(u)     in(0,R),

1 w'(0) = u(R) = 0

By studying the following initial value problem we will prove the nonexistence

of nodal solutions of (2.1) as in Atkinson-Brezis-Peletier [4]

' -(u" + \u') = f(u),

(2.2) I u'(0) = 0,

k k(0) = y > 0.

Let Rk(y), k = 1,2, ... , denote the kth zero of u . Then by the similar
argument as in Atkinson-Peletier [3] we have

,« -, ..     „ ,  s       f oc      if m > 0,
2.3 hmP, (y = '

?^o I C     if m = 0,

where C is some positive constant. For the sake of completeness we will sketch

the proof of (2.3) in Appendix 2. Now the proof of the theorem follows from

the following:

Claim 1. For each 0 < ß < 1, there exists a constant c(ß) > 0 such that

(2.4) lim R2(y) > c(ß).
y—>oo

In order to prove Claim 1, make the standard substitution (as in Atkinson-

Peletier [2]) by r = 2e~'/2 and u(r) = y(t), then (2.2) becomes

f -/' = e~'f(y),

(2.5) \y(o0) = y,

Let y(t, y) be the corresponding solution and Tk(y) the kth zero of y(t, y).

Then

(2.6) Rk(y) = 2e~™'2.

Now we have the following estimates on Tx(y).

Claim 2. For every ß, 0 < ß < 1 , there exist constants Cß > 0 and y0 > 0

such that for all y >yo,

(2.7) yy'(Tx(y),y)<Cß,

(2.8) ^ < Cß ,

(2.8)' lim Ti (y) = oo.
y—»oo
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Proof of Claim 1. Assuming Claim 2 we will complete the proof of Claim 1.
Without loss of generality we may assume

(2.9) lim T2(y) > 1.
/—too

By using the convexity of y on [T2(y), Tx(y)] together with (2.7) and (2.8) we

have for all y >yo and t e [T2(y), Tx(y)],

^yy'(Tx(y),y) <cj.(2.10) \y(t,y)\<\Tx(y)y'(Tx(y),y)\<

Let

(2.11) ^/?) = sup{^:0<y<C2}

and choose t0(ß) > 0 such that for t > t0(ß),

(2.12) At2e-'K(ß)<l.

From (2.8) ', we can choose a yx > yn such that for all y > yx,

(2.13) t0(ß)<Tx(y).

Hence from (2.10), (2.11) and (2.12) for all t > t0(ß),  t e [T2(y), Tx(y)],
7 > Y\ , we have

(2.14) 4iV'»#<l.
y(t,y)

Let Z = txl2, then Z satisfies

(2.15) z" + ^Z = 0

and

(2.16) /' + ¿(W<^)y = 0.

Hence from (2.14) and by Sturm's Comparison Theorem we have for all y > yx,

(2.17) T2(y) < to(ß).

Now (2.4) follows from (2.6) and (2.17). This completes the proof of Claim 1
and hence Theorem 1.

In order to prove Claim 2 we need the following proposition.

Let F: 1+ -> 1+ be a locally Lipschitz continuous function and so > 0 such

that

(2.18) F(s) is strictly increasing for 5 > s0.

(2.19) Let G(s) = log F(s) be C2 and convex for s > in.

(2.20) tyfffy)fe-{G{y)-\(r-*)G'M} = 0(1)    as y -> oo.

yG(P+x)(y)

(2-21) ftw = Lp/°    forp = 0,l,
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where G(p) denotes the pth derivative of G.

There exist positive constants   Ci, C2, /  and  yx   such that

(2.22) for all y>yx,
Cxyl < G(y) < C2y'.

Let Y(t, y) denote the solution of

( -Y" = e~'F(Y),

(2.23) I  Y(oo) = y,

[ Y'(oo) = 0,

and S(y) the first zero of Y(t, y). Let S0(y) be such that Y(S0(y), y) = s0
Note that S(y) < So(y) ■ Then we have the following:

Proposition 2. We have, as y —> 00,

Y'(S0(y),y)

(2.24) 2
G'(y)

1 + o ({^4-) + 0(yG'{y)e-lGM-&-*'>G'W)\ ,
\  G(y)   J

So(y) = (o(y) - \yG'(y)^ + s0 (^) + log
G'(y)

(2.25) uw/     V   "'    2'    "")      UV   2   )       °    2

+ 0((log y))2 + 0[(yG'(y))2e^GM-^-So)G'^],

(2.26) s(y)>(G(y)-^yG'(y)^+log^ + 0(l).

Proof of this proposition follows exactly as in Atkinson-Peletier [2] (see

Lemma 10 and Theorem 4). Since the hypotheses here on G are little bit
different from those in Atkinson-Peletier [2] we shall for completeness sketch

the proof in Appendix 1.

Proof of Claim 2. Let F(s) = s\s\mebs +^  , then for j > 0, we have

(2.27) G(s) = bs2+sß+ (m+l)logs,

(2.28) G'(s) = 2bs + ßsls-x + r^^-,
s

m + 1

s2
(2.29) G"(s) = 2b + ß(ß-l )sß~2 -

m + 1
(2.30) G(s) - ^sG'(s) =(\-Çjs^ + (m+l)logs

,,,,., r     sG'(s)      o        i-     sG"(s)      ,
2.31 hm —rV = 2,     hm       \    = 1,

i->oo   G(S) s-»oo   G'(s)

(2.32) bs2 < G(s) < (b + l + ^^-\ s2    for5>l.

Since ß < 1, from (2.29) we can choose an 5n > 0 such that for all s > So,

G"(s) > 0. Combining this with (2.27) to (2.32), F satisfies all the assumptions
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from (2.18) to (2.22). Hence from Proposition 2, (2.28) and (2.30) we have as

y-*oo,

(2.33) Y'(S0(y),y) = O(l/y),

(2.34) So(y)=soby + O(yl>),

(2.35) P, (y) = S(y) > ( 1 - ß/2)yß + 0(log y).

Hence Pj(y) —» oo as y —> oo . This proves (2.8) '. Now from (2.34) and using

0 < ß < 1 we have for y large,

(2.36) ™ < ^ < sob + 0(yP~x) < C3

for some constant C3 > 0. This proves (2.8).

Let C4 = sup0<J<Jo F(s), then from (2.23) we have for t e [S(y), So(y)],

(2.37) -Y" < C4e~'.

Integrating (2.37) from Tx(y)  (- S(y)) to S0(y) we have

(2.38) Y'(Tx(y), y) < Y'(S0(y), y) + C4(e~™ - e~s^]).

Now from (2.33), (2.34) and (2.35), we can choose a constant C5 > 0 such

that for all y large, (2.38) implies yY'(Tx(y), y) < C5. This proves (2.7) and
hence Claim 2.

Remark. The above proof shows that Theorem 1 can be stated in a more general

form as follows.

Let /: R+ —> R+ be a C1 function and let so > 0 be such that

(2.39) / is strictly increasing for s > so,

(2.40) g(s) = log f(s) is C2 convex for s > So,

g(s) = bs2 + gx (s) with b > 0 such that

(2.41) lim^^ = 0, üm|£Í(s)|<oo,
5—»oo     S s—foo

limg>x>(s) = 0,        îirïï^-^^Uoo.
s—>oo í—>oo S

Then we have the following

Theorem 1'. L<?r / satisfy (2.39), (2.40) and (2.41). Futher assume that /(0) =
0 a«úí extend f as an odd function on R. Then there exists an Ro > 0 such

that for 0 < R < Ro, (1.1) does not admit any radial solution which changes

sign.

3. Appendix

Appendix 1. Let F : R+ —> R+ be a locally Lipschitz continuous function and

G(s) = log F(s) satisfies (2.18) to (2.22). Following the same notations as in

Proposition 2 and denoting G(y) = G, G'(y) = G', Y(t, y) = Y(t), we have

the following
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Lemma 3.1. For So < t < oo we have

(3.1) Y(t)<y-^log(^l + ^G'eG-'y

(3.2) G(Y(t))> G-2log( I+X-G'eG-t

(3.3) t > G- l-(y -Y(t))G' + logy,

(3.4) t< 1-{G + G(Y(t))} + log y - log[l - e{<W»-G}/2] ;

(3.5) Y'(t) < e{(0+G(Y(t)))/2-,} >

(3.6) F'(r) > e{G-(y-rW)c?72-'} f

(3.7) S(y)>G-^yG' + log^- + 0(l)     as y - oo.

For the proof of this lemma we refer to Atkinson-Peletier [2]. In fact (3.1),

(3.2), (3.3), (3.4), (3.5), (3.6) and (3.7) of the above lemma correspond to (4.4),
(4.5), (4.16), (4.18), (4.21), (4.22) and (3.5) of Atkinson-Peletier [2].

Let k be a large positive (but fixed) number and define

(3.8) ô = klogy,

(3.9) s1=G + logy-¿.

Then we have the following

Lemma 3.2. As y —> oo, we have

(3.10) Y(Sx) = y-ijo + o(j,y

(3.11) G(Y(Sx)) = G-2ô + o(Ç\ ,

2
.01*(3.12) Y'{Sx)=&

Proof. Taking t = So in (3.4) we have for large y ,

S0<G + log^--^G + O(l)
(3.13) (l      \

= Sx-[^G-o)+0(l)<Sx.

Hence from (3.1) and (3.2), we have

(3.14) Y(SX) < 7 - ¿ W +eâ)<y-^ô + 0 (¿y^)
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and

(3.15) G(Y(SX)) >G-26 + 0(e~ô).

Since G is an increasing function, we have from (3.14)

455

(3.16)

G(Y(SX)) < G (y-§S + O [^e-S))

= G- ès+o{è^ G' +
20     _/2   .
«+° \G>e

G"(tl)

for some t\ in the interval [y - 2Ô/G' + 0(2e~&¡G'), y]. Now from (2.21), we

have G"(tl)l(G')2 = 0(1/G) and hence (3.16) implies

G(Y(SX)) < G - 20 + 0(ô2¡G).

Therefore from (3.15) we have

(3.17) G(Y(SX)) = G-2Ô + 0(S2/G).

This proves (3.11).

From (3.15) we have

Y(SX) > G~X(G - 20 + 0(e~s))

(3.18) (2ô + 0(e-5))     (2ô + 0(e~â))2  G"(n)

(G'(n)y

for some n such that

G-2Ô + 0(e~5) < G(n) < G.

Now from (2.22) it follows that there exists a constant Ci > 0 such that Cxy <

n <y . Therefore from (3.18) and (3.14) we have

..?2^

(3.19) r(SO_7_»+0f£)

This proves (3.10).
Let t = Sx in (3.5). Then using (3.11) we have

(3.20) Y'(SX) < e{-^G'l2+0(S2IG)} l + O

Similarly from (3.6) we obtain

(3.21) ns,)>^ ■§

Combining (3.20) and (3.21) we get (3.12).  This completes the proof of the
lemma.

Lemma 3.3. For So < t < Sx, we have

(3.22) y'^ = ¿7   l + o(Ç\+0(yG'e^G-^-^G^)

Proof. From (3.3) we have

G(Y(t))-t<i[r - \Y(t)G>} - \g- iyC'j - logÇ = ¥(Y).
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Since y/"(Y) > 0, it follows that

(3.23) G(Y(t))-t<max{v(Y(Sx)), v(Y(S0))}.

Using (3.10) and (3.11), the above implies that

(3.24) G(Y(t)) - t < - log Ç + max Í-S, - (g - ^(y - s0)G') j + 0(1).

Hence from (3.12) and (3.24) we have for any t e [So, Sx]

(3.25)

Y'(t) = Y'(Sx)+ Í ' t&TW-*ds

2
(£i(*X\ + o l^ß- max{e-á , e-^G-h(y-^G')

From (2.20),  G - \(y - so)G' > 0 for y large, hence we have from (3.3),

So > log C7'/2 which implies that Sx - So < G. Hence (3.25) implies

r«) = |

This proves the lemma.

1 + O (^ + 0(yG'e-{G-^-s°)G'})

Proof of Proposition 2. (2.24) follows from Lemma 3.3. (2.26) follows from

(3.7) of Lemma 3.1. Now from the mean value theorem, there exists a t e

[Sq,Sx] suchthat

(7. ~>f.\                                                     C         C         y (Si) -So
(3-26) ¿0 = ¿1-yyr-.-.

From (3.10) and (3.22), (3.26) implies that

y - 2Ô/G' + 0(ô2/G) - so
So = Sx

(2/G')[l + 0(02/G) + O(yG'e-{G-^-S0)G'}]

(3-27) = G-\yG' + *f + log Ç + 0(f,
+ O((yG')2e-iG-^-S0)G'}).

Since 0(yG'o2/G) = 0((log y)2), (3.27) implies (2.25). This proves the propo-
sition.

Appendix 2. Let /: R+ -» R+ be a C1   function such that /(0) = 0.   Let
y(t, y) be the solution of

-y" = e-'f(y),
{ y(oo) = y>0,

y'(oo) = 0,

and Pi(y) the first zero of y(t, y). Then there exists a real number C such

that

r-co   if/'(0) = o,

0.29) ¡3r'M-{e     .f/'!o)#o.
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Proof, (i) Let /'(0) = 0. Then integrating (3.28) from Tx(y) to oo, we obtain

y

/»OO

= /      (s-Tx(y))e-sf(y(s))ds
JTdv)

< ye~™ sup ^M.
0<y<y    y

This implies that

e™ <  sup ^ -^ 0    as y -> 0.
0<y<y   y

Hence Tx(y) —► -oo as y -> 0.

(ii) Let /'(0) > 0. Let 9) be the solution of

r -/' = /'(0)e->,
(3.30) Ï <p(oc) = l,

[ <p'(oo) = 0,

and T the first zero of q>.
For any two nonnegative continuous functions px and P2 defined on E with

px > P2, consider the following problem n¡   (i = 1, 2).

{-y/" = Pie'')//    inR,

K°o)>0,

1/(00) = 0.

Let (//, be a solution of (n¡) and P, the first zero of ^,. Then we claim

that

(3.32) P2<Pi-

Suppose not, then  Pi < P2 and let  W(t) = W\W2 ~ ViV[-   Then  W'(t) —
W\¥ie~'{P\ - P2) and hence integrating W'(t) from P2 to 00, we have

y»oo

-V\(T2)V/2(T2) = /    <j/xy/2e-'(px-p2)dt>0
JT2

which is a contradiction. This proves (3.32).
Now for every e > 0, there exists a ô > 0 such that for 0 < y < ô ,

(3.33) ( 1 - e)f'(0) < f(y)/y < (I + e)f'(0),
Let 0 < y < ô and by taking

p2 = (l-e)f(0),    Pt = ^p-,    W2(t) = (p{t + log^—^j,

we obtain from (3.32) and (3.33),

(3.34) P + log(l -e) < T(y).

Similarly by taking

^i = (l+e)/(0),     y/x =tp(t +log-¡-¡-A ,    p2
f(y)

we obtain

(3.35) P(y)<P + log(l+e).

Since e is arbitrary, from (3.34) and (3.35) we obtain linij,_o T(y) = T. This

proves (3.29).
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