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ON A CONJECTURE OF LIN-NI
FOR A SEMILINEAR NEUMANN PROBLEM

ADIMURTHI and s. L. YADAVA

Abstract. Let Í2 be a bounded domain in R"   (n > 3)  and A > 0.  We
consider

-A« + A« = u'n+2'/("-2l   inii,

u > 0 in Í2,

— =0 on an,
dv

and show that for X sufficiently small, the minimal energy solutions are only

constants.

1. Introduction

Let n > 3 and fiel" be a bounded domain with smooth boundary. For

1 < p < co and X > 0, we consider the following problem

--up   in fi,

(1.1) j u s v in fi,

ondfi.

This is the stationary problem for the Keller-Segal [11] system which describe
the chemotactic aggregation stage of cellular slim molds (see also Schaaf [16]).

Clearly u = A1/^"1' is a solution of (1.1). In general the existence of noncon-
stant solutions depend on X and p .

For p < (n + 2)/(n - 2), problem (1.1) has been discussed by Lin-Ni-Takagi

[13]. They showed that there exist positive constants Xo and Xx, with Xq < Xx,

such that, for X > Xx, (1.1) admits a nonconstant solution and for X < Xo, (1.1)

does not admit any nonconstant solution.

When fi is a ball, Ni [14] has shown that for any p > 1, there exists a

Xx > 0, such that, for X > Xx, (1.1) admits a nonconstant radial solution. In

Lin-Ni [12], it has been shown that if p £ (n + 2)/(n - 2), there then exists

a Xo > 0, such that, for X < X0, (1.1) does not admit any radial nonconstant

solution. In view of these results, Lin-Ni [12] made the following

Conjecture. For p > 1, there exist positive constants Xo and Xx, with Xq < Xx,

such that
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(a) If X > Xx, then (1.1) admits a nonconstant solution.
(b) If X < Xq , then (1.1) does not admit any nonconstant solution.

Now we analyze (1.1) for the critical case p — (n + 2)/(n - 2). Using the
variational techniques, Adimurthi-Mancini [2] (see also X. J. Wang [17]) has
shown the existence of a minimal energy solution of (1.1) for every X > 0.

Moreover by comparing the energy of these solutions with that of constant

solutions, they obtained a constant Xx > 0, such that, for X > Xx, the minimal

energy solutions are not constant. From this, it follows that part (a) of the

conjecture is true in this case. However it is not clear, for X small, that the

minimal energy solutions are constants or not.

When fi is a ball and p = (n + 2)/(n - 2), using the shooting argument,

it has been shown in Adimurthi-Yadava [3] and Budd-Knaap-Peletier [7] that,

if « G {4, 5, 6}, there exists a Xo > 0, such that, for X < Xq, (1.1) admits
nonconstant radial solutions. Note that this gives a counterexample to part (b)

of the conjecture.

In view of these results, it is natural to ask that part (b) of the conjecture

holds at least for minimal energy solutions when p - (n + 2)/(n -2).

In this paper we show that it is indeed true. In order to state our main result,

we restate some known results.

Let b > 0 and define

f(t) =
|r|4/(n-2),     if„>3)

h(t)ebtl      if« = 2,

where h(t)ebt   is a function of critical growth (see definition (2.1) in [4]). Let

F be its primitive given by

F(t)= [ f(s)ds.
Jo

Let « > 2 and fi c R" be a bounded domain with smooth boundary. For a

measurable function « on fi and 1 < q < co, denote

K = I M
Ja

\qdx    if 67 < CO ,

|m|oo = ess sup{|w(x)|, x G fi}.

For u G HX(Q) and X > 0, define

Nl2 = |vM|t; + ML
i x        f

Jx(u) = 2 lv"l2 + j l"lz - J F(u)dx>

dBk = L G //'(fi)\{0} ; |V«|22 + X\u\\ - j f(u)udx\ ,

a2
j-= inf{ JÀ(u);uedBx}.

For n > 3, let S denote the best Sobolev constant given by

S = infí í \Vu\2dx: [ |M|2"/<"-2> = ll .
I Jr" J«." j
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(1.2)

Consider the following problem

-Au + Xu — f(u)   infi,

u > 0 in fi,

p- = 0 ondfi.
ou

From [2 and 4] we have the following

Theorem 1.1. Let X > 0 and let fi and ax be as above. Then:

(i) If n > 3, then there exists a solution ux of(\.2) such that

(1.3) a2/2 = Jx(ux)< S"'2/2n.

(ii) If n = 2 and assume further that f'(0) = 0 and

(1.4) lim h(t)t = oo,
t—*oo

then there exists a solution ux of (1.2) such that

(1.5) a2/2 = Jx(ux)<n/b.

(iii) Moreover there exists a constant Xx > 0 swcA í/zaí, /or A > Xx, ux are
not constants.

The solutions obtained in the above theorem are called minimal energy solu-

tions. For the proof of this theorem, we refer the following:

(i) and (iii) follows from Theorem 1.2 of Adimurthi-Mancini [2] and (ii) and
(iii) follows from Theorem 2.1, Corollary 2.2 and Lemma 3.8 of Adimurthi-

Yadava [4]. Now we state our main result.

Main Theorem. Let f satisfy the hypotheses of Theorem 1.1. Then there exists

a positive constant Xo, such that, for all X < Xo, the minimal energy solutions of
(1.2), given by Theorem 1.1, are constants.

2. Proof of the Main Theorem

Let e > 0 and p > 0. Define

(2.1) Aß = {(u, X); u satisfies (1.2) for some X < p),

An,e = \ (u, X) G Aß\  Jx(u) < (1 - e)n/b, if n = 2« and
(2-2) l

S"l2 1
J,(M)<(.l-e)—, if « > 3| .

Lemma 2.1. Let e > 0, p > 0 and A^^ be as above. Let {(uk, Xk)} e A^^
such that Xk —> 0 as k —» co. Then lim/t_O0 Iw^loo = 0.

Proof. Since (uk,Xk) is in AM, £, it follows that {||«^||} is bounded in //'(fi)
and

(2.3) sup / f(uk)ukdx < co.
k  Ja

Let uk —» M0 weakly and a.e. in fi.

Claim 1.  «o = 0 and \\uk\\ —» 0 as k —► co.
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Clearly m0 satisfies

-Au0 = f(u0)   infi,

«o > 0 in fi,

duo

du
= 0 onöfi

and hence uo = 0. Therefore by Rellich's lemma \uk\2 ̂  0 as k —► co . Hence

we have

lim Jx(uk) = lim \Jxk(uk) + k'\uk\22

(2.4)
<(!-«)<

S"'2

2«
n

b

if « > 3,

if « = 2.

Let co e Hx (fi) and if we denote J{ is the Fréchet derivative of Jx, then

!</;(«,), co)\ = (Jlk(Uk), co) + (l-Xk) I ukwdx

< (1 -Ajk)|Mk|2||ti;||

and hence

\\J{(uk)\\<(i-xk)\uk\2^o

as k —► co. Since /i satisfies Palais-Smale condition on (-co, S"l2/2n) if

n > 3 and on (-co, n/b) if n = 2 (proof of this follows as in the Dirichlet

case. See Brezis-Nirenberg [6], Grossi-Pacella [10] if n > 3 and Adimurthi
[1], Adimurthi-Yadava [5] if n = 2), from (2.4) we can extract a convergent

subsequence of {uk} . Since w0 = 0, we obtain \\uk\\ —» 0 as k -> co and this

proves the claim.
Claim 2. Let n > 3, then

(2.5) lim \uk\oo < co.
k—»co

Suppose (2.5) is not true. Let Pk G fi be such that

(2.6) Mk = uk(Pk) = \uk\x .

Then for a subsequence Mk —► co and /\ —> /"o as fc —► co . Let i^ be defined

by

(2.7) Mfc4"-2)/2 = 1.

Let B(z, R) denote the open ball of radius R with centre at z . For a subse-

quence, one of the following holds: either

d(Pk,dO.)
(2.8)

or

(2.9)

lim
k—>oo tk

CO

tf(/>fc, an) ^
urn -< co.

In case of (2.8), for every R > 0, we can choose a &o > 0  such that

5(/^, ifcZ?) c fi for k > ko.   Let Bk(R) = 50(/î) = B(0, R).   In case of
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(2.9), let Qk G <9fi such that d(Pk, Qk) = d(Pk,dÇï). Let vk be the unit
inward normal at Qk . Since 9fi is smooth, it satisfies uniformly the inner

sphere condition. Therefore, for every R > 0, we can choose a ko > 0 such

that for k>ko.

(2.10) B(Zk , tkR) c fi,     Zk = Pk + Rtkvk .

Let Bk(R) = B(vkR,R) and B0(R) = B(u0R,R) where u0 = lim^^ vk . For

k > ko, define vfc in Bk(R) by

(2.11) ^M = í"2)/2^(^ + ^)-

Then clearly vk satisfies

{im Í -Aw* = ^+2>/("-2> - 4i|^   in **(*),

1 vk(0) = 1,        0 < vfc < 1.

Therefore by elliptic regularity (see [9]) we have, for every 0 < a < 1,

(2.13) Um|v*|cl,a(ra)<co.

Let Ufc —► fo in C'(5o(/?)). Then from (2.12) and (2.13), v0 satisfies

(214) Í-A,o = ^fl+2)/("-2)   inBo(R),

\v0>0,    w0(0)=l.

On the other hand, from Claim 1, we have

/      \Wk\2dy< [ \Vuk\2dx<\\uk\\2^0
Jßk(R) Ja

as k —> co. Hence Vi>o = 0. Since Wo(0) = 1 implies that Vo = 1, and this

contradicts (2.14). This proves the Claim 2.

Let n = 2. From Claim 1, ||u¿|| -> 0. Therefore from Cherrier [8] we obtain

that, for any p > 1 , {\f(uk)\p} is uniformly bounded. Let n > 3, then from

Claim 2, it follows again that for any p > 1, {\f(uk)\p} is uniformly bounded.

Hence from the regularity of elliptic equations {HMfclL^in)} *s bounded and

therefore by Sobolev imbedding we have for any 0 < a < 1 ,

lim|"jtlCi.«(ñ) < °°'
k—too

Since ||u¿|| —► 0, from Arzela-Ascoli's theorem lim^^ \uk\oo = 0. This proves

the lemma.

Lemma 2.2. Let e > 0 and -p > 0. Define

(2.15) A/^i = Sup{|w|oo; for some X, (u, X) G ̂ ,£}

(2.16) lim 71^ = 0.
p->0

Proof. Suppose (2.16) does not hold. Then there exists a sequence (uk, Xk) G

Axk¡c with Xk —> 0 as k —» co and limi:_00 |«fc|oo > 0. This is a contradiction

to Lemma 2.1. This proves (2.16).
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Lemma 2.3. Let e > 0. Then there exists a po > 0 such that Amtt consists of

constants only.

Proof. Proof of this lemma follows exactly as in Ni-Takagi [15, Theorem 3].

For the sake of completeness we will reproduce their proof. From Poincaré's

inequality, there exists a v > 0 such that

(2.17) v [ tp2dx< ! \Vcp\2dx
Ja Ja

for all cp G //'(fi) with ¡n<pdx = 0.
From Lemma 2.2 and using /'(0) = 0, we can choose a po > 0 such that

(2.18) r(MJ<vl2.

Let (u, X) g Aß0<£, and decompose, u = uo-\-cp where

"o = 77ST / u dx,     I tpdx = 0.
I"l Ja Ja

Then cp satisfies

-Acp + Xcp = pep + f(uo) - Xuo   infi,

—^- = 0 on dfi,
ou

where /> = /0' f'(u0 + tcp) dt.
Since 0<uo + t<p<uo + ep = u< M^ , we obtain

(2.20) \p\<f'(Mß0)<u/2.

From (2.19), (2.20) and (2.17) we have

(v + X) [ cp2 dx < i |Vp|2dx + X I <p2 dx
Ja Ja Ja

= / pip2 dx < — / cp2 dx.
Ja 2 Jn

This implies that cp = 0 and hence « is a constant. This proves the lemma.

Proof of the Main Theorem. For X > 0, the constant solution Vx of (1.2) is

given by

(2.21) f(vl)/vx = k.

Since f'(0) = 0, Vx exists and tends to zero as X —> 0. Therefore we can

choose px > 0, such that, for all X < px,

,„„™ r,   ^     f5n/2/4«   if « > 3,

("2) Wi{,/2*       if-= 2.

Let e = j, /¿o is determined as in Lemma 2.3, and X0 = min(/i0, px). Let

X < Xo and ux be a minimal energy solution. Since Jx(ux) < Jx(vx), from
(2.22), («a>A) 6 ^Ao,£ and" hence from Lemma 2.3, Ux is constant. This

proves the theorem.
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