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Abstract

Molecular dynamics simulations and instantaneous normal mode (INM) analysis of a fluid with

core-softened pair interactions and water-like liquid-state anomalies are performed to obtain an

understanding of the relationship between thermodynamics, transport properties and the poten-

tial energy landscape. Rosenfeld-scaling of diffusivities with the thermodynamic excess and pair

correlation entropy is demonstrated for this model. The INM spectra are shown to carry infor-

mation about the dynamical consequences of the interplay between length scales characteristic of

anomalous fluids, such as bimodality of the real and imaginary branches of the frequency distribu-

tion. The INM spectral information is used to partition the liquid entropy into two contributions

associated with the real and imaginary frequency modes; only the entropy contribution from the

imaginary branch captures the non-monotonic behaviour of the excess entropy and diffusivity in

the anomalous regime of the fluid.

PACS numbers: 64.70.Pf, 82.70.Dd, 83.10.Rs, 61.20.Ja
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I. INTRODUCTION

The potential energy surface (PES) , U(r), is the configurational energy of a system

of N particles as a function of the 3N -dimensional position vector, r. Energy landscape

approaches focus on the connections between crucial topographical features of the PES and

the thermodynamic and kinetic properties of liquids.1–3 Such studies have focused largely

on simple liquids where interactions are dominated by strong, short-range, repulsions with

weak, long-range attractions.4 Since the hard-sphere fluid with a single length scale is a very

good zeroth-order model for such systems, the relationship between the energy landscape,

thermodynamics and mobility is expected to be relatively simple compared to anomalous

fluids. Recent work, however, demonstrates that softening the core-repulsions in liquids with

isotropic, pair-additive interactions allows one to generate a range of anomalous behaviour

that mimics the behaviour of structurally more complex fluids.5–19

In this study, we explore the energy landscape of such a core-softened fluid to under-

stand the microscopic origins of water-like liquid state anomalies. Our analysis of the po-

tential energy surface focuses on understanding the entropy scaling relationships that are

very useful for connecting structure, mobility and entropy for a wide range of simple20–26

and anomalous27–30 liquids, confined fluids and polymeric melts.31 The excess entropy (Sex)

measures the reduction in the entropy (S) of a liquid relative to an ideal gas (Sid) at the

same temperature and density due to structural correlations. The effect of fluid structure

on the entropy can be formally expressed as:

Sex = S − Sid = S2 + S3 + . . . (1)

where Sn is the entropy contribution due to n-particle spatial correlations.32–36 The pair

correlation contribution to the excess entropy per particle of a one-component fluid of struc-

tureless particles is given by

s∗2 = −2πρ

∫ ∞

0

{g(r) ln g(r)− [g(r)− 1]}r2dr (2)

where g(r) is the radial distribution function and s∗2 = S2/NkB. The structural correlations

which lower the entropy may intuitively be expected to reduce mobility by enhancing cage

effects due to formation of shells of neighbouring particles. This correlated decrease in

entropy and mobility can be semi-quantitatively captured through excess entropy scaling
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relations of the form

X∗ = A exp(αs∗ex) , (3)

where X∗ are dimensionless transport properties with either macroscopic (Rosenfeld) or

microscopic (Dzugutov) reduction parameters, s∗ex is the excess entropy per particle in units

of kB. The scaling parameters, α and A, depend on the functional form of the underlying

interactions.20–26 In the case of simple liquids, the excess entropy scaling parameters can be

approximately set as A ≈ 0.6 and α ≈ 0.8. In addition, for such fluids, the pair correlation

entropy per particle, s∗2, typically represents 85% to 90% of the total excess entropy.

This paper focuses on the connection between the potential energy landscape (PEL) of

a fluid and Rosenfeld excess entropy scaling of transport properties. Liquids in the stable,

as opposed to the strongly supercooled regime, are characterized by a very high degree of

connectivity between basins of local minima. This implies that the diffusivity, corresponding

to the probability that a particle will make a successful move from its current position, will

be proportional to the number of accessible configurational states, or exp(αs∗ex). In order to

develop a quantitative test of this intuitive picture, the diffusivity and/or the entropy must

be correlated with landscape-based quantities that are sensitive to basin connectivity. We

also require an energy landscape approach that does not presume a time-scale separation

between intra- and inter-basin motions. An existing energy landscape approach that is simple

to implement and satisfies these requirements is the Instantaneous Normal Mode (INM)

approach.37–39 In the INM approach, the key quantity is the ensemble-averaged curvature

distribution of the PES sampled by the system. For a system of N particles, the mass-

weighted Hessian associated with each instantaneous configuration is diagonalized to yield

3N normal mode eigenvalues and eigenvectors and the ensemble-average of this distribution

is referred to as the INM spectrum. The short-time dynamics of the liquid can be derived

from the INM spectra. Unlike in a crystalline solid, the INM spectrum of a liquid will

have a substantial fraction of unstable modes with negative eigenvalues, corresponding to

inter-basin crossing modes or shoulder regions within the same inherent structure basin.

The diffusivity is strongly correlated with the properties of the INM spectrum, specially

the fraction of imaginary frequencies, in both simple liquids, such as Lennard-Jones and

Morse,40–42 as well as molecular liquids, such as CS2 and H2O.43–45 A refinement of the INM

approach, shows that interbasin crossing or double-well modes are critical for diffusional

motion.46
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Here we study the instantaneous normal mode spectra of a liquid bound by isotropic, core-

softened pair interactions which shows water-like structural, density, entropy and diffusional

anomalies. The thermodynamic and transport properties of such a liquid is representative of

structurally more complex anomalous liquids, including water14–16,47 and other tetrahedral

liquids, such as Te,48 Ga, Bi,49 S,50,51 Ge15Te85,
52 silica,53–56 silicon,57 and BeF2.

27–29,53,58,59

Section II describes our core-softened model fluid with isotropic interactions consisting of a

sum of Lennard-Jones and Gaussian terms. The continuous nature of the pair interaction

makes it very convenient for energy landscape analysis. The liquid state anomalies of this

model, which have been described in detail elsewhere,9,10 are summarized. In Section III, we

provide a summary of the relevant features of instantaneous normal mode analysis. We also

address the possibility of extracting thermodynamic quantities, including excess entropy,

from INM spectra which has so far not been discussed in the literature. Section IV presents

our results and Section V contains the conclusions.

II. THE MODEL

A. Potential energy surface

We consider a three-dimensional, core-softened fluid with isotropic pair interactions given

by:

U(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ aǫ exp

[

− 1

c2

(

r − r0
σ

)2
]

. (4)

Equation (4) shows that the pair interaction is composed of a Lennard Jones term, with

characteristic energy and length scale parameters corresponding to ǫ and σ respectively, plus

a Gaussian well centered at a pair separation r0 with depth aǫ and width cσ. In this work

we use the parameters for Eq. (4) as a = 5, r0/σ = 0.7 and c = 1. This set of parameters

generates a core-softened potential with a very small attractive minimum at r ≈ 3.8 and

a soft, repulsive core lying between σ and 3σ. All quantities in this paper are reported in

reduced units with the σ and ǫ as the reduced units of length and energy respectively. The

water-like structural, density and diffusional anomalies of this model are briefly described

in this section in order to provide a background to the INM results presented in Section IV.

4



B. Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations were used to study the model fluid de-

scribed in the previous subsection. N = 500 identical, structureless particles of mass m were

confined in a cubic box, of volume V , with periodic boundary conditions in all directions.

All MD simulations were performed in the canonical (NVT) ensemble with a time step of

0.002σ
√

m/ǫ. A Nosé-Hoover thermostat with the coupling parameter equals to 2 was used

to maintain the temperature. All simulations were initialized with the system in a face cen-

tered cubic configuration and further equilibrated over 250 000 steps for each temperature,

T, and density, ρ = N/V . After the equilibration period was over, additional 500 000 steps

were used to sample the system. A cutoff radius rc = 3.5σ was employed for the potential

Eq. (4). Diffusivities were computed using the Einstein relation. At each state point, 100

configurations were sampled and used to construct the instantaneous normal mode spec-

tra and associated quantities. We repeated the calculation for some state points using 500

configurations and found no significant difference.

C. Density, Diffusional and Structural Anomalies

Figure 1 illustrates the regions associated with the density, diffusional and structural

anomalies of the model fluid studied here in the density-temperature planes. The region of

density anomaly corresponds to state points for which (∂ρ/∂T )P > 0 and is bounded by

the locus of points for which the thermal expansion coefficient is zero. The translational

diffusion coefficient as a function of ρ∗ = ρσ3 goes as follows. For the low temperature

isotherms, the diffusivity increases as the density is lowered, reaches a maximum at ρDmax

and decreases until it reaches a minimum at ρDmin. The locus of extrema in the D(ρ) curve

mark the boundaries of the region of diffusional anomaly, as shown in Figure 1 using dashed

lines.

The region of structural anomaly of core-softened fluids is defined most simply using the

translational or pair correlation order metric, defined as14

t ≡
∫ ξc

0

|g(ξ)− 1|dξ, (5)

where ξ ≡ rρ1/3 is the interparticle separation scaled by the mean interparticle distance, g(ξ)

is the radial distribution function and ξc is a scaled cut-off distance. In this work, we use
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FIG. 1: Density versus temperature phase diagram for the model studied. The solid line limits

the region of density anomaly, the dashed lines illustrate the region of diffusion anomaly and the

dot-dashed lines show the region of structural anomaly.

ξc = ρ1/3L/2, where L = V 1/3. For a completely uncorrelated system (ideal gas) g = 1 and t

vanishes. In a crystal, the presence of long-range translational (g 6= 1) implies that t depends

on choice of ξc. In simple liquids, t increases with isothermal compression. In liquids with

water-like anomalies at low temperatures, t shows a non-monotonic behaviour. At a given

temperature T , a structurally anomalous regime can be defined between densities ρt−max(T )

and ρt−min(T ) corresponding to locations of the maxima and minima in the translational

order. In this structurally anomalous regime, shown using dot-dashed lines in Fig. 1, an

increase in density induces a decrease in translational order. The nested structures of the

anomalous regions is evident with the structurally anomalous regime enclosing the diffusion

anomalous region which in turn encloses the region of density anomaly.

III. INSTANTANEOUS NORMAL MODES ANALYSIS

In this section, we define the instantaneous normal mode spectrum and explore how it

can be used to connect the energy landscape of a liquid with its thermodynamic entropy.

The potential energy of configuration r near r0 can be written as a Taylor expansion of the
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form:

U(r) = U(r0)− F • z+ 1

2
rT •H • z (6)

where zi =
√
mi(ri − r0) are the mass-scaled position coordinates of a particle i. The

first and second derivatives of U(r) with respect to the vector z are the force and the

Hessian matrix, denoted by F and H respectively. The eigenvalues of the Hessian H are

({ω2
i }, i = 1, 3N) representing the squares of normal mode frequencies, and W(r) are the

corresponding eigenvectors. In a stable solid, r0 can be conveniently taken as the global

minimum of the potential energy surface U(R), which implies that F = 0 and H has only

positive eigenvalues corresponding to oscillatory modes. The INM approach for liquids

interprets r as the configuration at time t relative to the configuration r0 at time t0. Since

typical configurations, r0 are extremely unlikely to be local minima, therefore F 6= 0 and

H will have negative eigenvalues. The negative eigenvalue modes are those which sample

negative curvature regions of the PES, including barrier crossing modes. The ensemble-

averaged INM spectrum, 〈f(ω)〉, is defined as

f(ω) = 〈 1

3N

3N
∑

i=1

δ(ω − ωi)〉. (7)

Quantities that are convenient for characterizing the instantaneous normal mode spectrum

are: (i) the fraction of imaginary frequencies, namely

Fim =

∫

im

f(ω)dω (8)

where the subscript in means that the integral is performed only in the imaginary branch;

(ii) the fraction of real frequencies, that is

Fr =

∫

r

f(ω)dω (9)

where the subscript r indicates that the integral is performed only in the real branch and

(ii) the mean square or Einstein frequency, ωE, given by

ω2
E =

∫

ω2f(ω)dω

=
〈TrH〉

m(3N − 3)
(10)

where the last equality comes from using Eq. (7) and 〈TrH〉 is the ensemble-averaged value

of the trace of the Hessian.
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The simplest approximation to the entropy that can be derived from the INM approach

is to consider a liquid as a collection of 3N simple harmonic oscillators vibrating at the

Einstein frequency. The entropy of a one-dimensional harmonic oscillator with frequency ω

is given by:

sω/kB = 1− ln(β~ω). (11)

The entropy of an ideal gas of N particles in 3-dimensions will be given by:

Sid

NkB
=

5

2
− ln(ρΛ3) , (12)

where Λ = h/
√
2πmkBT is the thermal de Broglie wavelength. In three dimensions the

entropy of the harmonic oscillators given by Eq. (11) is multiplied by 3. The entropy per

particle of the harmonic oscillator within Einstein approximations becomes sωE
. In this case

the excess entropy of the Einstein model of the liquid is given by the subtraction of the ideal

gas entropic contribution, Eq. (12), from NsωE
/kB to give

SωE

ex /NkB =
1

2
+

3

2
ln

(

2πkBTρ
2/3

mω2
E

)

, (13)

where ωE is given by Eq. (10). This expression for the excess entropy forms the basis of

quasi-harmonic cell model approaches to understand entropy-scaling of transport properties

which have had only limited success.22 In this study, we compare the Einstein frequency-

based expression for the excess entropy with the pair correlation entropy to obtain a better

microscopic insight into the differences.

An alternative approach is to consider the liquid to be composed on average of a set

of 3NFr harmonic oscillators and a set of 3NFim degrees of freedom associated with the

imaginary or unstable modes. The total thermodynamic entropy of the liquid can be written

as a sum of contributions from the real and imaginary branches:

S = Sr + Sim. (14)

Using equation(11), Sr can be obtained by integrating the real branch of the INM distri-

bution as follows:

Sr/kB = 3N

∫

r

f(ω)sω(ω)dω, (15)

where f(ω) is the INM probability density at frequency ω given by Eq. (7). Contribution of

the imaginary modes to the entropy must then be

Sim = S − Sr = Sid + Sex − Sr . (16)
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In the present work, we use the above equations to estimate Sr and Sim; the per particle

values of these quantities in units of kB are labeled s∗r and s∗im. To our knowledge, this

decomposition of the entropy has not been used previously. A somewhat parallel approach

was used by Goddard et al. to treat the entropy of a liquid as a sum of contributions from

a harmonic component and a hard-sphere fluid component.60

IV. RESULTS

A. Excess Entropy and Diffusivity

The excess entropy is defined as the difference between the entropy of the real fluid and

that of the ideal gas at the same temperature and density. Figure 2 illustrates the density

dependence of the excess (represented in the figure by dashed lines) and pair correlation

entropy (represented in the figure by solid lines) for four different isotherms. The values of

the thermodynamic excess entropy, s∗ex, have been taken from Mittal et al. work.30

The s∗ex(ρ) curves at low temperatures show a pronounced excess entropy anomaly, corre-

sponding to a rise in excess entropy on isothermal compression. Such an entropy anomaly is

characteristic of water-like liquids13,27–29 and contrasts with the behaviour of simple liquids

where free volume arguments are sufficient to justify a monotonic decrease in entropy on

isothermal compression. Figure 2 also compares s∗ex(ρ) and s∗2(ρ) curves at four tempera-

tures. It is evident that s∗2 essentially captures the anomalous behavior present in s∗ex. The

effect of the higher-order multiparticle correlations terms in s∗ex is to generate a downward

shift in the values of the entropy and to attenuate the entropy anomaly. In the case of simple

liquids, the residual multiparticle entropy (RMPE), ∆s∗ = s∗ex − s∗2, is typically of the order

of 10-15% of s∗ex for a fairly wide range of densities. Clearly in the case of the core-softened

modeled fluids, the residual multiparticle entropy contribution is larger in magnitude and

more strongly density- dependent. The anomalous pair entropy regime at a given tempera-

ture is an interval of densities ρs2max
< ρ < ρs2min

within which (∂S2/∂ρ)T > 0. This can be

identified from the locus of extrema in s2(ρ) shown in Fig. 10.

We now consider the scaling relationship between the diffusivity and the excess entropy.

The diffusivity as a function of density for different isotherms is shown in Fig. (3)(a). Clear

maxima and minima in the D(ρ) curves can be identified at low temperatures. Fig. (3)(b)-
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FIG. 2: The pair correlation entropy, s∗2 (solid lines), and the excess entropy, s∗ex
30, (dashed lines)

against density for fixed temperatures for T ∗ = 0.2, 0.3, 0.4, 0.5 from bottom to top.

(c) show the scaling of the reduced diffusivity, DR, with the excess, s∗ex, and pair, s∗2, entropy.

Using the Rosenfeld macroscopic reduction parameters for the length as ρ−1/3 and the ther-

mal velocity as (kBT/m)1/2, the dimensionless difusivity is defined as

DR ≡ D
ρ1/3

(kBT/m)1/2
. (17)

The scaling of the reduced diffusivity, DR with with s∗ex is excellent with DR = AeBs∗ex

where A = 0.95 and B = 0.98. The scaling with the pair entropy, s∗2, shows a weak isochore-

dependence and the line of best fit is obtained with A = 0.68 and B = 1.35. The comparison

between the Fig. (3)(b) and Fig. (3)(c) indicates that for our anomalous fluid, the diffusivity

scaling with the pair correlation entropy is not as universal as with the excess entropy. This

is likely to be a consequence of the presence of two, density-dependent length scales, in such

water-like fluids when compared to simple liquids, such as the Lennard-Jones fluid.

B. Instantaneous Normal Mode Analysis

Next, we present the results from our instantaneous normal mode (INM) analysis of the

simulation for the core-softened fluid. The INM spectra along the ρ∗ = 0.11 isochore for

various temperatures is illustrated in Fig. 4(a) while the INM spectra along the T ∗ = 0.20

10
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FIG. 3: (a) Diffusion versus reduced density for fixed temperatures T ∗ =

0.2, 0.23, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 from bottom to top; (b) diffusion in Rosenfeld units

versus the negative of the −s∗ex and (c) diffusion in Rosenfeld units as a function of −s∗2.

isotherm for various densities is illustrated in Fig. 4(b). The shape of the INM spectra

have the characteristic real and imaginary branches. As in the case of Lennard-Jones and

Morse liquids,55,61 the negative modes shrink in intensity and go to low frequencies as the

temperature is decreased, while the peak of the real branch increases. Unlike in the case

of simple liquids, however, both the real and the imaginary branch have a pronounced bi-

modality which can be clearly seen for the spectra along the ρ∗ = 0.11 isochore. which must

be connected with two different length scales of the potential. Fig. 4(b) shows that along

the T ∗ = 0.20 isotherm, the bimodality in the imaginary branch is most pronounced within

the anomalous regime and is attenuated at both low and high densities. In contrast, the bi-

modality of the real branch persists even at high densities. It would be interesting to explore

in future work if this bimodal frequency distribution results in multiple-time-scale behaviour

analogous to that seen in hydrogen-bonded liquids, such as water and methanol.62–64

The Einstein frequency is the second moment of the INM distribution, as defined in

equation Eq. (10), and represents an effective frequency describing the very short-time,

local dynamics of the particles. Figure 5 illustrates the behavior of Einstein frequency for

the core-softened potential. For a fixed temperature, increasing density results in increase of

ω∗
E = ω

√

mσ2/ǫ, indicating stronger trapping of the liquid particles in local cages. This is
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consistent with the behaviour of simple liquids observed in earlier studies.55,61 The ω∗
E values

is virtually independent of temperature for ρ∗ ≈ 0.05 and ρ∗ ≈ 0.125. At low densities, ω∗
E

shows a small decrease with increasing temperature while at higher densities, there is a weak

minimum in the ω∗
E at intermediate temperatures. The density dependence of ω∗

E carries no

significant signatures of the diffusivity anomaly.

-6 -4 -2 0 2 4 6
ω∗

0

0.05

0.1

0.15

0.2

0.25

f(ω)

(a)

-6 -4 -2 0 2 4 6 8 10
ω∗

0

0.05

0.1

0.15

0.2

0.25

f(ω)

ρ∗ =0.06
ρ∗ =0.12
ρ∗ =0.14
ρ∗ =0.20
ρ∗ =0.30

(b)

FIG. 4: (a) Instantaneous normal mode spectra as a function of frequency for

T ∗ =0.20,0.23,0.30,0.35,0.40,0.45,0.50,0.55 and ρ∗ = 0.11. The arrows indicate the increase of

the temperature. (b) Instantaneous normal mode spectra as a function of frequency for T ∗ = 0.20

and ρ∗ =0.06,0.12,0.14,0.20,0.30.

The fraction of imaginary modes, Fim, indicates how much the system samples regions

with negative curvature which is known to be strongly correlated with the diffusivity.65

Fig. 6 shows density dependence fraction of imaginary modes, Fim, for our core-softened

anomalous fluid. In simple liquids, Fim decreases with density and the graph Fim vs. ρ∗

always exhibit a negative slope.55,61 In contrast, for the core-softened potential studied here,

Fim shows very pronounced non-monotonic behaviour For very low, ρ < ρFmin, and very

high, ρ > ρFmax, densities, Fim has a negative slope, decreasing with increasing density.

For intermediate densities, ρFmax > ρ > ρFmax, Fim increases with density. The density,

ρ∗Fmin ≈ 0.1, is almost temperature independent. The location of the maximum in Fim(ρ)

curve is ρ∗Fmax ≈ 0.4 at low temperatures, but shifts to lower densities with increasing T ∗.

A comparison of the behaviour of Fim(ρ), illustrated in Fig. 6, and D(ρ), illustrated in

Fig. 3 shows that the density of minimum Fim coincides with the density of minimum D.

In contrast, the density of maximum Fim occurs at densities much higher than the density

12
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FIG. 5: Einstein Frequency versus density for fixed temperature. The insets show the dependence

with temperature for two fixed densities ρ∗ = 0.08 (bottom inset) and ρ∗ = 0.23 (top inset).

of maximum diffusivity. Moreover, the region in which Fim shows an anomalous increase

with compression persists to very high temperatures, well above the temperature for onset

of structurally anomalous behaviour. In order to understand this behaviour, we compare

the zeroth, first and second derivatives of the potential as a function of pair separation

with Fim for T ∗ = 1.0 plotted as a function of the mean interparticle separation, ρ−1/3

in Fig. (7). It is immediately obvious that the location of the minimum of Fim coincides

with the location of the minimum of the second derivative. For densities lower than this

minimum, the second derivative increases and the number of imaginary modes decreases.

Clearly, this effect persists in the high-temperature fluid where binary collisions dominate

the dynamics since it reflects the curvature of the pair interaction.

V. INM SPECTRA AND LIQUID-STATE ENTROPY

In section III, we discuss the possibility of partitioning the entropy of a liquid into con-

tributions, Sr and Sim, associated with real and imaginary branches respectively of the INM

spectrum. The Sr contribution is directly derived from the frequency distribution of the

13
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FIG. 6: (a) Fraction of imaginary modes against density for fixed temperatures

T ∗ =0.20,0.30,0.40,0.55 from bottom to top. (b) Fraction of imaginary modes against density

for fixed temperatures T ∗ =0.80,1.0,1.20,1.40,1.60.1.80,2.0,2.2 from bottom to top.
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FIG. 7: Potential, force and second derivative of the potential in units of ǫ and Fim ∗ 15.0− 1.0 for

T ∗ = 1.0 versus reduced distance.

real branch while the Sim contribution is given by Sim = S − Sr. In order to get a better

understanding of the role played by each contribution to the entropy, Fig. (8) shows the be-

havior with density for a fixed temperature of s∗im, s
∗
r, s

∗
id and s∗ex. It is immediately evident

that s∗r shows a very similar density dependence to s∗id, even though the numerical value of

s∗r is significantly lower. Other than a small inflection at ρ∗ ≈ 0.1, the contribution of the

real INM modes to the entropy carries virtually no signature of the structural, entropy or
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FIG. 8: sid∗, s∗r, s∗im and s∗ex versus density for T ∗ = 0.2.

diffusivity anomalies. The non-monotonic behaviour of s∗ex in the anomalous regime seems to

be reflected only in s∗im. The strong resemblance between s∗id and s∗r in T - and ρ-dependence

suggests that this term reflects the generic effects of thermal fluctuations and spatial con-

finement on the entropy but in general it is insensitive to the structural details associated

with the interplay between the two length scales in the anomalous regime.

Fig. 9 compares, for various isotherms, the density dependence of three different entropy

estimators: (a) s∗im, the imaginary mode contribution to the entropy, (in the graph, form the

value of s∗im it is subtracted 2), (b) s∗2, the pair correlation entropy, and (c) s∗ωE
, the entropy

estimated using the Einstein model for the liquid, Eq. (13). As discussed in Section IV.A,

the s∗2 behaviour is very similar in density and temperature dependence to s∗ex, indicating

that the pair correlation contribution to the entropy is sufficient to capture the essential

features of the anomalies. s∗ωE
, derived from the Einstein model, is very similar to s∗r,

presumably because of the use of the harmonic oscillator representation of the entropy. The

non-monotonic behaviour of ωE(ρ) results in small plateau at low temperatures. The overall

decrease in SωE
with density is much too steep and monotonic compared with s∗ex and s∗2.

In contrast, s∗im = s∗ − s∗r , captures the behaviour of the entropy within the anomalous

region very successfully. The relative displacement of s∗im(ρ) curves for different isotherms

is very small, consistent with the earlier observation that the overall effect of thermal and
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FIG. 9: (a) s∗im − 2.0 obtained from Eq. (16) with s∗ex obtained from ref.30, (b) s∗2 and (c) from

the Einstein Frequency. See the text for more details. In all cases, the entropy is plotted against

density for fixed temperatures T ∗ = 0.20, 0.30, 0.40 and 0.50 from bottom to top.

free volume effects is better captured by s∗r.

As a summary of the insights obtained from INM analysis and pair correlation entropy

into the nested cascade of anomalies picture of water-like liquids, we use the extrema in

Fim(ρ) and s∗2(ρ) curves to define additional anomalous regimes within which (∂Fim/∂ρ)T > 0

and (∂s∗2/∂ρ
∗)T > 0 respectively, as shown in Fig.10. The low density boundaries of anoma-

lous regime in t, Fim and s∗2 almost coincide, reflecting the onset of the steep repulsive wall.

The high-density boundary of the anomalous regime of Fim occurs at very high densities. In

contrast, the high density limit of the anomalous regime in s∗2 is very close to that defined

by t, and also by s∗im though the latter is not shown in the Figure.

VI. CONCLUSIONS

This paper explores the connection between entropy, diffusivity and the potential en-

ergy landscape of a core-softened fluid with water-like anomalies using molecular dynamics

simulations and instantaneous normal mode analysis.
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We demonstrate that the diffusivity and the excess entropy of a core-softened fluid with

isotropic pair interactions obey Rosenfeld-type excess entropy scaling of transport properties.

The use of macroscopic reduction parameters for the diffusivity based on temperature and

density is particularly appropriate for fluids with multiple length scales where defining an

effective hard-sphere radius is inappropriate. We also show that the substituting the excess

entropy by the pair correlation entropy leads to a weak isochore dependence of the Rosenfeld-

scaling parameters, not seen in simple liquids but observed in other water-like liquids.66

The instantaneous normal mode spectra, including the Einstein frequency and the fraction

of imaginary modes, is computed over a wide range of temperatures and densities. INM

analysis is shown to provide unexpected insights into the dynamical consequences of the

interplay between length scales characteristic of anomalous fluids that cannot be obtained

from an equilibrium transport property such as the diffusivity.

Both the real and imaginary branches of the INM spectra exhibit bimodality that has so

far not been observed. As a function of density along an isotherm, the bimodality in the

real branch of the INM spectrum persists to very high densities well beyond the structurally
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anomalous region. In contrast, the bimodality of the imaginary branch is much more closely

correlated with the region of the structural anomaly. The bimodal character of the both

branches of the INM spectrum suggests that such core-softened fluids may show multiple

time-scale behaviour similar to that seen in hydrogen-bonded systems.

The Einstein frequency shows an essentially monotonic dependence on density along an

isotherm. The temperature dependence of the Einstein frequency is weak and monotonically

decreasing with temperature at low densities and non-monotonic at high temperatures.

In contrast to the Einstein frequency, the fraction of imaginary frequencies shows very

anomalous behaviour in comparison to simple liquids, with an extended density regime over

which Fim increases with increasing density. While the low density boundary of this region

coincides with that of the structural anomaly, the high density boundary occurs at very

high densities well beyond the structurally anomalous regime. Previous INM studies of

liquids have largely connected the diffusivity with the fraction of imaginary modes. Our

results show that information about diffusivity is largely contained in the behaviour of the

imaginary branch of the INM spectra, but factors such as the bimodality of the frequency

distribution in this branch must be considered in addition to Fim.

Given the validity of excess entropy scaling for the diffusivities, we introduce INM-based

estimators of the entropy, to connect the energy landscape with liquid state thermodynam-

ics and kinetics. The conceptually simplest INM-based estimator is to treat the liquid as a

collection of 3-dimensional harmonic oscillators vibrating at a single frequency, correspond-

ing to the Einstein frequency. The Einstein model entropy shows a very steep decrease

with density along isotherms with a very weak signature of the onset of the structurally

anomalous regime.

An alternative approach to developing an INM-based estimator of the entropy that we

have explored is to assume that the total entropy of the fluid can be written as a sum of

contributions from 3NFr harmonic modes and 3NFim imaginary modes. The real branch

of the INM spectrum can be used to estimate the harmonic contribution, s∗r , exactly. The

entropy contribution of the imaginary branch, s∗im, is then given by the difference of the

thermodynamic entropy, s, and the real branch contribution, s∗r. The temperature and

density dependence of s∗r carries virtually no signature of the liquid-state anomalies, and

seems to reflect only the generic effects of thermal fluctuations and spatial confinement on

the entropy In contrast, s∗im = s∗ − s∗r, captures the behaviour of the entropy within the
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anomalous region very successfully though the relative displacement of s∗im(ρ) curves for

different isotherms is too small. The extrema in s∗im define a region of anomalous entropy

behaviour in the density-temperature plane that is almost identical as the region within

which (∂S2/∂ρ)T > 0.

The overall and somewhat unexpected outcome of our instantaneous normal mode anal-

ysis of a core-softened water-like fluid is that the real and imaginary frequency branches

show very different sensitivities to the dynamical consequences of the interplay between two

length scales in the anomalous regime of the liquid. Moreover, the entropy contribution from

the imaginary frequency modes of the INM spectrum reflects the anomalous behaviour of

the excess entropy and diffusivity characteristic of water-like fluids, but the real frequency

branch does not.
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