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Abstract. The iterative two-person Prisoners’ Dilemma game has been generalised to the
N-person case. The evolution of cooperation is explored by matching the Tit For Tat (TFT)
strategy (Axelrod and Hamilton 1981) against the selfish strategy. Extension of TFT to
N-person situations yields a graded set of strategies from the softest TFT, which continues
cooperation even if only one of the opponents reciprocates it, to the hardest, which would
do so only when all the remaining opponents cooperate.

The hardest TFT can go to fixation against the sclfish strategy provided it crosses a
threshold frequency p,. All the other TFT are invadable by the selfish (1) or the pure
defector strategy, while none can invade D. Yet, provided a threshold p. is crossed, they
can coexist stably with D. As N, the size of the group increases, the threshold p, also
increases, indicating that the evolution of cooperation is more difficult for larger groups.
Under certain conditions, only the soft TFT can coexist stably against the selfish strategy
D, while the harder ones cannot. An interesting possibility of a complete takeover of the
selfish population by successive invasions by harder and harder TFT strategies is also
presented.

Keywords. Evolution of cooperation; group selection; reciprocation; game theory ; Tit
For Tat.

1. Introduction

Explaining the evolution of cooperation within the framework of natural selection
has been one of the challenging problems of evolutionary theory. If two individuals
cooperate, each of them ought to be better off than otherwise. However, if one of
them ‘cheats’, i.e., manages to get the benefit from the other without cooperating
in turn, he is likely to be much better off. The cheaters are thus expected to be at a
selective advantage. Trivers (1971) pointed out that this phenomenon may be
modelled by the two-person Prisoner’s Dilemma game. Given a choice between
cooperation and cheating, it is always better to cheat since the cheater does better
than the cooperator regardless of what his opponent chooses. Both the players thus
opt for cheating and are consequently worse off than they would have been had
they cooperated. Trivers also showed that if the same individuals interact
repeatedly (iterated version of the Prisoner’s Dilemma game) and can base their
choices on the ‘experience’ gained in the previous encounters, cheating may not be
the best strategy. He went on to show that a large degree of asymmetry between the
benefits and costs associated with the acts of cooperation could lead to the
evolution of reciprocal altruism.

A formal model for the evolution of cooperation based on reciprocal interactions
has been investigated by Axelrod and Hamilton (1981). They consider the iterated
version of the Prisoner’s Dilemma game, and adopt a probabilistic treatment for
the frequency of repeated interactions between the same pair of individuals. Under
this scenario a rich variety of complex strategies is possible. From an analysis of
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these strategies they have been able to identify a set of robust and evolutionarily
stable cooperative strategies.

In nature, however, an individual often interacts simultaneously with several
individuals. It is therefore of interest to model such situations as N-person versions
of the iterated two-person game. We therefore explore in this paper the outcomes
of competition between the selfish strategy and the Tit For Tat (TFT) strategy,
proposed by A Rapoport, which was highly successful in the computer tournament
-organised by Axelrod (1984). An extension of TFT to N-person situations leads to a
set of graded strategies, and we find that some of these can coexist in stable
equilibria with the self’isll strategy.

The basic model including the payoff matrices and the dynamics of genotype
frequencies is described in §2. The results of competition between two interacting
strategies are described in §3, while §4 deals with situations involving more than
two strategies at a time.

2. The model
2.1 Payoffs to the players

The two actions open to any player in a given game are to cooperate (C) or defect
(D). For a two-person game, the four possible combinations of the choices by the
two players are CC, CD, DC and DD where the successive letters indicate the
choice made by the first and the second player, respectively. The same notation can
be used to denote the payoff obtained by the first player as a result of the choices.
Thus, it the outcome is CD, the payoff to the first player is also denoted by CD, and
the value of the payoff to the second player DC. We assume that the elements of
the payoff matrix satisfy the inequality DC > CC > DD > CD as in the Prisoner’s
Dilemma.

In an N-person game, each participant faces N —1 opponents. Each can choose
either C or D. The payoff to any player then depends on his strategy, as well as the
strategies chosen by his N — 1 opponents. Let n of the opponents of a player choose
C and let N—1~n choose D. We take the payoff to a player choosing C or D as
fC) or (D), where

f(C)y = [n.CC+(N—1—n).CD]J/(N—-1),
f(D) =[n.DC+(N~1-n).DDJ/(N—-1). )

In other words, we assume that the payoff accruing to a player is the average
payotf the player would have received in a series of two-person games played with
each of the opponents separately, the choices of strategies by each player remaining
unaltered.

2.2 The iterated Prisoner’s Dilemuma game

In the interated version, the same participants may interact more than once. Under
these conditions, the strategy for each game (interaction) could be specified in
terms of the choices made by each player and his opponents in their previous

interaction. The situations when players interact M times is customarily referred to
as a game consisting of M moves.
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It is assumed that the game played by each group consists of at least one move. In
one version, each game consists of exactly M moves. Alternatively, the number cf
moves in the game played by each group could be a random variable. Following
Axelrod and Hamilton (1981), the probability of continuation of the game is taken
to be constant, denoted by w. Then the probability that the game consists of exactly
K moves is given by

P(K) = wX~ (1 —w), (2)

and M, the mean number of moves in a game is 1/w.
2.3 Dynamics of genotype frequencies

Maynard Smith (1974) iuitiated the game theoretic approach to modelling
competition between organisms; others have combined this with population
genetics by equating payoffs with genetic fitnesses (Gadgil et al 1980; Hines 1980;
Maynard Smith 1982). A similar approach. is used here.

Consider an infinite population of asexual organisms with nonoverlapping
generations, and with frequency p and 1 — p of genotypes A and B, respectively. At
the beginning of each generation, the population is subdivided into groups, with N
individuals per group. Assuming random association, the frequency of groups
containing exactly n individuals of genotype A is given by

F(N, n) = ())p"(1=p)"™", ()

where
N) — N'
" (N—n)!n!

Each genotype is assumed to code for a specific strategy. The payofi of an
individual of genotype A, when it is in a group containing n opponents of type A,
and when K moves are made, is denoted by Y.(K, n).

The average payoff of A is then given by

N—1 S
fAY=> FN-1,n) > P(K)YA(K, n), (4)
n=0 K=
where P (K) is the probability that the N-tuple plays a game consisting of exactly K
moves. ‘
We assume that the average payoff of A measures the fitness of A. The mean
fitness for the population is then seen to be

f=pRA)+(1=p)B), ()

and the change in the frequency of A from the mth to (m + 1)st generation is given
by

p(m+1) = [{A)If] p(m). : ()

All the offspring of a given generation mix and resettle in random associations of
N individuals each and then repeat the cycle to give rise to the next generation.
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Given the various payoffs associated with the strategies of the competing
genotypes, one can thus study the changes in frequency of any genotype. This
procedure can be readily generalised to a case where more than two genotypes
interact.

2.4 Elements of the payoff matrix

As explained earlier (§2.1), if an individual chooses the strategy C, his payoff for
that game would be a linear combination of CC and CD (depending on the
strategies of the rest of the competitors in the group), while a choice of D would
make it a linear combination of DC and DD. Hence, the average payoff of a
genotype would be a linear combination of DC, CC, DD and CD. It can be seen
that if f{A) is greater than f(B) for any value of frequency p, it will remain so if a
constant term is added to each of the elements of the payoff matrix and/or if each is
multiplied by a positive constant. Therefore, without loss of generality, we can take
DC=1, CC=c, DD =s and CD = (. Hence, the effects of variation in the
values of the elements of the payoff matrix can be explored using only two
parameters, viz., ¢ and s.

2.5 The strategies

We would like to explore the success of various cooperative strategies against the

pure defector strategy. As mentioned earlier, in a two-person game, the Tit For Tat

strategy of A Rapoport proved to be extremely successful in the ‘tournaments’

studied by Axelrod (1984). Hence, we consider here possible generalizations of the

TFT strategy to N —person games. The TFT strategy uses information about the

choices made by the opponent in the previous move (one-step memory). For
mathematical convenience, we exclude strategies which can exploit other kinds of

information (the number of moves remaining to be played, for example).

In an N—person game, each individual has N—1 opponents. We define a TFT
strategy of the type n (0 < n < N—1) as follows: cooperate on the first move.
Froin the next move onwards, continue to cooperate if at least n of the opponents
have cooperated; if not, defect in the next move. Thus, n =-0 corresponds to the
pure cooperative strategy. In the two-person game, n can be either 0 or 1, with
n = 1 corresponding to the TFT strategy of Rapoport. In general, for an N — person
game, there would be N—1 TFT strategies. The strategy with n = N—1 is the
hardest and n = 1 the softest TFT. For other variants of TFT strategies, see Taylor
(1975).

3. Competition between two interacting strategies

We consider first the competition between pure D and pure C strategists followed
by competition between pure D and various TFT strategies. It will be seen that
whether one considers the total number of moves in a game as fixed (at M), or
whether they follow the distribution described by (2) of §2.2, the outcome is
unchanged for a two-strategy interaction. However, these two lead to different
outcomes when more than two strategies interact. This result, as well as some
implications of assuming a fixed number of moves, would be discussed in §4.
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3.1 Competition between pure D and pure C

Let the frequency of pure C in the population be p. The probability of a pure C
finding itself in a group containing exactly n, C strategists amongst its opponents is
F(N—1,n), according to (3). With such a composition, payoff to C
= [nc+(N=1-m).0/(N—1)
= [n.c/(N—=1)}].
If the games played by such an N-tuple consists of K moves, the payoff is
Yo(K, n) = K.n.cl(N-1). (7)

Hence, the average payoff of C in the population is

N—1 £
f(C)y= > F(IN—1,n) > P(K). YK, n)
y=() K=0
N N—1 - K
= Z( | )p"(l—mN"“” S oWkl (l—w) S (®)
n=0 n K=0 N—1

from (4), (2), (3) and (7). Regrouping the terms

¢ "N &
fey = V=1 > n< )p”(l =)Vt S Kwf T (1 —w)
- R K

n=1
=S (N—-Dp.M
=N .M.

= cpM 9

The term in the square bracket is the average number of moves in the games
played by an N-tuple. The payoff is thus seen to depend only on the mean value and
not on the distribution of the number of moves in the games played.

A very similar calculation shows that for D,

Y K, n) = K[l.n+{(N=1—=n)s(N-1)
Ks+ K.(1=s)(N—1),

!

i

and

f(D) = pM(1—s)+ Ms. (10)
Hence

fID)Y—(C)y=pMA-c)+(1-p).Ms . (11)

This will be > 0 for all values of p, indicating that D would continue to increase
in the population for any value of p. Hence pure D goes to fixation when in
competition with pure C.
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3.2 Competition between pure D and hardest TFT

The hardest TFT strategist requires all the opponents to cooperate for it to continue
cooperation in the subsequent moves. Hence, in all the N-tuples where at least one
D is present, the TFT switch over to defection after cooperating in the fnst move.
Only in the N-tuple with all TFT, C is chosen in every move.

If the frequency of TFT is p, it is readily seen that

N~—1

SOF(N=1, ){[(1—=w).(i. 1 +(N—1—n).s]}/(N—1)

n=()

+ }‘fj K.P(K).s

K=2
=p(l—-8)+M.s . (12)
Interestingly, this is independent of N. For the TFT,

N—2

JTFT) = 3 F(N—1, ”)[(—/\y)’lu + >: K.P(K).s
FRNSLN-1) S KeP(K)
K=2
=pV T M—=1)(c=s)+p.c.+(M—1).s . (13)

Comparison of (12) and (13) shows that at p=0, f(D)>f(TFT), i.e., D is
uninvadable by TFT. On the other hand, at p =1,

D)= f(TFT) = 1+ (M= 1).5— M.c .

If M, s and ¢ have values such that f(D)<f(C) then TFT is also uninvadable by D
In fact, the line

5= (Mc—DI(M—1), (14

separates the region in (c,s) space where TFT is uninvadable (below the line) from
the one where it is invadable (figure 1). With increasing M, a larger region in the
(¢,d) space becomes favourable to TFT. As expected, the minimum value of M
needed for pure TFT to be uninvadable increases with s and decreases with
increasing c.

For the range of parameters where TFT is uninvadable, there is a critical value of
p given by

pY T M= 1)(c=8)=p(l—c—s5)—s5 = 0, (15)

where the fitness of the competing strategies is equal. Since f(D) increases linearly
with p, f(C) increases monotonically with p, f(D) > f(C) at p = 0 and f(D) < f(C)
at p = 1, there is only one solution to this equation in the range 0 = 1. Moreover,
this equilibrium between the two strategies is unstable. In other words, once TFT
crosses the threshold frequency p, (by various mechanisms, such as invasion by
clusters, discussed by Axelrod and Hamilton 1981), it will go to fixation.
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1.0

M=z2
M=5
M=zo0

Figure 1. Regions in (c,s) space where
the Hardest TFT is uninvadable by D. For
0 05 a given value of M, the mean number of
’ 1.0 moves in the game, the region favourable
C —p to TFT lies below the corresponding line.

It is seen from (15) that p. increases with s and decreases with increasing M
and/or ¢ as expected. Other parameters remaining constant, p. increases with
increasing N, suggesting that evolution of cooperation by this mechanism is more
difficult in larger groups.

3.3 Competition between pure D and soft TFT

3.3a General formulation: Consider a soft TFT strategy S which continues to
cooperate for the next move provided at least m of its opponents cooperate during
the current move. The payoff of such a strategy in an N-tuple with 1 TFT strategists
would be

Yo(K, n) = K.n.c/(N=1), n=m, ,
= n.c/(N=1)-+(K—1).s, n<m. (16)
The’payof'lf' of D in a similar situation is
Yp(K, n)=K[n+(N=1-n)sl/(N=1), n=m,
[+ (N=1=n).s))(N=D)+(K-1)s, n<m. (17)

I

Using these equations, the expressions for the average payoffs of D and S can be
written down explicitly. Both f(S) and /(D) are polynomials in p (the frequency of
S in the population), with positive coefficients. The curves f(S) and f(D) increase
monotonically with p and are concave upwards (e.g. figure 2). When p = 0, both D
and S find themselves with all the N ~ 1 opponents as D. The average payoff of D in
such a case is M.s, while that of S is (M —1).s (since it cooperates in the first
move); D s thus uninvadable by S§. Near p = 1, each of them have (N—1)
opponents ~f the S type who cooperate for all the games. Hence,



76 NV Joshi
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Figure 2. Payoffs to TFT (- —-)and D ( ) as functions of p, the frequency of Soft TFT for N = 3,

¢ =06ands = 0-2. A) For M = 10, D always goes to fixation. B) For M = 40, a stable coexistence

between TFT and D is possible. The values of frequency p, and p, correspond to unstable and stable
equilibrium, respectively.

f(D)=M=>f(S) = M.c and § is invadable by D (figure 2A). .Under these
circdmstances, D. is expected to go to fixation.

Interestingly, though f(D) >f(S) at both p = 0 and p = 1, for some combination
of the parameters M, s and ¢, it is possible for the fitness of § to be higher than that
of D for some intermediate values of p (figure 2B). Under such circumstances, the
curves f(D) and f(S) intersect at two points; at these values of p, the two strategies
are in equilibrium. It is seen from figure 2B that the point corresponding to p, is an
unstable equilibrium, whereas the one corresponding to p, is a stable one. In other
words, once the strategy S is able to cross the threshold p,, it would be able to
coexist stably with D, at a frequency p,.

3.3b Soft TrT for N = 3: For a three-person game, only one soft TFT is possible,
viz., to continue cooperation even if only one of the other two opponents
cooperates in the previous move. Using (16) and (17), and the procedure given in
§3.3a, the average payoffs as a function of the frequency p of the TFT can be written
as

F(D) = p*(M = 1)(1 ~5)+p(1—s)+ Ms,

A(S) = p*(M—1)s + p[Mc=2(M—1)s] + (M—1)s. (18)

The fitness of D is greater than that of TFT at both p = O and p = 1. For a given
value of M, one can determine the combination of ¢ and s such that the two curves
JF(TFT) and f(D) touch at one point; the fitnesses of TFT and D are equal at that
point whereas at any other point, f(D) is greater than f(TFT). Any higher value of ¢
or lower value of s then yields two values of p (p, and p,) where the fitnesses of the
competing strategies become equal, and for p, < p < p, we have f(TFT) greater than
F(D). Hence it is possible for the two strategies to coexist. Regions in (¢, s) space
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1.0

Figure 3. Regions in (c,s) space where a
Soft TFT (N = 3) can coexist with D. For
a given value of M, the region favourable
to TFT lies below the corresponding
¢ » curve.

where such a coexistence between S and D is possible are shown in figure 3 for a
few values of M.

As expected, the region where coexistence is possible increases with increasing
M. Low values of s and high values of ¢ favour coexistence. A comparison of figures
1 and 3 is of interest. It is seen from figure 1 that as M— o, in the entire region
¢>s, the hard TFT is uninvadable by D. On the other hand, as seen from figure 3,
even as M— o, the region favourable for a soft TFT is much smaller.

Is there, then, any advantage at all which a soft TFT enjoys over a hard TFT?
Table 1 gives the values of threshold frequencies for various values of M for typical
values of ¢ and s. It is seen from the table that under some circumstances the
threshold which a soft TFT needs to cross in order to establish itself in a stable
coexistence with D is lower than the one needed for the hard TFT. Hence, the
former is more likely to establish itself in a population though it would never go to
fixation.

Table 1. Some values of s, ¢ and M where a Soft TFT has a lower threshold
frequency compared to the Hardest TFT.

Threshold Threshoid

N c s M Soft TFT Soft TFT Hardest TFT
3 0-85 0-25 5 S, 0-250 0-302

3 0-75 0-15 10 S(2,1) 0-040 0-176

4 0-95 0-15 5 S3.1) 0-089 0-331

4 0-85 0-15 10 S(3,1) 0-048 0-287

4 0-85 0-25 5 5(3,2) 0-297 0-441

4 0-65 0-05 10 S5(3,2) 0-092 0-294

5 0-65 0-05 5 S(4,1) 0-048 0-546

S 0-50 0-05 10 S(4,1) 0-032 0-513

5 0-95 0-15 5 S(4,2) 0-158 0:427

5 0-99 0-35 10 S5(4,2) 0-272 0-433

5 0-75 0-25 5 S(4,3) 0-500 0-594

5

0-85 0-45 10 . 8(43) 0-472 0-532
VALY .
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3.3c Soft TrT for N>4: Using the equations described in §3.3a. and the
procedure outlined in §3.3b, one can obtain the regions of coexistence (allowed
regions) in the (¢, s) space for various soft TFT strategies for any value of N.
Qualitatively, the results are as expected. As seen from figure 4, the allowed
regions for the softest strategy for N = 4 is very small, for the less soft it is slightly
“larger, and so on. The allowed regions for all these strategies increase with
increasing M.

An interesting result seen from figure 4 is that a softer strategy may be able to
coexist with D, while the harder one may be unable to do so. For example, for
N =4, at c = 0-350, s = 0-03 and M = 10, §(3,1) can soexist with D, while for
$(3,2) no coexistence is possible.

The advantage of the harder strategy lies in it being less prone to exploitation by
D, while the disadvantage is in denying cooperation to some members of its own
kind during the process; whereas for the softer of the two strategies, the situation is
exactly the reverse. Over a limited range of parameter values, the balance seems to
tilt in favour of the softer strategy. The regions where this happens are very small,
and are characterized by low values of s.

It is possible to define a soft TFT not just in terms of the minimum number of
cooperating opponents but in terms of the proportion of the cooperating opponents
required by it for continuing cooperation. For example one can define a soft TFT
which continues cooperation if at least half of its opponents cooperate, and defects
otherwise. It is seen, however, that the regions for such a strategy in (c, s) space
where it can coexist with D are not independent of N, but decrease with increasing
N. THus, the TFT strategy S(10,5) which continued cooperation when at least 5 of
its 10 opponents cooperated had a larger allowed region compared to, say, $(20,
10).

0.6
0.4
" -
0.2

| Figure 4. Regions in (c,s) space where

Soft TFT can coexist with D, for N = 4,

. M =72 and also M = 10. The region

- favourable to the Softest TFT lies below

0 the dashed curves, while that for the

harder strategy, lies below the solid
curve.
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To understand this result, we compare the payoff to a soft TFT S(N, m) facing N
opponents [ soft TFT and (N —n) D's] with that to a D in a similar situation. If
n<m, we get

YK, n) = nc/N+(K~1)s<Yp(K, n)=n(l—-s) /N+K.s,
and if n>m, still

Yy(K, n) = K.n.c/N < Yp(K, n) = [K.n.(l—s5)/N|+K.s .
However, when n = m,

Y¢(K,m) = K.m.c/N,
while
Yp(K, m) = [ni(l—5)/N]+ K.s.

If the values of K and ¢ are high enough, and that of s low enough, it is possible
for Ys(K,n) to be greater than Yp(K,n). Howwever, this is only a necessary
condition. For f(S) to be greater than f(D), this advantage gained from the
N-tuples with n = m has to more than outweigh the disadvantage attained in the
other N-tuples. For this to happen, p, the frequency of §, should be such that the
frequency of N-tuples with n = m is high, i.e., F(N,m) should be maximized [(3)]
with respect to p. It can be seen that the required value of p is equal to m/N.

However, the maximum value of F(NV,n) decreases with increasing N. For
F(N,N/2) for example, the maximum value of F(6,3) is 0-3125, of F(8,4) is 0-2734
and F(10,5) is 0-2461. Hence, the allowed regions for soft TFT shrink rapidly as N
increases, indicating once again that for large group sizes it is more difficult for
cooperation to evolve.

4. Competition invelving more than two strategies

The next logical step is to consider interactions where more than two strategies are
involved. It is of interest to see whether the equilibrium between a soft TFT and D is
invadable by a harder TFT. The motivation for such an analysis is provided from the
following results seen for NV = 4 for certain combinations of ¢, s and M: all the soft
strategies can coexist with D. The softest of them, S(3,1) has the lowest threshold.
However, its equilibrium frequency is higher than the threshold of the next harder
strategy, .5(3,2). Its equilibrium frequency, in turn, is higher than the threshold
frequency of the hardest TFT strategy, which has the potential for taking over the
population completely. It is tempting to explore whether a cascade process [S(3,1)
invading D, §(3,2) invading S(3,1) — D and S(3,3) invading $(3,2) — D] can result in
the complete elimination of D.

To start with, the simplest case (N = 3) is considered. The frequencies of the
Soft TFT(S) and Hard TFT(H) are denoted by ps and py respectively, and we
investigate whether H can invade the S-D equilibrium. For it to be able to do so, its
payoff at this equilibrium should be higher than that of S(or D). When invading an
S-D equilibrium, H would face, in a triplet either SS, DD or SD as opponents. Now
the payoff of H and § are identical against SS and DD opponents. However, payoff
of H against SD is
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¢/24P2).(1+8)2+s.. > P(K).(K-2)
K=3

1l

2+ [(L+s).(M = D)+ [(M— 1D)¥M].s

while that of § against SD is simply M.c/2.

Thus, for H to successfully invade S-D equilibrium, ¢ should be small and s
“should be large. These conditions, however, are exactly those which would render a
stable equilibrium between D and S difficult.

The condition for equal fitness for / and § when H invades an S-D equilibrium is
described by (using the above values of payoffs and simplifying)

.M —=1)=M.c+1=0 . (19)

As seen in figure 5, this line cuts the s = (0 line at UM, and ¢ = 1 line at
(M—1)/(2M —1); and in the region above the line, invasion is possible. However,
as seen from figure 3 [and as can be derived from (18)], these are exactly the points
where the concave curve delineating the allowed region for § cuts the two lines
s = 0 and ¢ = 1; § can coexist with D below this curve. Therefore, H will never be
able to invade the S-D equilibrium.

Consider now a situation where the total number of moves in the game is fixed at
M. As Axelrod and Hamilton (1981) have shown, pure D is an evolutionarily stable
strategy (ESS) under such a situation. To arrive at this fesult they have invoked
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Figure 5. Invasion of the Soft TFT-D equilibrium by the Hardest TFT for N = 3, M = 3.
A stable equilibrium between Soft TFT-D is possible only in the region below the curve.
Invasion by the hardest TFT is possible only in the region above the dashed line if the
number of moves in the game is geometrically distributed with mean M, and above the
dotted line if the number of moves in the game is fixed at M._Accordingly, such an
invasion is impossible for the former, while it is possible in the hatched regions for the
latter.
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strategies which involve a ‘knowledge’ of M, e.g., be a TFT upto M — 1 moves and
D at the last move, TFT upto M —2 moves and D for the last two moves etc. We,
however, assume that the players have no ‘knowledge’ of M, and a strategy is
defined only in terms of the choices made by the player and his opponents upto that
move. :

Thus when the games played by each triplet consists of exactly M moves, the
payoff of H against SD becomes ¢/2+ (1 +5)/2+ (M —2).s, while that of S against
SD remains Mc/2. Hence, the condition for H to be able -to invade S-D becomes

.M -=3)—(M~1).c+1>0. (20)

As seen from figure 5, there are two small regions, one near s = 0 and the other
near ¢ = 1, where a coexistence between S and D is possible, and this equilibrium
is invadable by H.

When such a situation occurs, under certain values of ¢,s and M, one can observe
the following effect. The threshold needed for H to be able to invade D is higher
than that needed by S. Therefore, S has a better chance of crossing the threshold,
and reaching a stable equilibrium with D. Now, H can invade this combination and
eventually eliminate D. The final composition of the population would be a mixture
of S and H, depending on the size of the initial perturbation by H. In such a
population, C, S and H are indistinguishable. One has thus seen evolution of
cooperation taking place successfully against a selfish (D) strategy.

Analysis of an N = 4 case also reveals similar behaviour. When the number of
games is distributed according to (2), no harder strategy can invade an equilibrium
between D and the softer strategy. However, when the number of games is fixed,
for some range of parameter values (a typical example being M = 2, ¢ = 0-85 and
s = 0-05), one can see the equilibrium between D and the Softest [5(3,1)] being
invadable by the next harder strategy S(3,2), and in turn, the $(3,2)-D equilibrium
being invadable by the Hardest strategy, resulting in the complete elimination of D.

Such a takeover of a selfish population by. successive invasions by gradually
hardening TFT strategies may be of considerable interest. It must be emphasized,
however, that the region in the parameter space where such behaviour is observed
is extremely small.

5. Discussion and conclusions

Evolution of cooperation by reciprocation has been investigated in spatially
structured populations. The choice of cooperation (or otherwise) by an individual is
assumed to be influenced by the choices made by the other individuals in the group.
Though ‘strategy dependent selection’ may be a better description for evolution
oceurring under this scenario, the framework of the N-person game theory is
particularly suitable for analysing such situations (Charnov 1982; Maynard Smith
1982; Riechert and Hammerstein 1983). Gregariously living organisms exploiting a
common resource - primate troops, breeding colonies of birds etc.—seem to be
suitable systems for the applications of this model (Lombardo 1985).

We assume that the population is subdivided into groups containing N
individuals each. The average fitness of an individual in groups with a higher
proportion of TFT tends to be higher. Hence, following Wilson (1975, 1980) the
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evolution of cooperation in the present model can be described as an example of
group selection. The differences in the average fitnesses of different groups are
caused, however, by the reciprocal interactions between individual strategies.

Brown et al (1982) have presented a detailed analysis of the evolution of
cooperation by reciprocation, using the TFT strategy. They have shown that as the
ratio /B increases (where « is the total number of interactions which an individual
experiences in a generation and 8 is the number of interactions which are with
individuals perceived as strangers), the threshold required by the TFT strategy for
invading D becomes smaller. They have very ingeniously obtained values of « and
B under a variety of conditions such as single partner/multiple partner models,
tinite/infinite memory, haploid/diploid organisms etc. and have also cast their
model in a form such that their predictions can be compared to those made by Kin
Selection theory. Another interesting and recent study of the evolution of
cooperation (more specifically, helping behaviour) is by Peck and Feldman (1986).
Using biologically plausible assumptions, they have shown that the threshold
required by TFT for invading D can be made arbitrarily small. They have also
investigated simultaneous competition involving C, D, and TFT, and have reported
an interesting situation where invasion by D of a neutral equilibrium between C
and TFT is initially successful, but leads eventually to fixation of TFT. Both these
studies, however, have specifically considered situtions when population structure
is absent. The present model, on the other hand, explores the evolution of
cooperation in a structured population.

For two competing strategies A and B, if A is able to invade B, and is, in turn,
uninvadable by B, it is generally taken to mean that A goes to fixation. We however
show that where fitness has a nonlinear dependence on frequencies, it is still
possible for the two strategies to coexist in stable equilibrium even if both the above
conditions  hold.

The present study has also shown that for a cooperative strategy to succeed
against a selfish (defector) strategy, under certain conditions it is better to extend
cooperation even though there is a risk of being exploited by a defector. On the
other hand, under other conditions it is better to be more discriminating. We have
also seen that a selfish population may be taken over by successive invasions by
more and more discriminating strategies, though very discriminating strategy is
unable to make any impact to start with against the selfish strategy.

Itis of interest to examine the effects of relaxing some of the assumptions of the
model presented in this paper. In diploid organisms with a one-locus-two-allele
system, the two homozygotes TT and DD may be identified with TFT and D
strategies. If T is recessive and if p is the frequency of T, then under
Hardy-Wienberg equilibrium, the frequency of TFT strategists will be p?. An
examination of (15) indicates that the threshold frequency which a hard TFT has to
cross in order to go to fixation is higher for diploids (p.**) compared to haploids
(pc) for a recessive gene. A similar result holds for a soft TFT [(18)]; however, the
equilibrium frequency (coexistence with D) is also higher. If T is dominant, the
thresholds are lower [1 — (1~ p.)"?], and the equilibrium frequency for a soft TFT is
also lower. A further modification may be to consider the strategies as continuously
varying traits coded for by a large number of genes. Aoki (1983, 1984) has analysed
the evolution of TFT (and other) strategies in considerable detail, and has shown
that biallelic models lead to predictions that are qualitatively and quantitatively
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different from those of polygenic models. A similar result is expected for the
present model as well.

The assumption of random association in the formation of trait groups is also

biologically unrealistic. Wilson (1980) has indicated that the variance between
groups for most natural populations is more than that expected under a binomial
distribution. Several mechanisms can lead to such an increase in the variance—
assortative mating, kin recognition, high population viscosity etc. The net effect,
however, is that the TFT are more likely to be associated with other TFT and the D’s
with D’s. This would lower the threshold frequency for TFT’s, indicating that the
conditions for evolution of cooperation by reciprocation may be somewhat less
stringent than predicted by the model. Finally, the assumption of infinite
population size suppresses the effects of stochastic variations in the composition of
groups. Studies with finite populations, which explore the effects of stochastic
variations in group compositions and group sizes as well as in the elements of the
payoff matrix are in progress.
"~ The model considered here, albeit simple, has provided some insights into the
different types of phenomena which may occur during evolution of cooperation.
The Axelrod-Hamilton approach is being successfully used for analysing conflict
situations in animals. Lombardo (1985) has described the mutual restraint in tree
swallows as an examiple of the Tit For Tat strategy in an iterated Prisoner’s
Dilemma game. With more such studies forthcoming, it would be possible to verify
‘the predictions of the present model. -
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