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Study of Ising model on the rectangular-triangular lattice
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Abstract. The Ising model is studied on a new type of lattice which is named the rectangular-
triangular lattice. The critical temperature for the ferromagnetic lattice is calculated exactly
and it is shown that the antiferromagnetic lattice does not order at any temperature. Ground
state properties are investigated and some features of frustration on the antiferromagnetic
Ising lattice outlined. :
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1. Introduction

Critical phenomena in two dimensions are usually studied on well-known planar lattices
like the square (rectangular), triangular, honeycomb and kagomé lattices. A variety of
methods exist (Temperley 1972) to calculate the partition function and associated
thermodynamic properties of the Ising model on such lattices. Also, there exist several
transformations like the dual, star-triangle and decoration-iteration transformations
which connect pairs of partition functions of two-dimensional (2-d) Ising lattices (Syozi
1972). Using these transformations, one can calculate the critical temperature of Ising
lattices exactly.

The 2-d planar lattices can be broadly divided into two categories: loose-packed like
square and honeycomb lattices and close-packed like triangular and kagomé lattices. A
loose-packed lattice has plaquettes of even number of bonds only and can be divided
into two non-overlapping sublattices « and f such that every nearest neighbour spin of
aspin in a belongs to the f sublattice. There is complete symmetry between the effects of
ferromagnetic (Fm) and antiferromagnetic (AFM) interactions and the critical tempera-
tures in both the cases coincide. For close-packed lattices this symmetry is no longer
present. Such lattices contain plaquettes of odd number of bonds and for the AFM Ising
model, the minimum energy requirements for all the bonds in a plaquette cannot be
simultaneously satisfied. This leads to the so-called ‘frustration effect’ (Toulouse
1977)—the frustrated assembly of spins has many configurations of lowest energy so
that the entropy per site is finite at absolute zero.

Frustration plays a key role in spin glass phenomena. Theoretical studies in this
connection have to deal with the difficult problem of taking averages over the
probability distribution of frustrated cells. On the other hand as Toulouse (1977) has
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remarked, the phenomenon of frustration should be studied in its own right. Simple
model systems are required for such studies. Close-packed lattices with aFMm Ising
Interactions between spins are good candidates. Wannier (1950) showed that because of
the large degeneracy of the ground state, the triangular lattice, a fully frustrated lattice,
does not fit into an AFM arrangement and is disordered at all temperatures. Kano and
Naya (1953) proved the same for the kagomé lattice. Villain (1977) considered a square
lattice Ising model in which frustration is produced in every plaquette by making one
bond in it antiferromagnetic and the rest ferromagnetic. The first and the last of the
above models are fully frustrated models. Simple model systems have also been studied
(Longa and Olés 1980) in which frustration is distributed periodically.

In this paper, we study a 2-d planar lattice which we call the rectangular-triangular
(RT) lattice, which like the triangular and kagomé lattices does not fit into an Arm
arrangement and is frustrated. In §2, we calculate the exact critical temperature of
the FM Ising RT lattice and show that the arm model is disordered at all temperatures,
1.e.,does not have a critical temperature. In § 3, the ground state energies of both the Fm
and AFM lattices have been calculated. Also, an approximate lower bound to the AFM

ground state entropy per site has been estimated as a rough measure of the ground state
disorder.

- 2. Calculation of critical temperature

The rr lattice is drawn in figure 1a and its dual lattice the pentagonal-hexagonal (pH)
lattice is drawn in figure 1a (dotted line) and also in figure 1b (solid line). We now study
the Ising model on such lattices. The ed ges of the RTand pH lattices can be grouped into
four classes for each lattice—class J consists of edges parallel to the edges marked K ;
(for R lattice) in figure 1a or L ; (for pH lattice) in figure 1b. The K jsand L/s are Ising
interaction strengths in which the usual Boltzmann factor 1/k,T has been absorbed.
The critical condition of the rr lattice is determined in the usual manner (Baxter 1982).
The partition function of the p lattice with 5N sites can be written as

Yexp(—2Lr, — 2L,;ry —2L3ry —2L,ry), (1)
)

where the P summation is over all polygon configurations on the RT lattice, r; being the
number of lines on edges of typej. The dual of pH lattice of 5N sites is the rT lattice with
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Figure 1. a. Rectangular-triangular (kT) lattice (solid line). b. Its dual pentagonal-
hexagonal (PH) lattice (solid line).
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3N sites. Its partition function can be written as ‘
Z5{K} =2V (cosh® K, cosh?K, cosh? K3 cosh K )V
Y vt u v, @
P

where v;=tanhK; j=1, 2, 3, 4 and P denotes summation over all polygon
configurations on the Rt lattice itself. If we define

tanhK;=exp(—2L),j=1,2 3,4, 3)
then from (1) and (2)
Z5HLY = (8,)™2(28,85)" (S V2 ZRT (K} | @)
where , , {
_1 , -
Sj=zexp (2L’)cosh2 K;’
1
== 1 ;R m—— 5
sinh 2L SmhK, (3)

From (3)it is clear that the coupling constants K jsand Ljs are reciprocally related, i.e.,
if K 's are large and positive L;’s are small and vice versa. The coupling constants, we
recall, contain the Boltzmann factor 1/k 57,50 in (4) we have a mapping which connects
a low (high) temperature Ising model on a rT lattice to a high (low) temperature model
on the pH lattice. Equation (4) represents what is known as the duality relation. This
relation by itself cannot give us information on the location of the critical temperature.

In the next step, we use the well-known star-triangle transformation (Syozi 1972, the
solid lines are replaced by dotted lines as in figure 1b) to connect the partition function
of the PH lattice of coupling constants Lis (j=1,2,3, 4) to that of the rT lattice of
coupling constants K¥’s (j = 1, 2, 3, 4). The coupling constant L, remains unchanged
in the transformation. There are N such bonds of strength L,. Also, there are N bonds
of strength L; which are unaffected by the star-triangle transformation. We combine
the results of this transformation and the duality transformation given by (5) to get the
self-duality relation for the rT Ising lattice

ZE K} (S1)°V2(28,85)V (S4)¥2R-2N = ZRT(K*), (6)
where ‘
2 _ 2 ~ 7)
~ k? sinh 2K sinh 2K¥ sinh 2K %

sinh 2K¥ sinh2L; = k™1, j = 1,2, 3 or using (5) k sinh 2K¥ =sinh2K;,j = 1,2, 3, each

J

of the L; type of bonds is 2N in number. Since L, =K%, sinh2K¥sinh2K, = 1.
For N L, type of bonds,

L, = K%, sinh2K¥sinh 2K, = 1. (8)
Also,

(1=vF) (1 —v$%) (1 - p¥?)

4O +ototed) (of +F o) (oF + ofoF) (F + ot ed)] 72
where v¥ = tanh K¥ and

I (1=v})(1 =) (1 —v})

k—4[a +U18203) (U1 +1203) (U2 +v30,) (v3 + byU2) ]t/

v; =tanh K. (10)

k = 9)
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The star-triangle relation connects the partition function of Ising model on the pH
lattice at high (low) temperature to that on the rr lattice at high (low) temperature (see
Baxter 1982). So, the self-duality relation (6) obtained after duality and star-triangle
transformations, connect the partition function of Ising model on the rr lattice at high
temperature to that on the rT lattice at low temperature. From (7)-(10) it is easy to
check that if we want a volume in the parameter space (K ;, K,, K3, K4) to be self-dual,
ie., to map into itself, then one must also obey the condition that in (6) we put

(S1)PM7 (28,83)V SY2R N = 1. (11)

If there is only one critical volume in (K, K,, K3, K,) space then this must be the self-
dual volume, hence the condition of criticality is given by (11).

We focus attention on the isotropic RT lattice with K, = K, = K3 =K, =K. In
this limit, (11) reduces to the equation for the critical point K, given by

sinh* 2K, (exp (4K,)+ 3) (exp (4K,)—1)—4 = 0. ‘ (12)

The value of K, =-3228 . . .. For aFM Ising model K is negative which does not give
any solution for K. This corresponds to the fact that the ArMm R lattice does not order
even at absolute zero.

3. Ground state properties

We now focus attention on the isotropic Rt lattice. Two-thirds of the lattice sites have
coordination number 5 and the rest have coordination number 6. So the average
coordination number of the Rt lattice is 16/3. For the FM Ising lattice the ground state
energy is —8/3 NJ where N is the number of lattice sites and J the coupling strength.
For the ArM Ising lattice, the best one can do is to have two interactions of the right kind
and the third ‘broken’ or unsatisfied in triangular plaquettes and to keep the horizontal
bonds unbroken in rectangular plaquettes. In this case, the ground state energy is half
that of the FM lattice. For triangular and kagomé lattices, the AFM ground state energies
are 1/3rd of their FM equivalents.

Figure 2a shows an arrangement of spins for the AFM RT lattice which gives rise to
minimum energy. Each column consists of alternating spins with no broken bonds in
rectangular plaquettes. Also, in the region of triangular plaquettes, rows of positive
spins are alternated with rows of negative spins. One can, however, think of
configurations of higher weight, e.g., keeping all the bonds in rectangular plaquettes
unbroken. For example, treating the columns of such plaquettes as single columns one
can lay down these columns and the single columns in between independently, the
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‘Figure 2. a. Asimplearrangement of spins with minimum energy. b. Another arrangement
of minimum energy having finite entropy per lattice site.
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configuration of each column being that of alternating spins. Figure 2b shows a spin
arrangement of still greater weight and also of finite entropy per lattice site (N - oo
limit is assumed, where N is the total number of lattice sites). We can reverse any one of
the encircled spins along columns marked 4 without change in energy. Such spins are
N/9 in number since the number of 4 columns is N /3 and every third spin in an 4
column is an encircled spin. Encircled spins which are nearest neighbours along B lines
are assigned opposite signs (this is indicated through the symbols 0 and ¢) and are to be
flipped simultaneously so that minimum energy configuration is retained. A new set of
N/9 free spins is obtained thereby. There is still a large amount of ‘contingent freedom’
(Wannier 1950). It may happen that three neighbouring encircled spins (like D, E, F in
figure 2b) forming a triangle centred around a spin on column A have equal signs of one
particular kind. By the arguments of fluctuation theory such arrangements will occur at
one out of eight positions since a collection of three spins has eight possible
configurations and all of them are equally probable. The central spin may then be
reversed without change in energy. The central spins being on column A give rise to a
number of (N/72) + (N/72) free spins. For example, if the central spin C is surrounded
by encircled spins of negative sign, then C may be flipped without change in energy and
there are (2 x N)/(8 x 9) such spins. So effectively there is a total number of (N /9+N/9
+2x N/72) = N/4 free spins and the weight of the ground state configuration is 2N,
The weightage may be put to higher values by considering more involved contingencies.
Thus the zero point entropy per lattice site is given by

S(0) > R In2, NR = k,, the Boltzmann constant. (13

Hence the ground state of the AFM R lattice is disordered and possesses a finite entropy
per lattice site. Also as discussed in §2, the AFM RT lattice does not order at any
temperature. This behaviour of the rT lattice is similar to that of the AFm triangular and
kagomé lattices. In this connection we note that the pu lattice, the AFM dual lattice of the
RT lattice, is also a frustrated lattice.

4. Concluding remarks

We have studied a new type of lattice called the rT lattice which along with its dual, the
PH lattice, are frustrated lattices for AFM Ising interactions. They are new additions
to the growing list of frustration models though a full analysis of frustration on these
lattices, e.g., exact calculation of ground state entropy and correlations is yet to be
carried out. Apart from the study of frustration, the two lattices which are two ordinary
planar lattices can be made use of for usual studies made on 2-d planar lattices.
Examples include several thermal (magnetic order — disorder transitions) and geomet-
rical (e.g., percolation) critical phenomena. In § 2, we have already calculated the exact
critical temperature for the FM Ising model on the g lattice, A richer variety of phase
diagram is expected if one studies Ising model with competing interactions, ie., with
both FM and AFM interactions present.
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