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hree-dimensional optical tomographic imaging of
upersonic jets through inversion of phase data obtained
hrough the transport-of-intensity equation

emanth Thayyullathil, Rajesh Langoju, Renganathan Padmaram, R. Mohan Vasu,
ajan Kanjirodan, and Lalit M. Patnaik

We report experimental results of quantitative imaging in supersonic circular jets by using a monochro-
matic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic
steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the
jet is determined through our measuring normal intensity transport. A cone-beam tomographic algo-
rithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The
refractive index is converted into density whose cross sections reveal shock and other characteristics of
the flow. © 2004 Optical Society of America

OCIS codes: 100.3010, 100.3190, 100.5070, 100.6950, 170.3010, 170.6960.
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. Introduction

ne of the important experimental problems in fluid
echanics is quantitative flow visualization espe-

ially of high-speed or turbulent flows or both. Prob-
ng with light is the preferred method, for an optical
robe does not disturb the flow. Examples of light-
ased probes are the laser Doppler velocimeter and
he particle image velocimeter. These methods
easure the velocity vector field, pointwise by the

aser Doppler velocimeter and two-dimensional �2-D�
ross sections through the particle image velocimeter.
he study of fluctuations of the longitudinal compo-
ent of velocity has become the standard route to
nalyze a turbulent flow. Experimental data on
uctuations are used to verify the so-called Kolmog-
rov’s refined self-similarity hypothesis.1 The sec-
nd quantity that is extensively studied to ascertain
arge-scale statistically meaningful average quanti-
ies from turbulent flows is dissipation fluctua-
ions.2,3 A third quantity, which is not extensively
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tudied for the same aim, is density and its fluctua-
ions. The reason is not hard to see: Except in cer-
ain supersonic flows, in water, and in shocks, the
ow usually has no density variations. But in situ-
tions in which there is density variation, as, for
xample, in the mixing of a low-density fuel �such as
ydrogen� in high-density oxygen, measurement of
-D or 3-D densities and their variations in time is
mportant, for they can be used in a way similar to
elocity fluctuations, to estimate coherent structures
nd their dynamics in turbulent flows.
The optical technique for measurement of density

istribution in flows is tomography. It was used to
isualize blade-tip vortices from a helicopter in flight4

nd quantitative cross-sectional measurements in a
eated round jet emitting to cold air.5 Cross-
ectional images through the flow at different down-
tream locations helped researchers to analyze the
evelopment of flow structure.6 In optical tomogra-
hy the travel time of a monochromatic light wave
hrough a refractive-index distribution representing
he flow is measured. An equivalent quantity,
amely, phase of the wave, is measured at various
ngles of illumination, also called views. Phase is
he so-called projection data, which are backprojected
y use of standard tomographic algorithms such as
he filtered backprojection or algebraic reconstruc-
ion technique.7

The experimental measurement part of tomo-
raphic imaging is phase- or wave-front estimation,
hich is traditionally done in optics through inter-
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4133
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erometry.8 Noninterferometric methods, which are
obust and not sensitive to vibration, are also devel-
ped for estimating phase data for optical tomogra-
hy.5,9,10 Many of the noninterferometric methods
ely on measurement of wave-front slopes with, for
xample, a Hartmann sensor. Others depend on
omplete phase reconstruction from intensity mea-
urements through analytical as well as iterative
hase-retrieval algorithms.11–13 One of the wave-
ront estimation methods, based on the transport-of-
ntensity equation �TIE� to retrieve phase from
ntensity measurements,14 has been used recently to
econstruct refractive-index cross sections of fiber in

tomographic microscope.15,16 The advantages of
he TIE-based wave-front estimation, in the context
f tomographic imaging, are owed to unique �up to an
rbitrary, additive constant� and unwrapped phase
ecovery possible from a straightforward experimen-
al measurement of two intensities. In the present
aper we use the TIE to estimate the phase of light
ransmitted through a supersonic jet, illuminated
ith a diverging cone beam. The TIE is solved with

eries-expansion methods17 �Fourier harmonics when
he wave front has a rectangular boundary and the
ernike polynomial for a circular boundary�. The
eries-expansion method lends itself to an easily solv-
ble equation under the assumption of constant
ransverse intensity, which we have borrowed to
olve the TIE in this case. Without the assumption
f constant transverse intensity, the TIE is solved
ith finite-element �FEM� discretization. The re-

rieved phase is used in direct 3-D reconstruction of
efractive index with a standard cone-beam algo-
ithm.18 The reconstructed refractive index is con-
erted into density with the Gladstone–Dale
quation.19

The organization of the rest of the paper is as fol-
ows. In Section 2 we describe phase retrieval
hrough solving the TIE by using both Fourier har-
onic expansion17 and FEM discretization. In Sec-

ion 3 the 3-D cone-beam reconstruction algorithm,
hich we have used in this paper, is described in

ome detail. Section 4 deals with the description of
xperiments done on a supersonic flow from a round
et. The data gathered are used in the TIE, and the
etrieved wave front on display gives a visualization
f the flow in which the internal structures are quite
iscernible. The estimated wave front is input to a
omographic reconstruction algorithm, and the cross
ections of the reconstructed density distributions are
resented and described. Section 5 describes in de-
ail the results of density reconstruction. Finally,
ection 6 gives our concluding remarks.

. Phase Reconstruction with the
ransport-of-Intensity Equation

he TIE is a coupled partial differential equation
onnecting axial transport of intensity �I��z to the
hase ��x, y� across the transverse X–Y plane, which
as first applied to phase retrieval by Teague.20

he TIE is valid only under paraxial approximation
o light propagation, which would mean that complex
134 APPLIED OPTICS � Vol. 43, No. 21 � 20 July 2004
mplitude ũ�x, y, z� of monochromatic light could be
pproximated by

ũ� x, y, z� � u� x, y, z�exp� jkz�,

ith u�x, y, z� given by

Iz� x, y�1�2 exp� j�� x, y��

nd Iz�x, y� � I�x, y, z��z�z, the intensity distribution
n the transverse plane X–Y. The TIE is

k
�I
� z

� �	 � �I 	��, (1)

here 	 is the 2-D gradient operator. Equation �1�
s solved with either the Dirichlet or the Neumann
oundary conditions. Vdovin21 has attempted a di-
ect �i.e., strong� solution to Eq. �1� by discretizing the
artial differential equation by using the finite-
ifference method. Many others attempted a weak
olution to Eq. �1� with such test function spaces as
ourier harmonics17 and Zernike polynomials.14

sing Fourier harmonics expansion, suited when the
omain is rectangular �for example, when a rectan-
ular CCD array is used to gather intensity data�,
ureyev and Nugent17 have shown that Eq. �1� can be

onverted into a set of linear algebraic equations
iven by



i, j

�ij Amn
ij � abDmn, (2)

here Dmn is the projection of

D � k��I�� z�,

y using the kernel

Wmn � exp�j2�mx
a �exp�j2�ny

b � ,

Amn
ij � �2��2�imb

a ��ina
b � Îm�i,n�j,

here a 
 b is the rectangular domain under consid-
ration and Îmn � �I, Wmn�. Similarly, �ij � ��, Wij�.
quation �2� can be inverted for �ij by use of

�ij � ab 

m,n

�Amn
ij��1Dmn. (3)

Invertibility of the matrix �Amn
ij� was verified,17

ut the procedure is expensive in terms of computa-
ion time. The above inversion procedure can be
onsiderably simplified if we can assume that the
ransverse intensity is a constant in the domain of the
roblem. With I�x, y� � I0, we can simplify Eq. �1� as

	2� � �
k
I0

�I
� z

, (4)

nd Eq. �3� simplifies to

�ij �
�ab�2

�2��2�i2b2 � j2a2�I
Di, j. (5)
0
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The above simplification of treating I�x, y� as a
onstant cannot be justified and can lead to error and
veraging in the reconstructed phase. To have a
aster reconstruction of the phase without the restric-
ive assumption of constant transverse intensity, we
an use a FEM to solve the TIE. The boundary con-
itions used are either Dirichlet �or extended Dir-
chlet22� or Neumann. In the FEM approach we
eek a continuous piecewise linear approximation,
p, to the unknown phase ��x, y�. The problem do-
ain � is divided into elements �the simplest is tri-

ngular� that are joined at nodes, �p is a linear
pproximation to ��x, y�, and �p�r� at any point r
nside the element can be found by interpolation of
odal values, �j.
For a particular element ej,

� p�r� � 

i@nodes�ej

�i�i�r�, (6)

here �i�r� are nodal shape functions.22 The weak
ormulation of Eq. �1� by use of Galerkin’s method
equires the inner products of the residuals R��k��I�
z� � 	 � �I	�p�� with the same basis functions to
anish. For example,



j

�j �
�

	 � �I 	�j�r���i�r�d� � �
�

k
�I
� z

�i�r�d�

� 0; i, j � 1, 2, . . . N, (7)

here N is the number of nodes.
With the Dirichlet boundary condition, Eq. �7� can

e written as a linear system of equations, which in
atrix form is

K�I�� � S, (8)

here

Ki, j � �
�

I 	�i�r� � 	�j�r�dr,

Si � �
�

k
�I
� z

�i�r�d�,

� � ��1, �2, . . . , �N�T

s the values of � at the N nodes in the domain.
quation �8� is inverted for �. In this paper we have

ormulated Eq. �8� with the help of the MATLAB partial
ifferential equation toolbox and solved for �, and
�x, y� is obtained through interpolation. Here I�x,
� is not assumed constant. With the simplifying
ssumption of I � constant, Eq. �5� was used to solve
or �i, j, the Fourier coefficients of ��x, y�.

. Cone-Beam Tomographic Reconstruction of a
hree-Dimensional Refractive Index from the Phase
ata

he phase data calculated with the TIE is the pro-
ection data, from which the refractive-index distri-
ution, which is the flow, can be reconstructed. A
ollection of line integrals through n�x, y, z�, the 3-D
efractive-index distribution, represents a view re-
ulting in 2-D optical path �or projection� data.
An optical path along a ray, ��t � x � ��, is given by

Fig. 1�

P�t, �� � ��� n�x���t � x � ��dx, (9)

here x is the position vector �x, y, z� and

� � �sin � cos �, sin � sin �, cos ��.

Here the light is assumed to travel along straight
ines, which is not strictly valid because of refraction
aused by density gradients in the flow. Refraction
orrection is incorporated in 2-D optical tomographic
lgorithms23 and is considered necessary when den-
ity gradients are large. Because of the enormous
omputation time involved, to the best of our knowl-
dge, refraction-corrected 3-D algorithms are not yet
opular. In the present paper also, which attempts
-D reconstruction, refraction is ignored at the ex-
ense of accuracy.
In x-ray tomography, the parallel-beam 3-D recon-

truction problem is divided into a number of 2-D
roblems; the 2-D reconstructions are stacked to form
3-D image. Stacking adversely affects the resolu-

ion in the direction of stacking in that light propa-
ation is truly 3-D and cannot be confined to a plane.
ecause 2-D reconstructions in optical tomography
re inherently defective, in this paper we attempt 3-D
econstructions by using the so-called cone-beam
ata. The cone beam has an additional advantage
n that an expanding cone of light easily covers a
arger volume of the object. In this sense, cone-
eam tomography is an extension to three dimen-
ions of the well-known 2-D fan-beam tomography.24

line-integral travel-time data set is obtained on a
ivergent set of rays coming from a cone vertex. In
one-beam tomography this diverging line-integral
ata set �or cone-beam data� is inverted to get back a
-D refractive-index distribution.
The simplest and computationally most efficient

ig. 1. Geometry used in the Feldkamp–Davis–Kress cone-beam
econstruction algorithm. S is the source that illuminates the
bject whose center is at O, the origin of the coordinate system.
he source trajectory is shown as a dotted circle around the object.
ata collection on the detector array at a view angle � is schemat-

cally shown. The axis of the cone at this view is shown as X�.
he coordinates of any point on the detector system are �Yd, Zd�.
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4135
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lgorithm to invert cone-beam data is from Feld-
amp, Davis, and Kress18 �FDK� in which the vertex
f the cone moves along a circle. The data from the
ircular path are, however, incomplete for exact 3-D
econstruction,25 except for one cross section of the
bject containing the circle. The two drawbacks
ointed out in Ref. 26 are �1� the density resolution of
he FDK algorithm is poorer compared with a usual
-D algorithm and �2�, for large cone angles, the re-
onstructions are severely prone to errors.

Tuy,27 and, independently, Smith,26 gave vertex
aths, which satisfy data sufficiency conditions for
etting more accurate cone-beam reconstructions.
hereas the FDK algorithm uses a one-dimensional

amp filter on the data followed by backprojection
retaining the spirit and the simplicity of a 2-D fil-
ered backprojection algorithm�, the modified algo-
ithms are based on a 2-D space-variant filtering of
one-beam data prior to backprojection.28 Kudo and
aito25 decomposed the complete vertex path into
ircle�s�, and, for the circles, a one-dimensional ramp
lter of the FDK algorithm is retained. To ensure
hat the filtered data have no singularities, Noo et
l.29 modified Kudo and Saito’s method so that the
ircle data are filtered by a 2-D space-invariant filter.
hese modified algorithms gave superior results
hen applied to simulated projection data.
In the present paper we have used the computa-

ionally simple FDK algorithm. The modifications
f Refs. 28 and 29 are being implemented, and the
mproved reconstructions from experimental data are
et apart for future publications. The summary of
he FDK algorithm is given below.

As already mentioned, for the FDK algorithm, the
ource trajectory is a circle that surrounds the object
Fig. 1�. A number of projections are obtained on the
etector plane for different locations of the source
ertex. The FDK algorithm implements a number
f generalized fan-beam filtered backprojections, af-
er dividing the cone-beam data into sets of fan-beam
ata. In the FDK algorithm, only that cross section
f the object that contains the source trajectory is
econstructed with the best possible accuracy. As
ne moves away from this plane into other tilted fan
eams, the reconstruction error for those cross sec-
ions increases.

The formula used in the FDK algorithm to recon-
truct the refractive-index distribution n�r� from the
ptical path delay data, P��Yd�r�, Zd�r��, is given by
Fig. 1�

n�r� �
1

4�2 � SO2

�SO � r � x̂��
2 P̃��Yd�r�, Zd�r��d�.

(10)

ere P̃� are the scaled and filtered optical path val-
es for a view angle �. Scaling of the optical path is
one by multiplication of a geometric factor SO�SD,
here SO is the distance between the source and the

bject center and SD is the distance from the source
o the respective detector points. Filtering is done
136 APPLIED OPTICS � Vol. 43, No. 21 � 20 July 2004
long the rows of the projection data with the Shepp–
ogan filter.30 The unit vector x̂� is along the ro-
ated X axis �shown as X� in Fig. 1�, and r is the
osition vector of the point at which the refractive
ndex n�r� is calculated. The detector coordinates
re Yd�r� and Zd�r�, where r, the position vector of a
ypical point in the object, is explicitly shown in Fig.

to indicate the contribution of data to the recon-
truction of the object refractive index at r.
The algorithm has three main steps: �1� scaling

he optical path difference data, �2� one-dimensional
amp filtering, and �3� 3-D backprojection after a sec-
nd scaling �by factor SO2���SO � r � x̂��2��.
Further details of the implementation of the FDK

lgorithm can be found in Refs. 7 and 18.

. Experiment

. Imaging Assembly

he object, which is an expanding supersonic jet of
itrogen into atmosphere, was illuminated by a cone
eam of light. The experimental setup is shown in
ig. 2.
Monochromatic light from a blue LED �� � 474 nm�

s expanded and collimated with a collimating lens
1. By moving the lens toward the beam expander,
e obtained a suitably expanding cone beam to illu-
inate the object O. The lens L2 is an auxiliary

ens, which, along with the imaging lens of the CCD
amera, images the plane I immediately behind the
bject, which is designated as plane z � ��z�2. The
CD camera is in a translational stage through
hich it can be moved axially for imaging a plane at
� �z�2 �designated plane II�, behind the first plane
� ��z�2. We used a grating at z � 0 to effectively

ocus the CCD camera onto this plane, which was
ubsequently removed during data collection.

. Description of the Flow

n overexpanded supersonic jet of nitrogen flowing
nto the atmosphere produced significant density gra-
ients downstream, with a number of axially sym-
etric shock-cell structures. The gas at pressure

 106 Pa is expanded by use of a convergent–

ig. 2. Experimental setup used for recording transmitted inten-
ity. Light from a blue LED �� � 474 nm� is expanded by use of
beam expander �BE�, and, by the suitable positioning of the lens
1, a cone beam of the required radius of curvature is obtained,
hich illuminates the object O. The intensity distribution at two
lanes marked as I and II are recorded on the CCD with the help
f lens L2.
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ivergent nozzle with a throat diameter of 5 mm and
n exit diameter of 10 mm, which resulted in nitrogen
xiting the nozzle at supersonic velocities �Mach
umber approximately 2.9�. The overexpanded jet
as characteristic diamondlike shock structures with
xially symmetric discs separating them. The objec-
ive of the imaging system is to get quantitative es-
imation of the density in these structures.

. Description of the Experiment

o generate a cone beam to illuminate the flow, we
ove the collimating lens L1 �Fig. 2� away from its

osition of collimation, toward the source. A spher-
cal beam of radius of curvature 29.3 cm falls on plane
�z � ��z�2�. This is experimentally verified by

ur reconstructing the wave front in the absence of
he object �Fig. 3�. Two intensities were captured,
ne at plane I and the other at plane II �z � �z�2�,
rst with the flow and then without the flow. The
xial derivative of intensity �I��z is calculated as

I� x, y, �z�2� � I� x, y, ��z�2�

�z
,

ig. 3. Surface plot of the phase data obtained for a spherical
ave front in the absence of the flow. These data are also used for

alculating the radius of curvature of the spherical wave front.

ig. 4. Surface plot of the transmitted wave front reconstructed
fter the flow is introduced.
nd the average intensity is calculated as

I� x, y, �z�2� � I� x, y, ��z�2�

2
.

e plugged the collected data I and �I��z into the
IE �Eq. �1�� and solved for the phase ��x, y�, by
onsidering first that I�x, y� is constant �i.e., by using
q. �5�� and then by using the FEM without the re-
trictive assumption of constant transverse intensity.
he distorted wave front coming through the object is
lso reconstructed. The distorted wave front is
hown in Fig. 4. Some typical cross sections of the
econstructed phase �or wave front� obtained with
nd without flow are shown in Fig. 5. From the
econstructed phase distributions, �0�x, y� for the
ackground and ��x, y� when the object �i.e., the flow�
s present, the differential phase change introduced
y the flow ���x, y� is evaluated. The intensity im-
ge of ���x, y�, which provides a qualitative visual-
zation of the flow, is shown in Fig. 6. It should be
ointed out that the retrieved phase from the TIE is
lready unwrapped and is correct within an arbitrary
onstant. The way to ascertain this constant is
hrough a priori specifying phase at the boundaries.

. Results and Discussion

he simplifying assumption we make in the recon-
truction is that flow from the round jet has cylindri-
al symmetry so that we can work with one projection
ata set, representative of all projections when the
one vertex moves in a circle around the flow. The

ig. 5. Some typical cross sections of the phase profile with and
ithout flow. Change in the wave front due to the introduction of

he flow is clearly seen.

Fig. 6. Intensity image of the differential phase change.
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4137
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ifferential phase �� reconstructed is assumed to be
ero in the background, which is unaffected by the
ow. The reconstructed �n�r� is added to the refrac-
ive index of air at the ambient temperature, 28 °C
nair�28 °C� � 1.00028�, to get the refractive-index dis-
ribution n�r� of the flow. The n�r� is converted into
ensity ��r� with the Gladstone–Dale equation19:

�n � 1�

�
� G���, (11)

here

G��� � 2.2244 � 10�4�1 � �6.7132 � 10�2

� �2� ,

ig. 7. Reconstructed density distributions in the X–Z planes at
nd �c� at y � 3.211 cm. Data obtained from the phase reconstructe
ntensity.
138 APPLIED OPTICS � Vol. 43, No. 21 � 20 July 2004
is in kilograms per cubic meter, and � is the wave-
ength of light used in micrometers.

Typical axial cross sections �i.e., X–Z planes� of the
ensity distributions, which are taken approximately
t the centers of the first three shock cells, i.e., �a� y �
.436 cm, �b� y � 1.823 cm, and �c� y � 3.211 cm, are
hown in Fig. 7. Column �i� corresponds to phase
ata recovered assuming uniform transverse inten-
ity, and column �ii� corresponds to phase data recov-
red without the assumption of uniform intensity.
he maximum density in the shock cells drops as the
ow goes away from the nozzle tip, and the shock cells
radually disappear.
The longitudinal cross sections �i.e., X–Y planes�

re shown in Fig. 8, giving, as before, densities �col-

nces �y� from the nozzle tip: �a� y � 0.436 cm, �b� y � 1.823 cm,
assuming I � constant and �ii� without the assumption of constant
dista
d, �i�
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mn i� assuming constant transverse intensity and
column ii� without this assumption. The diamond-
ike cells of higher density can clearly be seen. The
alue of the maximum density in the cells varied from
.321 �nearest to the nozzle� to 2.037 kg�m3 �farthest
rom the nozzle� for �a� the cross section at z � �0.5
m, from 2.382 to 2.191 kg�m3 for �b� the cross section
t z � 0 cm, and from 2.309 to 1.991 kg�m3 for �c� the
ross section at z � 0.5 cm. Closer examination of
he results of Figs. 8�i� and 8�ii� reveal that fine struc-
ures are present near the shock edges in the images
btained without the assumption of uniform trans-
erse intensity as compared with the results obtained
ith this assumption.

ig. 8. Reconstructed density distributions in the X–Y planes at
btained from the phase reconstructed, �i� assuming I � constant
To verify the accuracy of the reconstructed densi-
ies, we have carried out an additional experiment
ith the flow obstructed by a conical structure with a
alf-cone angle of 30° kept at approximately 3 mm
rom the nozzle exit. An image of the reconstructed
hase is shown in Fig. 9. The oblique shock formed
s seen, and the shock angle is measured as approx-
mately 46°. With additional data that the Mach
umber of the nozzle is 2.9, the density ratio of the
egions behind and after the shock is calculated31 as
.42. From the experimental result of Fig. 9, this
atio is found to be equal to 2.3.

The major assumption made in this study is the
ylindrical symmetry of the flow. The errors due to

nces �a� z � �0.5 cm, �b� z � 0 cm, and �c� at z � 0.5 cm. Data
�ii� without the assumption of constant intensity.
dista
and
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his assumption can be avoided if phase data could be
athered for more views. This would call for the use
f more cameras and their simultaneous operation.

. Conclusions

ertain assumptions have been made while we car-
ied out the present analysis, which would have af-
ected the accuracy of the reconstructed density
rofile. In one of the methods for obtaining the
hase data from intensity measurements,17 the in-
ensity is assumed to be not varying, which is not true
n the cases considered here. The reconstructed
hase with this assumption appears smoothened
hen compared with those for which this assumption

s not made. In the second method of solving for the
hase with the FEM, the intensity profile has been
inearly fitted to nodal points to solve for the phase
alues at these nodal points. These nodal values are
nterpolated linearly within elements to obtain the
hase at any desired point, which is only an approx-
mate solution again. The Fourier-harmonics-based

ethod should give us a more accurate phase recon-
truction if Eq. �3�, which does not restrict intensity
o be constant, is used to get back the Fourier coeffi-
ients of the phase.

The 3-D cone-beam algorithm18 used for recon-
tructing the refractive-index distribution from the
hase data is mathematically accurate only for the
econstruction plane containing the source trajectory
f the cone beam �it turns out to be the midplane in
he FDK geometry�. Other accurate algorithms,28,29

hich give better reconstruction results for the points
utside the midplane, at the cost of increased compu-
ation complexity, are being implemented. The
traight-path assumption of the optical rays is an-
ther source of error. A computationally efficient
-D ray-tracing algorithm, for the modification of the
one-beam reconstruction method, is required for
olving this problem, which is under development.

ig. 9. Result of the experiment done for testing the accuracy of
he reconstructions. A conical obstruction of a half-angle of 30° is
ntroduced into the jet, and the density in the vicinity is recon-
tructed. The reconstructed density in the central plane is shown
n the figure. Theoretically the oblique shock angle of 46° ob-
ained with a cone of a half-angle of 30° corresponds to a density
atio of 2.42 across the shock. Tomographic reconstruction gave a
ensity ratio to be approximately 2.3.
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The same set of projection data is used for all the
iews, which forces circular symmetry on the recon-
tructions, which need not be the case in the actual
ow. In addition, in all the experiments we have
ssumed that the flow has attained a steady state
hile the data are gathered. Slight fluctuations

rom a steady state during data collection would cor-
upt the reconstruction. For situations in which
ow has no circular symmetry, data should be gath-
red, preferably simultaneously, for a number of
iews all around the flow.
No attempt is made to correct for refraction

uffered by the light ray in traveling through the
igh-gradient density distribution. Iterative recon-
truction methods,32 using ray tracing to implement
orward propagation and the simultaneous algebraic
econstruction technique through curved rays for in-
ersion, are used for refraction-corrected reconstruc-
ion of 2-D objects. For 3-D objects, ray tracing is
omputationally expensive. Such an iterative pro-
edure with a modified cone-beam reconstruction pro-
edure along curved rays is planned for a future
tudy.
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