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Abstract

We consider a two-chain, spin-% antiferromagnetic Heisenberg spin ladder in an external
magnetic field H. The spin ladder is known to undergo second order quantum phase transi-
tions (QPTs) at two critical values, Hc1 and Hea, of the magnetic field. There are now known
examples of strongly coupled (rung exchange interaction much stronger than nearest-neighbour
intrachain exchange interaction) organic ladder compounds in which QPTs have been exper-
imentally observed. In this paper, we investigate whether well-known bipartite entanglement
meaures like one-site von Neumann entropy, two-site von Neumann entropy and concurrence
develop special features close to the quantum critical points. As suggested by an earlier theo-
rem, the first derivatives of the measures with respect to magnetic field are expected to diverge
as H — H.; and H — H.. Based on numerical diagonalization data and a mapping of the
strongly-coupled ladder Hamiltonian onto the X X Z chain Hamiltonian, for which several an-
alytical results are known, we find that the derivatives of the entanglement measures diverge
as H — H.s but remain finite as H — H.;. The reason for this discrepancy is analysed. We
further calculate two recently proposed quantum information theoretic measures, the reduced
fidelity and reduced fidelity susceptibility, and show that these measures provide appropriate
signatures of the QPTs occuring at the critical points H = H¢1 and H = Heo.

PACS number(s): 03.67.Mn

I. INTRODUCTION

Auntiferromagnetic (AFM) Heisenberg ladders are examples of interacting many body systems which
exhibit a range of novel phenomena [1, [2]. An n-chain spin ladder consists of n chains coupled by
rungs, the simplest example being a two-chain ladder with n = 2. The study of ladders as prototypi-
cal many body systems became important after the discovery of high temperature superconductivity
in the strongly correlated cuprate materials. The dominant electronic and magnetic properties of
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the cuprates are associated with the CuOs planes which have the structure of a square lattice
[3]. The level of rigour that can be achieved in the treatment of strong correlation is less in two
dimensions (2d) than in 1d. Ladder models, with structure interpolating between 1d and 2d, serve
as ideal candidates to address issues related to strong correlation and also to investigate how elec-
tronic and magnetic properties change as one progresses from the chain to the plane. In undoped
ladder models, each site of the ladder is occupied by a spin (usually of magnitude %) and the spins
interact via the AFM Heisenberg exchange interaction. In doped ladder models, some of the spins
are replaced by positively charged holes which are mobile. The Hamiltonian describing the doped
systems are the t-J and Hubbard ladder models [I} 2, B]. With the discovery of a large number of
materials having a ladder-like structure, the study of ladders has acquired considerable importance.
The materials exhibit a range of phenomena including superconductivity in hole-doped systems,
the ‘odd-even’ effect in which the excitation spectrum of an n-chain ladder is gapped (gapless) if n
is even (odd) and quantum phase transitions (QPTs) tuned by an external magnetic field [11, 2] [3].
Many of the experimental observations were motivated by theoretical predictions, superconductivity
being a prime example [4, [5, [6].

In this paper, we focus on QPTs in a two-leg AFM Heisenberg ladder (Fig. 1) in an external
magnetic field. The Hamiltonian describing the model is given by

H:
J

[JH(Sl,j-Sl,jJrl + SQJ‘.SQJ‘+1) + JLSLJ-.SQJ] — HZ(SfJ + Sf)j) (1)

L L
=1 j=1

where the indices 1 and 2 distinguish the lower and upper legs of the ladder and j labels the rungs.
The spins have magnitude 1 (|S;| = 1) and interact via the AFM Heisenberg exchange interaction.
The intrachain and rung exchange couplings are of strengths Jj| and Jrespectively. The total
number of rungs is L and periodic boundary conditions are assumed. The factor gup (g is the
Landeé splitting factor and pp the Bohr magneton) is absorbed in H. If J; = 0, the ladder decouples
into two non-interacting spin—% Heisenberg chains with no gap to spin excitations. For any arbitrary
J1# 0, the excitation spectrum acquires a gap (spin gap). In the strong coupling limit, J; >> J),
a simple physical picture of the ground state and the origin of the spin gap can be given. The spins
along the rungs predominantly form singlets in the ground state. A spin excitation is created by
replacing a singlet by a triplet which propagates along the ladder due to the intrachain exchange
interaction. In first order perturbation theory, the spin gap A is given by A ~ J, — J|| separating
the lowest excited state from the dimerized ground state.

There are now several known strong coupling ladder compounds [7]. Of these, the organic
ladder COIIlpOU.IldS OUQ(O5H12N2)QOZ4 l8], (O5H12N)QOUBT4 l9] and (5IAP)20'LLBT42HQO l].O]
are of special interest because of the experimental observation of the QPTs in these systems by the
tuning of an external magnetic field. A QPT occurs at T'= 0 and brings about a qualitative change
in the ground state of an interacting many body system at a specific value g. of the tuning parameter
g [1I]. QPTs are driven by quantum fluctuations and in the case of second order transitions, the
quantum critical point is associated with scale invariance and a diverging correlation length. The
ground state energy becomes non-analytic at the critical value g. of the tuning parameter. If one
of the phases is gapped, the gap goes to zero in a power-law fashion as ¢ — g.. In the case of
a spin ladder, the external magnetic field H plays the role of the tuning parameter g. There are
two critical points, H.y and Hee [7 8, 9, 10]. At T = 0 and for 0 < H < H., the ladder is in
the spin gap phase. In the presence of the magnetic field, there is a Zeeman splitting of the triplet
(S = 1) excitation spectrum with the S* = 1 component having the lowest energy. The spin gap



isnow A — H. At H = H,y = A, the gap closes and a QPT occurs to the Luttinger liquid (LL)
phase characterized by a gapless excitation spectrum. At the upper critical field H = H.o, there
is another QPT to the fully polarized ferromagnetic (FM) state. The magnetization data exhibit
universal scaling behaviour in the vicinity of H.; and H.e, consistent with theoretical predictions
[7,[8, 9, 10]. In the gapless regime H.y < H < H.g, the ladder Hamiltonian can be mapped onto an
XXZ chain Hamiltonian the thermodynamic propeties of which can be calculated exactly using the
Bethe Ansatz (BA) [7, 8, @, [10]. The theoretically computed magnetization versus magnetic field
curve is in excellent agreement with the experimental data. QPTs can be observed in the organic
ladder compounds as the magnitudes of the critical fields are experimentally accessible.

In recent years, QPTs have been extensively studied in spin systems using well-known quantum
information theoretic measures. A number of entanglement measures have been identified which
develop special features close to the quantum critical point [13| 14, [15], 16, 17, I8, 19]. It has
been shown [16] that, in general, a first order QPT linked to a discontinuity in the first derivative
of the ground state energy, is signalled by a discontinuity in a bipartite entanglement measure
whereas a discontinuity or a divergence in the first derivative of the entanglement measure marks a
second-order phase transition characterized by a discontinuity/divergence in the second derivative
of the ground state energy. Another measure which provides a signature of QPTs is that of ground
state fidelity [20, 21]. The utility of the measure and a related measure, fidelity susceptibility, has
been explored in a number of studies [22| 23] [24] [25] 26, 27, 28]. Fidelity, a concept borrowed from
quantum information theory, is defined as the overlap modulus between ground states corresponding
to slightly different Hamiltonian parameters. The fidelity typically drops in an abrupt manner at a
critical point indicating a dramatic change in the nature of the ground state wave function. This is
accompanied by a divergence of the fidelity susceptibility. In these approaches, the fidelity measure
involves global ground states. Recently, the concept reduced fidelity (RF) (also called partial state
fidelity) has been developed, which relates to the fidelity of a subsystem [25] 29, 30} 31}, 32} [33], along
with the associated notion of reduced fidelity susceptibility (RFS). Using the RF and RFS measures,
QPTs have been studied in spin models like the Lipkin-Meshkov-Glick model [30, 3], the transverse
field Ising model in 1d [32] and the spin-1 dimerized Heisenberg chains [33]. In this paper, we use
some well-known bipartite entanglement measures, which include one-site entanglement, two-site
entanglement and concurrence, for the study of QPTs in the S = % two-leg AFM Heisenberg ladder
(Fig. 1) described by the Hamiltonian given in Eq. (1). We show that the entanglement measures
develop characteristic features close to the quantum critical point H = H. but not at the critical
point H = H.1. We next show that the measures based on the RF and RFS signal the occurence
of QPTs at both the critical points H = H.; and Hs.

II. ENTANGLEMENT AND FIDELITY MEASURES PROB-
ING QPTS

We first define the various entanglement and fidelity measures which provide the basis of our
calculations. The single-site von Neumann entropy, a measure of the entanglement of a single spin
with the rest of the system, is given by

S(i) = ~Trp(i) logs p(i) (2)

where p(i) is the single-site reduced density matrix [I4] [I9]. The two-site entanglement S(4,7) is a
measure of the entanglement between two separate spins, at sites ¢ and j, and the rest of the spins



[18, [M9]. Let p(i,j) be the reduced density matrix for the two spins, obtained from the full density
matrix by tracing out the spins other than the ones at sites ¢ and j. The two-site entanglement is
given by the von Neumann entropy

S(i,4) = =Trp(i, j)logz p(i, j) (3)

In a translationally invariant system, S depends only on the distance n = |j —i|. A knowledge of the
two-site reduced density matrix enables one to calculate concurrence, a measure of entanglement
between two spins at sites ¢ and j [34] B5]. Let p(i,j) be defined as a matrix in the standard basis
{1, 110, 11T 1LY} One can define the spin-reversed density matrix as p = (o, ®0y) p* (0, ®0y),
where oy, is the Pauli matrix. The concurrence C is given by C' = maz{A; — A2 — A3 — Ay, 0} where
A;’s are square roots of the eigenvalues of the matrix pp in descending order. C' = 0 implies an
unentangled state whereas C' = 1 corresponds to maximum entanglement.

The fidelity F' is given by the modulus of the overlap of normalized ground state wave functions
[1o(A)) and |1ho(A + dA)) for closely spaced Hamiltonian parameter values A and A+ [20, 21, 22].

FA A+6) = [ (o(A)[o(A+ X)) | (4)

Eq. (4) gives a definition of the global fidelity. The reduced fidelity (RF) [29] [30] 31l 32}, [33] refers
to a subsystem and is defined to be the overlap between the reduced density matrices p = p(h) and
p = p(h + 6) of the ground states |¢o(h)) and |¢o(h + §)), h and h + § being two closely spaced
Hamiltonian parameter values. The RF is

Fr(h, h+6) =Tr\/p pp* (5)

We now compute the different entanglement and fidelity measures for the ladder Hamiltonian
given in Eq. (1). The external magnetic field H serves as the Hamiltonian parameter. One
notes that the z-component, Sf, = Zle(Sfj + 53 ;), of the total spin is a conserved quantity.
Using this fact, the Hamiltonian is diagonalized for different values of L with the help of the
numerical diagonalization package TITPACK [36]. We take J; = 13 K and J); = 1.15 K which
are the approximate values of the rung and intrachain exchange couplings in the AFM compound
(6IAP)2CuBrs.2H>0 [10]. We determine the ground state as well as the three lowest excited
state energies for different values of H with L ranging from L = 2 to L = 16. Using the data, we
examine the variation of the fidelity F'(H, H + ) (Eq. (4)) with increasing magnetic field strength
H and 6 = .001. We observe sharp drops in F(H, H +6) at HL, = Ap (inset of Fig. 2), where
Ay is the spin gap, i.e., the difference in the energies of the first excited and ground states. A
polynomial fitting of the Ay versus 1 data points yields Ap ~ 11.8416 +.9739(+) +.6621(+)?. In
the thermodynamic limit I — oo, the critical field is thus H.1 = Ay & 11.8416. In the case of the
strong coupling ladder (J >> J)), the critical field H.; ~ J1 —J)) to the first order in perturbation
theory [37]. The fully polarized FM ground state (H > H.2) becomes unstable when the lowest
energy of the spin waves falls below the energy of the polarized state. The magnitude of H.o can be
calculated exactly as Heo = J1 + 2 J). The estimates of H,y and H.s are in close agreement with
the experimental results [2] [7, B7]. The numerical diagonalization data reproduces the exact value
of H.s in the thermodynamic limit. We further obtain the variation of the magnetization m(H) and
its first derivative Z—E with H in the thermodynamic limit adopting the extrapolation procedures
outlined in [38]. The magnetization m(H) is the average magnetization per site and because of
translational invariance m(H) = (S?). At T = 0, the expectation value is calculated in the ground



state. The inset of Fig. (3) shows that the derivative d—m tends to diverge as H — H.; and Hs.
This is consistent with the existence of a square root singularity in m(H) in the vicinity of the
quantum critical points H.1 and H.s [T, [B7]. Since second order QPTs occur at the critical fields
H. and H.o, the first derivatives of the entanglement measures, S(i), S(i,j) and C, with respect
to the tuning parameter H may exhibit a discontinuity or a divergence as the critical points are
approached [I6]. We compute the various first derivatives to ascertain that this feature of critical
point transitions holds true in the case of the spin ladder.

The single-site reduced density matrix p(i) can be written in terms of the spin expectation value

(57) as 31
N A+(S7) 0
o= (5 O ) ©)

3~ (S
in the |1) ,|]) basis. From Eq. (2),

== Ailog2 \; (7)

where the A; ’s are the two diagonal elements of p(7). Fig. 3 shows the variation of dil({i) with H. It
is observed that unlike 4 > dgg‘) tends to diverge only near H.o, while it approaches a finite value
close to H.;. The values of H.; and H., are H.; = 11.8416 K and H.y = 15.3 K as obtained from
numerical diagonalization data. The strongly coupled ladder model in high magnetic field can be

mapped onto a 1d X XZ AFM Heisenberg chain with an effective Hamiltonian [37, [39]

L L
Hepr = Jj Z[S;S}H +SYSY L+ QS;S;H HZS; (8)
where H=H-J, — J is an effective magnetic field and SO‘ s (o = z, y, z) are pseudo spin-

5 operators which can be expressed in terms of the original spin operators. There are several
exact results known for the X X Z spin—% chain in a magnetic field [40, [41]. In particular, the zero
temperature magnetization m(H) close to the quantum critical points is given by the expressions

(we use the symbol H instead of H)

m(H) \/_ (H Hcl)/JH; H>H, (9)

m( Nl——\/ 2 — /J||,H<Hcg (10)

Similar expressions are obtained in the case of an integrable spin ladder model with the help of
the thermodynamic BA [7]. Using the analytic expressions of m(H) in Egs. (9) and (10), the
first derivative of single-site von Neumann entropy with respect to magnetic field H, ddsg), can be
calculated analytically from Eqgs. (2) and (6). Again, the derivative diverges near H.o (Fig. 4) but
not as the quantum critical point H,.; is approached, consistent with numerical results. The values
of Hey and Hep are Hey = Jy — J) = 11.85 K and Hep = J) +2J) = 15.3 K. The estimate of H.,
is from first-order perturbation theory.

The correlation functions of the S=3 XX Z chain in a magnetic field are known [42] in the
gapless phase H,y < H < H.. In terms of the original spin operators, these are given by




(S5(1SE(0) = =+ % + cos(2mmr) (%)QK (1)
(7577 (0)) = cosle(1— 2r] (1) s costn) (3) i (12

where K is the LL exponent. For simplicity, we have dropped some prefactors (constants) in the
terms appearing in Eqs (11) and (12). The expressions for the correlation functions are utilized to
study the variation of the two-site entanglement S(i, j) and concurrence C; ;41 with respect to the
magnetic field. These quantities can be computed from the two-site reduced density matrix p(4, 5)
which, in terms of the spin expectation values and correlation functions, is given by [43]

(57 +(5755) 0 0 0
D) = 0 T-(SE87)  (SrST) +(SYSY) 0
: 0 (Spsyy+(S¥sy)y 1 —(5757) 0

0 0 0 3 —(S7) + (575%)

(13)
S(i,7) is given by

S(i,j) =— Zei logs €; (14)

3

where ¢;’s are the eigenvalues of p(i,7). Using equation (9), (10), (11) (12) and (13), the first
derivative of S(i,7) with respect to H is calculated near both the critical points (Fig. 5). The
derivative diverges near H.o but approaches a finite value close to H.;. The n.n. concurrence can
be written as [14 [34], [35]

Ci,i-',—l =2 Ma;v[O, |p23(i,i + 1)| — \/pll(i,i + 1)p44(i,i+ 1)] (15)

Fig. 6 shows the derivative of C; ;11 with respect to H versus H. The derivative, as in the case
of one-site and two-site entanglement measures, diverges as H — H. but has a finite value as
H — Hcl .

Lastly, we probe the existence of special features, if any, near the QCPs exhibited by the one-site
RF [25, 29, B0, B1], 32] B3] defined in Eq. (5). The reduced fidelity susceptibility (RFS) is defined

to be
—2In Fr(H, H+ )

52
Figs. (7) and (8) show that the RF Fr(H, H + ) drops sharply at the quantum critical points
(insets) and the associated RFS, xr(H), blows up as both the quantum critical points are ap-
proached. This result is in contrast with what is observed in the case of entanglement measures,
where a special feature develops only in the vicinity of the critical point H.o. The calculations of
the RF and the RFS are possible because they involve only local measures. A calculation of the
global fidelity would not have been possible lacking a knowledge of the true many body ground
state.

xr(H) = lims—o (16)
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FIG. 1: A two-chain ladder with rung and intra-chain nearest-neighbour exchange couplings of
strengths J, and J| respectively. The indices 1 and 2 label the two chains of the ladder.
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FIG. 2: Plot of Ay, the spin gap, versus % from numerical diagonalization data of the ladder
Hamiltonian (Eq. (1)), L being the number of rungs in the ladder. (inset) ground state fidelity
versus magnetic field H for L = 3,4, ...16.
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IV. DISCUSSIONS

In this paper, we consider a spin—%, two-chain AFM ladder in an external magnetic field. The
ladder system is known to exhibit QPTs at two critical values, H.; and H.2, of the magnetic field.
The ladder has a rich quantum phase diagram with a gapless LL phase separating two gapped
phases. Both the spin-disordered state (0 < H < H.1) and the fully polarized FM state (H > H,2)
constitute gapped phases. Using a bosonization technique, it has been shown [44] that the spin
gaps vanish at the critical points and the spin-spin correlation functions become long-ranged. As
suggested in [16, (17, (18], a second order QPT is characterized by a discontinuous/divergent first
derivative of an entanglement measure with respect to the tuning parameter. Our computations of
the first derivatives of the entanglement measures S(i), S(i,j) and C; ;41 show that these quantities
diverge only as H — H. but remain finite as the other critical point H.; is approached. As
discussed in [16], the first derivatives of one or more elements of the reduced density matrix p(i, 5)
with respect to the tuning parameter are expected to diverge at the critical points. From Egs.
(11)-(13), one can verify that this is the case as H — H,.; and H.» with the divergent contributions
coming from py1(4,7) and paa(i,j). The theorem in [16] regarding the discontinuity/divergence of
the first derivative of an entanglement measure at a critical point links the behaviour to that of the
first derivative of one or more elements of p(¢, 7). This is so provided a set of conditions is satisfied.
We find that one of these conditions (condition (b)) is violated in the case of the two-chain ladder
as H — H.;. This is easily illustrated for the entanglement measure C; ;41 (Eq. (15)). The first
derivative involves terms containing the factor m(H) d“;qu) which leads to a cancellation
of singularities as H — H,; (see Eq. (9)). This is contrary to condition (b) in [I6] so that the
theorem is no longer valid. The cancellation of singularities does not occur as H — H.o (see Eq.

dCiit1
dH

(10)) so that dc;li‘lf'[“ signals the occurence of a QPT. In the case of the single-site entanglement,
S(i), similar arguments show that the cancellation of the singularity occurs as H — H.. The
square root singularities in magnetization (Egs. (9) and (10)) are generic to other AFM systems
with spin gap like the spin-1 chain in a magnetic field [44, 45, 46]. Thus, the behaviour reported in
this paper may be a general feature of a class of gapped 1d AFM systems. As shown in our paper,
the measures RF and RFS yield appropriate signatures as both the critical points H.; and H.y are
approached and thus appear to be better indicators of QPTs in the case of systems which violate
one or more conditions of the theorem in [16].

ACKNOWLEDGMENT

A. T. is supported by the Council of Scientific and Industrial Research, India, under Grant No.
9/15 (306)/ 2004-EMR-I. The authors are grateful to H. Nishimori for sending the full TITPACK
program package used in the present study.

References

[1] E. Dagotto and T. M. Rice, Science 271, 618 (1996).
[2] E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999).
[3] E. Dagotto, Rev. Mod. Phys. 66, 763 - 840 (1994)

11



[4] E. Dagotto, J. Riera and D. Scalapino, Phys. Rev. B 45, 5744 (1992).

[5] S. Gopalan, T. M. Rice and M. Sigrist, Phys. Rev. B 49, 8901 (1994).

[6] I. Bose and S. Gayen, Phys. Rev. B 48, 10653 (1993).

[7] M. T. Batchelor, X. W. Guan, N. Oelkers and Z. Tsuboi, Adv. Phys. 56, 465 (2007).

[8] G. Chaboussant, P.A. Crowell, L. P. Lévy, O. Piovesana, A. Madouri and D. Mailly, Phys.
Rev. B, 55 3046 (1997).

[9] B.C. Watson et al., Phys. Rev. Lett., 86 5168 (2001).

[10] C.P. Landee, M.M. Turnbull, C. Galeriu, J. Giantsidis and F.M. Woodward, Phys. Rev. B 63
100402 (2001).

[11] S. Sachdev, Science 288, 475 (2000)

[12] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999.
[13] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London) 416, 608 (2002).

[14] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110, (2002).

[15] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

[16] L.-A.Wu, M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 93, 250404 (2004).

[17] T. R. Oliveira, G. Rigolin, M. C. de Oliveira and E. Miranda, Phys. Rev. Lett. 97, 170401
(2001).

18] H.-D. Chen, J. Phys. A 40, 10215 (2007).

[19] A. Tribedi and I. Bose, Phys. Rev. A 75, 042304 (2007).

[20] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006).

[21] P. Zanardi and N. Paunkovié¢, Phys. Rev. E 74, 031123 (2006).

[22] M. Cozzini, R. Ionicioiu and P. Zanardi, Phys. Rev. B 76, 104420 (2007).

[23] M. Cozzini, P. Giorda and P. Zanardi, Phys. Rev. B 75, 014439 (2007).

[24] P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98, 110601 (2007).

[25] H.-Q. Zhou, e-print larXiv:0704.2945.

[26] P. Zanardi, M. Cozzini and P. Giorda, J. Stat. Mech.: Theory Exp. (2007), L02002.

[27] P. Zanardi, H. T. Quan, X. Wang and C. P. Sun, Phys. Rev. A 75, 032109 (2007).

[28] S. Chen, L. Wang, S. J. Gu and Y. Wang, Phys. Rev. E 76, 061108 (2007).

[29] N. Paunkovi¢, P. D. Sacramento, P. Nogueira, V. R. Vieira and V. K. Dugaev , Phys. Rev. A
77, 052302 (2008).

12


http://arXiv.org/abs/0704.2945

[30] H.-M. Kwok, C.-S. Ho and S.- J. Gu, Phys. Rev. A 78, 062302 (2008).
[31] J. Ma, L. Xu, H. Xiong and X. Wang, larXiv:0805.4062.

[32] J. Ma, L. Xu and X. Wang, larXiv:0808.1816.

[33] H.-N. Xiong, J. Ma, Z. Sun and X. Wang, larXiv:0808.1817.

[34] K. M. O’Connor and W. K. Wootters, Phys. Rev. A 63, 052302 (2001); W. K. Wootters, Phys.
Rev. Lett. 80, 2245 (1998).

[35] M. C. Arnesen, S. Bose and V. Vedral, Phys. Rev. Lett 87, 017901 (2001); D. Gunlycke, V. M.
Kendon, V. Vedral and S. Bose, Phys. Rev. A 64, 042302 (2001).

[36] H. Nishimori, AIP Conf. Proc. 248, 269-278 (1992).

[37] G. Chaboussant et al., Eur. Phys. J. B 6, 167 (1998).

[38] T. Sakai and M. Takahashi, Phys. Rev. B 43, 13383 (1991).

[39] F. Mila, Eur. Phys. J. B 6, 201 (1998).

[40] C. N. Yang and C. P. Yang, Phys. Rev. 150, 327 (1966).

[41] F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).

[42] T. Giamarchi and A. M. Tsvelik, Phys. Rev. B 59, 11398 (1999).
[43] U. Glaser, H. Biittner and H. Fehske, Phys. Rev. A 68, 032318 (2003).
[44] R. Chitra and T. Giamarchi, Phys. Rev. B 55, 5816 (1997).

[45] H. J. Schulz, Phys. Rev. B 22, 5274 (1980).

[46] I. Affleck, Phys. Rev. B 43, 3215 (1991).

13


http://arXiv.org/abs/0805.4062
http://arXiv.org/abs/0808.1816
http://arXiv.org/abs/0808.1817

