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Quantum Critial Point and Entanglement in aMatrix Produt Ground StateAmit Tribedi and Indrani BoseFebruary 4, 2008Department of PhysisBose Institute93/1, Aharya Prafulla Chandra RoadKolkata - 700 009, IndiaAbstratIn this paper, we study the entanglement properties of a spin-1 modelthe exat ground state of whih is given by a Matrix Produt state. Themodel exhibits a ritial point transition at a parameter value a = 0. Thelongitudinal and transverse orrelation lengths are known to diverge as a →
0. We use three di�erent entanglement measures S(i) (the one-site vonNeumann entropy), S(i, j) (the two-body entanglement) and G(2, n) (thegeneralized global entanglement) to determine the entanglement ontent ofthe MP ground state as the parameter a is varied. The entanglement length,assoiated with S(i, j), is found to diverge in the viinity of the quantumritial point a = 0. The �rst derivative of the entanglement measure E

(= S(i), S(i, j)) w.r.t. the parameter a also diverges. The �rst derivative of
G(2, n) w.r.t. a does not diverge as a → 0 but attains a maximum value at
a = 0. At the QCP itself all the three entanglement measures beome zero.We further show that multipartite orrelations are involved in the QPT at
a = 0.I. INTRODUCTIONThe entanglement harateristis of the ground states of many body Hamiltoni-ans desribing ondensed matter systems onstitute an important area of study1

http://arXiv.org/abs/cond-mat/0612111v2


in quantum information theory. Entanglement is an essential resoure in quatumomputation and ommuniation protools. Condensed matter, speially, spin sys-tems have been proposed as andidate systems for the realization of some of theprotools. Entanglement provides a measure of non-loal quantum orrelations inthe system and it is of signi�ant interest to determine how the orrelations assoi-ated with the ground state of the system hange as one or more than one parameterof the system is hanged. The fous on ground state harateristis arises fromthe possibility of quantum phase transitions (QPTs) whih our at temperature
T = 0 (when the system is in its ground state) and are driven solely by quantum�utuations [1℄. A QPT is brought about by tuning a parameter, either externalor intrinsi to the Hamiltonian, to a speial value termed the transition point. Inthermodynami ritial phenomena, the thermal orrelation length diverges andthe thermodynami quantities beome singular as the ritial point is approahed.In the quantum ase, the orrelation length diverges in the viinity of the QCP andthe ground state properties develop non-analyti features. An issue of onsiderableinterest is whether the quantum orrelations, like the usual orrelation funtions,beome long-ranged near the QCP. In a wider perspetive, the major goal is toaquire a lear understanding of the variation in entanglement harateristis as atuning parameter is hanged. QPTs have been extensively studied in spin systemsboth theoretially and experimentally. In reent years, several theoretial studieshave been undertaken to eluidate the relationship between QPTs and entangle-ment in spin systems [2, 3, 4, 5, 6, 7℄. In partiular, a number of entanglementmeasures have been identi�ed whih develop speial features lose to the transitionpoint. One suh measure is onurrene whih quanti�es the entanglement betweentwo spins (S = 1

2
). At a QCP, as illustrated by a lass of exatly-solvable spinmodels (S = 1

2
), the derivative of the ground state onurrene has a logarithmisingularity though the onurrene itself is non-vanishing upto only next-nearest-neighbour-distanes between two spins [2, 3℄. Disontinuities in the ground stateonurrene have been shown to haraterize �rst order QPTs [8, 9, 10℄. Later,Wu et al. [5℄ showed that under some general assumptions a �rst order QPT,assoiated with a disontinuity in the �rst derivative of the ground state energy,gives rise to a disontinuity in a bipartite entanglement measure like onurreneand negativity. Similarly, a disontinuity or a divergene in the �rst derivative ofthe same entanglement measure is the signature of a seond order phase transitionwith a disontinuity or a divergene in the seond derivative of the ground stateenergy. Another measure of entanglement, studied in the ontext of QPTs, is theentropy of entanglement between a blok of L adjaent spins in a hain with therest of the system [4℄. At the QCP, the entropy of entanglement diverges logarith-mially with the length of the blok. There is, however, no diret relation withthe long range orrelations in the system.2



A number of entanglement measures have reently been proposed whih areharaterized by a diverging length sale, the entanglement length, lose to a QCP.The loalizable entanglement (LE) between two spins is de�ned as the maximumaverage entanglement that an be loalized between them by performing loalmeasurements on the rest of the spins [11℄. The entanglement length sets the saleover whih the LE deays. The two-body entanglement S(i, j) is a measure of theentanglement between two separated spins, at sites i and j, and the rest of thespins [7℄. Let ρ(i, j) be the redued density matrix for the two spins, obtainedfrom the full density matrix by traing out the spins other than the ones at sites iand j. The two body entanglement S(i, j) is given by the von Neumann entropy
S(i, j) = −Tr ρ(i, j) log2 ρ(i, j) (1)In a translationally invariant system, S depends only on the distane n =| j − i |.As pointed out in [7℄, the spins that are entangled with one or both the spins atsites i and j ontribute to S. The following results have been obtained in thease of the S = 1

2
exatly solvable anisotropi XY model in a transverse magneti�eld. The model, away from the isotropi limit, belongs to the universality lassof the transverse Ising model. The two-body entanglement S(i, j) has a simpledependene on the spin orrelation funtions in the large n limit. Away from theritial point, S(i, j) is found to saturate over a length sale ξE as n inreases.Near the QCP, one obtains

S(i, j) − S(∞) ∼ n−1 e
− n

ξE (2)The entanglement length (EL), ξE , has an interpretation similar to that in thease of LE. The EL diverges with the same ritial exponent as the orrelationlength at the QCP. S(i, j) thus aptures the long range orrelations assoiatedwith a QPT. At the ritial point itself, S(i, j)−S(∞) has a power-law deay, i.e.,
S(i, j)−S(∞) ∼ n− 1

2 . In the limit of large n, the �rst derivative of S(i, j) w.r.t. aHamiltonian parameter develops a λ−like usp at the ritial point. The univer-sality and a �nite-size saling of the entanglement have also been demonstrated.The one-site von Neumann entropy
S(i) = −Tr ρ(i) log2 ρ(i) (3)is also known to be a good indiator of a QPT [3℄. It provides a measure of how asingle spin at the site i is entangled with the rest of the system. The redued densitymatrix ρ(i) is obtained from the full density matrix by traing out all the spinsexept the one at the site i. Oliveira et al. [6℄ have proposed a generalized globalentanglement (GGE) measure G(2, n) whih quanti�es multipartite entanglement(ME). G(2, n) for a translationally symmetri system is given by3



G(2, n) =
d

d− 1
[1 −

d2

∑

l,m=1

| [ρ(j, j + n)]lm |2] (4)where ρ(j, j + n) is the redued density matrix of dimension d. The fator 2 in
G(2, n) indiates that the redued density matrix is that for a pair of partiles. Wuet al. [5℄ onsidered QPTs haraterized by non-analytiities in the derivatives ofthe ground state energy. These arise from the non-analytiities in one or more ofthe elements of the redued density matrix. In terms of the GGE, a disontinuityin G(2, n) signals a �rst order QPT, brought about by a disontinuity in one ormore of the elements, [ρj,j+n]lm of the redued density matrix [6℄. A disontinuityor divergene in the �rst derivative of G(2, n) w.r.t. the tuning parameter oursdue to a disontinuity or divergene in the �rst derivetives of one or more of theelements of the redued density matrix. The assoiated QPT is of seond order.Non-analytiities in G(2, n) and its derivatives thus serve as indiators of QPTs.In the ase of the XY S = 1

2
spin hain, the GGE measure shows a diverging ELas the QCP is approahed. The EL ξE = ξC

2
where ξC is the usual orrelationlength. Thus, both the length sales diverge with the same ritial exponent nearthe QCP.The relationship between entanglement and QPTs has mostly been explored forspin-1

2
systems. The entanglement properties of the ground states of ertain spin−1Hamiltonians have been studied using di�erent measures [11, 12, 13℄. Numerialstudies show that the LE has the maximal value for the ground state of the spin-1Heisenberg antiferromagnet with open boundary onditions (OBC) [13℄. In thease of the spin-1 A�ek-Kennedy-Lieb-Tasaki (AKLT) model [14℄, the result anbe proved exatly. A lass of spin-1 models, the φ-deformed AKLT models, isharaterized by an exponentially deaying LE with a �nite EL ξE. The length

ξE diverges at the point φ = 0 though the onventional orrelation length remains�nite [13℄. A reent study [15℄ shows that in the ase of spin-1 systems, the useof LE for the detetion of QPTs is not feasible. An example is given by the S = 1XXZ Heisenberg antiferromagnet with single-ion anisotropy. The model has a rihphase diagram with six di�erent phases. The LE is found to be always 1 in theentire parameter region and hene is insensitive to QPTs. The ground states ofertain spin-1 models have an exat representation in terms of matrix produtstates (MPS) [16, 17, 18℄. The ground state of the spin-1 AKLT model, termeda valene bond solid (VBS) state, is an example of an MPS. The ground stateis haraterized by short-ranged spin-spin orrelations and a hidden topologialorder known as the string order. The exitation spetrum of the model is furthergapped. In the MPS formalism, ground state expetation values like the orrelationfuntions are easy to alulate. This has made it partiularly onvenient to studyphase transitions in spin models with MP states as exat ground states [17℄. The4



transitions identi�ed so far inlude both �rst and seond order transitions andare brought about by the tuning of the Hamiltonian parameters. The seondorder transition in the lass of �nitely orrelated MP states, however, di�ers fromthe onventional QPT in one important respet. The spin orrelation funtionis always of the form AC e
− n

ξC for large n. The orrelation length ξC diverges asthe transition point is approahed. The pre-fator AC , however, vanishes at thetransition point [17℄. This is in ontrast to the power-law deay of the orrelationfuntion at a onventional QCP. Some distint features of QPTs in MP states havereently been identi�ed [19℄. One of these relates to the analytiity of the groundstate energy density for all values of the tuning parameter. In a onventional QPT,the energy density beomes non-analyti at the QCP. The MP states appear toprovide an ideal playground for exploring novel types of QPTs. In this paper,we onsider a spin-1 model, the exat ground state of whih is given by an MPstate [20℄. The model has a rih phase diagram with a number of �rst order phasetransitions and a ritial point transition. We study the entanglement propertiesof the ground state with a view to pinpoint the speial features whih appearlose to the ritial point. This is done by using three di�erent entanglementmeasures, namely, the single-site, two-body and generalized global entanglementde�ned earlier.II. REDUCED DENSITY MATRIX OF MPGROUND STATEWe onsider a spin-1 hain Hamiltonian proposed by Klümper et al. [20℄ whihdesribes a large lass of antiferromagneti (AFM) spin-1 hains with MP statesas exat ground states. The Hamiltonian satis�es the symmetries : (i) rotationalinvariane in the x− y plane, (ii) invariane under Sz → −Sz and (iii) translationand parity invariane. The Hamiltonian has the general form
H =

L
∑

j=1

hj, j+1

hj, j+1 = α0A
2
j + α1(AjBj +BjAj) + α2B

2
j + α3Aj + α4Bj(1 +Bj)+

+ α5((S
z
j )

2 + (Sz
j+1)

2 + C (5)where L is the number of sites in the hain and periodi boundary onditions (PBC)hold true. The parameters αj are real and C is a onstant. The nearest-neighbour(n.n.) interations are 5



Aj = Sx
j S

x
j+1 + S

y
j S

y
j+1

Bj = Sz
jS

z
j+1

(6)The onstant C in Eq. (5) may be adjusted so that the ground state eigenvalue of
hj, j+1 = 0. Hene

hj, j+1 ≥ 0 ⇒ H ≥ 0 (7)i.e., H has only non-negative eigenvalues. In the AFM ase, the z-omponent ofthe total spin of the ground state Sz
tot = 0. Klümper et al. showed that in aertain subspae of the αj−parameter spae , the AFM ground state has the MPform. Let |0〉 and |±〉 be the eigenstates of Sz with eigenvalues 0, +1 and −1respetively. De�ne a 2 × 2 matrix at eah site j by

gj =

(

|0〉 −√
a |+〉√

a |−〉 −σ |0〉

) (8)with non-vanishing parameters a, σ 6= 0.The global AFM state is written as
|ψ0 (a, σ)〉 = Tr (g1 ⊗ g2 ⊗ ......⊗ gL) (9)where `⊗' denotes a tensor produt. One an easily hek that Sz

tot |ψ0〉 = 0, i.e.,the state is AFM. One now demands that the state |ψ0 (a, σ)〉 is the exat groundstate of the Hamiltonian H with eigenvalues 0. For this, it is su�ient to showthat
hj, j+1 (gj ⊗ gj+1) = 0 (10)Eq. (3) and (10) are satis�ed provided the following equalities

1) σ = sign(α3), 2) aα0 = α3 − α1,

3)α5 =| α3 | +α0(1 − a2), 4)α2 = α0a
2 − 2 | α | (11)and inequalities

a 6= 0, α3 6= 0, α4 > 0, α0 > 0 (12)hold true. The state |ψ0 (a, σ)〉 is the ground state of the Hamiltonian (5) withground state energy zero provided the equalities in (8) are satis�ed. The inequal-ities onstrain the other eigenvalues of hj,j+1 to be positive. If the inequalitiesare satis�ed, the ground state an be shown to be unique for any hain length
L. Also, in the thermodynami limit L → ∞, the exitation spetrum has a gap
∆. With equality signs in the inequalities (12), the state |ψ0 (a, σ)〉 is still the6



ground state but is no longer unique. The spin−1 model has the typial featureof a Haldane-gap (HG) antiferromagnet. In fat, the AKLT model is reovered asa speial ase with a = 2, σ = 1, α3 = 3α0 > 0, α2 = −2α0 and α4 = 3α0. Thestate (9) now represents the VBS state.Using the transfer matrix method [16℄, the ground state orrelation funtionsan be alulated in a straightforward manner. The results are (L→ ∞, r ≥ 2) :Longitudinal orrelation funtion
〈Sz

1 S
z
r 〉 = − a2

(1 − |a|)2

(

1 − |a|
1 + |a|

)r (13)Transverse orrelation funtion
〈Sx

1 S
x
r 〉 = −|a| [σ + sign a]

(

−σ
1 + |a|

)r (14)The orrelations (13) and (14) deay exponentially with the longitudinal and trans-verse orrelation lengths given by
ξ−1
l = ln

∣

∣

∣

∣

∣

1 + |a|
1 − |a|

∣

∣

∣

∣

∣

, ξ−1
t = ln(1 + |a|) (15)Furthermore, the string order parameter has a non-zero expetation value in theground state. One �nds that the orrelation lengths diverge as a → 0. At thepoint a = 0, the orrelation funtions given by Eq. (13) and (14) are zero. Ata onventional QCP, the orrelation funtions have a power-law deay. We will,however, refer to the point as a QCP sine the orrelation lengths diverge as thepoint is approahed. A onsequene of the diverging orrelation length is that theexitation spetrum of the spin-1 model, whih is gapped (the Haldane phase) for

a > 0, beomes gapless at the ritial point a = 0 [20℄. The presene or absene ofa gap in the exitation spetrum of a system is re�eted in the low temperaturethermodynami properties of the system. Furthermore, the string order parameterhas a non-zero expetation value in the ground state for a > 0 and beomes zeroat a = 0 indiating the appearane of a new phase. Refs. [16, 17℄ provide severalother examples of spin-1 models with �nitely orrelated MP states as exat groundstates. All these models exhibit ritial point transitions with features similar tothose in the ase of the spin-1 model desribed by the Hamiltonian in Eq. (5).We now fous on the entanglement properties of the MP ground state (Eq. (9)).We onsider a to be ≥ 0 and σ = +1 in Eq. (8). The one-site redued densitymatrix ρ(i) (Eq. (3)) obtained by traing out all the spins exept the i-th spinfrom the ground state density matrix ρ = |ψ0〉〈ψ0|, an be alulated using thetransfer matrix method [16℄. The density matrix, from Eq. (9), is
ρ = |ψ0〉 〈ψ0| =

∑

{nα,mα}
gn1n2

gn2n3
........gnLn1

g†m1m2
g†m2m3

......g†mLm1
(16)7



The summation is over all the indies, ni, mi, i = 1, 2, .....L.We de�ne a 4×4 matrix f (the elements of whih are operators) at any lattiesite as
fµ1µ2

⇒ f(n1,m1)(n2,m2) ≡ gn1n2
g†m1m2

(17)The onvention of the ordering of the multi-indies is µ = 1, 2, 3, 4 ↔ (11), (12), (21), (22).Thus, f an be written as
f =











|0〉 〈0| −√
a |0〉 〈1| −√

a |1〉 〈0| a |1〉 〈1|√
2 |0〉 〈−1| − |0〉 〈0| −a |1〉 〈−1| √

a |1〉 〈0|√
a |−1〉 〈0| −a |−1〉 〈1| − |0〉 〈0| √

a |0〉 〈1|
a |−1〉 〈−1| −√

a |−1〉 〈0| −√
a |0〉 〈−1| |0〉 〈0|











(18)Also,
ρ(i) = Tri

1,..L |ψ0〉 〈ψ0| (19)where the trae is over all the spins exept the i-th one. The transfer matrix F ata site m is obtained by taking the trae over f at the same site, i.e.,
Fm =

∑

k

〈k| fm |k〉 (20)where the states |k〉 are the states |0〉, |±1〉. The transfer matrix F is obtained as
F =











1 0 0 a

0 −1 0 0
0 0 −1 0
a 0 0 1











(21)The eigenvalues are
ε1 = 1 + a, ε2 = 1 − a, ε3 = −1, ε4 = −1 (22)The orresponding eigenvetors are
|e1〉 = 1√

2











1
0
0
1











, |e2〉 = 1√
2











−1
0
0
1











|e3〉 =











0
1
0
0











, |e4〉 =











0
0
1
0











(23)
From Eq. (20),

ρ(i) =

∑4
α=1 〈eα|FL−1f |eα〉
∑4

α=1 〈eα|FL |eα〉
(24)8



The fator in the denominator takes are of the ondition Tr ρ = 1. On taking thethermodynami limit L→ ∞, we get
ρ(i) = ε−1

1 〈e1| f |e1〉 (25)In the |0,±1〉 basis, the redued density matrix beomes
ρ(i) =









1
1+a

0 0

0 a
2(1+a)

0

0 0 a
2(1+a)









(26)The alulation of the two-site redued density matrix ρ(i, j) follows in thesame manner. ρ(i, j) is given by
ρ(i, j) = Tr

i,j
1,..L |ψ0〉 〈ψ0| (27)where the trae is taken over all the spins exept the i-th and j-th ones.

ρ(i, j) =

∑4
α=1 〈eα|F i−1f F j−i−1f FL−j |eα〉

∑4
α=1 〈eα|FL |eα〉

(28)In the thermodynami limit L→ ∞, ρ(i, j) redues to
ρ(i, j) =

4
∑

α=1

ε−2
α

(

εα

ε1

)n+1

〈e1| f |eα〉 〈eα| f |e1〉 (29)where n = |j − i|.The matrix ρ(i, j) is a 9 × 9 matrix and de�ned in the two-spin basis states
|lm〉 with the ordering

|lm〉 ≡ |11〉 , |10〉 , |01〉 , |1 − 1〉 , |−11〉 , |00〉 , |0 − 1〉 , |−10〉 , |−1 − 1〉 (30)The non-zero matrix elements, bpq (p = 1, ..., 9, q = 1, ..., 9), of ρ(i, j) are :
b11 = b99 = a2

4(1+a)2
− a2

4(1−a2)

(

1−a
1+a

)n

b22 = b33 = b77 = b88 = a
2(1+a)2

b44 = b55 = a2

4(1+a)2
+ a2

4(1−a2)

(

1−a
1+a

)n

b23 = b32 = b46 = b64 = b56 = b65 = b78 = b87 = a
2(1+a)

(

− 1
1+a

)n

b66 = 1
(1+a)2

(31)
It is easy to hek that ρ(i, j) has a blok-diagonal form.9



III. ENTANGLEMENT MEASURES S(i), S(i, j),
G(2, n)We now determine the entanglement ontent of the ground state |ψ0〉 (Eq. (9))of the Hamiltonian (Eq. (5)) using the entanglement measures S(i), S(i, j), and
G(2, n). The alulations are arried out for di�erent values of the parameter ain Eq. (8). The ultimate aim is to probe the speial features, if any, of entangle-ment in the viinity of the QCP at a = 0. From Eq. (3) and (26), the one-siteentanglement

S(i) =
1

1 + a
[(1 + a)log2 (1 + a) − a log2 a+ a] (32)Figure 1 (top) shows the variation of S(i) w.r.t. a. The one-site entanglement hasthe maximum possible value log2 3. This is attained at the AKLT point a = 2. TheVBS state is in this ase the exat ground state. In the VBS state, eah spin-1 ata spei� lattie site an be onsidered as a symmetri ombination of two spin-1

2
's[14℄. In the VBS state, eah spin-1

2
at a partiular lattie site forms a spin singletwith a spin-1

2
at a neighbouring lattie site. S(i) has the value zero at the QCP

a = 0. Figure 1 (bottom) shows the variation of ∂S(i)
∂a

with the parameter a. Thederivative diverges as the QCP is approahed. This is the expeted behaviour atthe QCP of a onventional QPT. In the latter ase, however, S(i) has the maximumvalue at the QCP [3℄.From Eq. (1) and (31), the two-body entanglement S(i, j) is
S(i, j) = −

9
∑

i=1

λi log2λi (33)Where λi's are the eigenvalues of the redued density matrix ρ(i, j). These aregiven by
λ1 = λ2 = a

2(1+a)2
− a

2(1+a)

(

− 1
1+a

)n

λ3 = λ4 = a
2(1+a)2

+ a
2(1+a)

(

− 1
1+a

)n

λ5 = a2

4(1+a)2
+ a2

4(1−a2)

(

1−a
1+a

)n

λ6 = λ7 = a2

4(1+a)2
− a2

4(1−a2)

(

1−a
1+a

)n

λ8 = 1
2

(

a2

4(1+a)2
+ a2

4(1−a2)

(

1−a
1+a

)n
+ 1

1+a2

)

− 1
2(1+a)

(

(a2−4)2

16(1+a)2
+ 2a2

(

− 1
1+a

)2n
+ a4

16(1−a)2

(

1−a
1+a

)2n
+ a2(a2−4)

8(1−a2)

(

1−a
1+a

)2n
)

1

2

λ9 = 1
2

(

a2

4(1+a)2
+ a2

4(1−a2)

(

1−a
1+a

)n
+ 1

1+a2

)

+ 1
2(1+a)

(

(a2−4)2

16(1+a)2
+ 2a2

(

− 1
1+a

)2n
+ a4

16(1−a)2

(

1−a
1+a

)2n
+ a2(a2−4)

8(1−a2)

(

1−a
1+a

)2n
) 1

2

(34)
10



Knowing the redued density matrix ρ(i, j), the orrelation funtions 〈Sα
i S

α
j

〉(α = x, y, z) an be alulated in the usual manner. One then reovers the ex-pressions in Eq. (13) and (14) (r = n + 1, where n = |j − i|). Figure 2 (top)shows the variation of S(i, j) as a funtion of a for n = 1000. Figure 2 (bottom)shows the variation of the derivative ∂S(i,j)
∂a

w.r.t. a for the same value of n. Themaximum of S(i, j) is at the AKLT point a = 2 and has the value zero at a = 0.For large n, the derivative ∂S(i,j)
∂a

diverges near the QCP at a = 0. The last fearureis harateristi of a onventional QPT [7℄.We next alulate the GGE G(2, n) (Eq. (4)). This is easily done as the matrixelements of the redued density matrix (Eq. (3)) are known. Figure 3 (top) showsthe variation of G(2, n) versus a for n = 1000. Figure 3 (bottom) shows the plot of
∂G(2,n)

∂a
against a. Again G(2, n) has the maximum value at the AKLT point and iszero at a = 0. The derivative ∂G(2,n)

∂a
does not diverge as a → 0 in ontrast to thease of a onventional QPT [6℄. The derivative, however, attains the maximumvalue at the QCP a = 0. Figure 4 (top) shows the plots of S(i), S(i, j), and G(2, n)versus a for n = 1000. Figure 4 (bottom) shows the plots of the �rst derivativesof the same quantities w.r.t. a for n = 1000. The plots are shown for omparingthe di�erent entanglement measures.We next determine the EL ξE and its variation w.r.t. the parameter a. Weonsider the entanglement measure S(i, j) for this purpose. Close to the QCP

a = 0 and in the limit of large n, one an write
S(n = |j − i|) − S(∞) ∼ Ae e

− n
ξE (35)The longitudinal and transverse orrelation funtions, pz

n =
〈

Sz
1S

z
n+1

〉 and px
n =

〈

Sx
1S

x
n+1

〉 are given by Eq. (13) and (14) with r = n + 1. For a < 1, pz
n deaysfaster than px

n with n. The eigenvalues λi's, i = 1, ...9, an be expressed in termsof the orrelation funtions pz
n and px

n. For large n, the ontributions from pz
n anbe ignored. The eigenvalues now redue to the expressions

λ1 = λ2 = a
2(1+a)2

− 4 px
n

λ3 = λ4 = a
2(1+a)2

+ 4 px
n

λ5 = a2

4(1+a)2

λ6 = λ7 = a2

4(1+a)2

λ8 = 1
2

(

a2

4(1+a)2
+ 1

1+a2

)

− 1
2

(

(a2−4)2

16(1+a)2
+ 2 (px

n)2
)

1

2

λ9 = 1
2

(

a2

4(1+a)2
+ 1

1+a2

)

+ 1
2

(

(a2−4)2

16(1+a)2
+ 2 (px

n)2
)

1

2

(36)
From Eq. (1) and (36), one ultimately arrives at the expressions

S(n = |j − i|) − S(∞) ∼ A
′

e (px
n)2 ∼ Ae e

− n
ξE (37)11



The pre-fator Ae = 0 at the QCP a = 0 . The EL ξE is given by
ξE =

ξt

2
=

1

2 ln(1 + a)
(38)where ξt is the transverse orrelation length (Eq. (15)). In the ase of the S = 1

2anisotropi XY model in a transverse �eld, an expression similar to that in Eq.
(37) is obtained lose to the QCP in the limit of large n [7℄. The pre-fator in thisase, however, does not vanish at the QCP but has a power-law dependene on n.Figure 5 shows the variation of ξE w.r.t. a based on the entanglement measure
S(i, j).The total orrelations, with both lassial and quantum omponents, betweentwo sites i and j are quanti�ed in terms of the quantum mutual information [21, 22℄

Iij = S(i) + S(j) − S(i, j) (39)As explained in [21℄, a omparison of the singular behaviour of S(i) with that of
Iij allows one to determine whether two-point (Q2) or multipartite (QS) quantumorrelations are important in a QPT. Figure 6 (top) shows a plot of Iij versus afor n = 1000. Figure 6 (bottom) shows the variation of ∂Iij

∂a
versus a for n = 1000.The derivative does not diverge as a → 0, a behaviour distint from that of ∂S(i)

∂alose to a = 0. The di�erene in the singular behaviour of quantities assoiatedwith S(i) and Iij indiates that multipartite quantum orrelations are involved inthe QPT.IV. DISCUSSIONSThe MP states provide exat representations of the ground states of several spinmodels in low dimensions [17℄. The remarkable features of suh states arises fromthe fat that ompliated many body states have a simple fatorized form. Thesimpliity in struture makes the alulation of the ground state expetation valuespartiularly easy to perform. The spin-1 AKLT model is a well-known exampleof a spin model in 1d the exat ground state of whih (a VBS state) has an MPrepresentation. The AKLT model and the spin-1 Heisenberg AFM hain belongto the same universality lass [23℄. The insight gained from the study of models inthe MP formalism is expeted to be of relevane in understanding the propertiesof more physial systems. The MP states also serve as good trial wave funtionsfor standard spin models. The MP representation lies at the heart of the powerfuldensity matrix renormalization group (DMRG) method and provides the basis forseveral interesting developments in quantum information [24℄.Studies of the entanglement harateristis of the MP states have begun onlyreently. The QPTs whih our in suh states have harateristis di�erent from12
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those of onventional QPTs. It is thus of onsiderable interest to determine whetherthe entanglement ontent of MP states develops speial features lose to a QCP.In this paper, we onsider a spin-1 model the exat ground state of whih is of theMP form over a wide range of parameter values. The model exhibits a novel QPTin that the longitudinal and transverse orrelation lengths diverge as the QCP isapproahed but the orrelation funtions vanish at the QCP. In a onventionalQPT, the orrelation funtions have a power-law deay at the QCP. In the spin-1model, the divergene of orrelation lengths is aompanied by the exitation gapgoing to zero. The string order parameter, whih has a non-zero expetation valuein the MP state for a > 0, vanishes at the QCP a = 0. The distintive signaturesindiate the appearane of a new phase. We study the entanglement propertiesof the MP state for di�erent values of the parameter a. The measures used are
S(i) (one-site von Neumann entropy), S(i, j) (two-body entanglement) and G(2, n)(GGE). All the entanglement measures have zero value at the QCP so that theground state is disentangled at that point. As seen from the di�erent plots, �gures
(1), (2), (3), and (4), the entanglement ontent, as measured by E =S(i), S(i, j)and G(2, n), has a slow variation w.r.t. a for a > 2. At the AKLT point a = 2,
E reahes its maximum value and as a is redued further, the magnitude of Efalls rapidly to approah zero value at a = 0. The study of onventional QPTsshows that E is maximum at a QCP [3, 6, 7℄. Also, ∂E

∂a
diverges as the QCP isapproahed. The EL, ξE, as alulated from S(i, j) and G(2, n) for large n, alsodiverges with ξE = ξC

2
where ξC is the usual orrelation length. In the ase ofthe spin-1 model under onsideration, ∂E

∂a
diverges as a → 0 when E = S(i) and

S(i, j). The EL, ξE , as alulated from S(i, j) in the large n limit, also divergeswith ξE = ξC

2
. One now has the interesting situation that the entanglement ontentof the MP state dereases as a → 0 but the entanglement is spread over largerdistanes. The derivative ∂G(2,n)

∂a
, however, does not diverge as a → 0 but attainsa maximum value at the QCP. The results an be understood by noting that inall the three ases, E = S(i), S(i, j) and G(2, n), the redued density matries

ρ(i) and ρ(i, j) smoothly approah the forms assoiated with pure states as theparameter a tends to zero. The matrix elements of the redued density matries donot develop non-analytiities in the parameter region of interest. Thus, the energydensity, alulated from the redued density matrix ρ(i, j), does not develop a non-analytiity at the QCP. The derivative ∂G(2,n)
∂a

depends upon the �rst derivativesof the matrix elements of ρ(i, j). Sine the latter is analyti for a ≥ 0, ∂G(2,n)
∂a

doesnot diverge in the whole parameter regime inluding the point a = 0. In the asesof the entanglement measures E = S(i) and S(i, j), the derivative ∂E
∂a

diverges as
a→ 0 due to the divergene of log2 a in the same limit. The divergene is thus dueto the speial form of the von Neumann entropy and ours for n ≥ 1. A reentwork [25℄ provides another example of suh a singularity. Though ∂G(2,n)

∂a
does18



not diverge or beome disontinuous at the QCP a = 0, it attains its maximumvalue at the point. The �rst derivative of the string order parameter w.r.t. a alsoattains its maximum value at a = 0 though the order parameter itself vanishesat the point. Figure (4) shows that amongst the three entanglement measures
E =S(i), S(i, j) and G(2, n), used in this study to obtain a quantitative estimateof the entanglement ontent of the MP ground state, the measure S(i, j) yieldsthe largest value of the entanglement at di�erent values of a. The di�erene inthe singular behaviour of the measures S(i) and the mutual information entropy
Iij as a → 0 indiates that multipartite quantum orrelations are involved in theQPT. In summary, the present study identi�es the entanglement harateristisof the MP ground state of a spin-1 model lose to the ritial point a = 0. Thefeatures are distint from those assoiated with onventional QPTs. Several spinmodels are known for whih the MP states are the exat ground states [17℄. Someof these models have interesting phase diagrams exhibiting both �rst and seondorder phase transitions. It will be of interest to extend the present study to otherspin models (both S = 1

2
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