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Abstract

We study the effect of randomness and anisotropy on Turing pat-
terns in reaction-diffusion systems. For this purpose, the Gierer-
Meinhardt model of pattern formation is considered. The cases we
study are: (i)randomness in the underlying lattice structure, (ii)the
case in which there is a probablity p that at a lattice site both reac-
tion and diffusion occur, otherwise there is only diffusion and lastly,
the effect of (iii)anisotropic and(iv)random diffusion coefficients on the
formation of Turing patterns. The general conclusion is that the Tur-
ing mechanism of pattern formation is fairly robust in the presence of
randomness and anisotropy.

PACS Numbers: 05.70 Ln

I. Introduction

In 1952 Turing [1] pointed out that diffusion need not always act to smooth
out concentration differences in a chemical system. Two interacting chemi-
cals can generate a stable, inhomogeneous pattern if one of the substances(the
inhibitor) diffuses much faster than the other(the activator). The activator
is autocatalytic, i.e, a small increase in its concentration ‘a’ over its ho-
mogeneous steady-state concentration leads to a further increse of ‘a’. The
activator besides promoting its own production also promotes the production
of the inhibitor. The inhibitor, as the name implies, is antagonistic to the
activator and inhibits its production. Suppose, originally the system is in a
homogeneous steady state. A local increase in the activator concentration
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leads to a further increase in the concentration of the activator due to au-
tocatalysis. The concentration of the inhibitor is also increased locally. The
inhibitor, having a diffusion coefficient much larger than that of the activa-
tor, diffuses faster to the surrounding region and prevents the activator from
coming there. This process of autocatalysis and long-rang inhibition finally
lead to a stationary state consisting of islands of high activator concentra-
tion within a region of high inhibitor concentration. The islands constitute
what is known as the Turing pattern. Turing’s original idea was that the
stable patterns could be linked to the patterns seen in biological systems.
Experimental evidence of Turing patterns, however, came much later and
that too not in biological systems but in chemical systems [2, 3, 4]. This has
sparked renewed interest in mathematical models of pattern formation as well
as the relationship of chemical patterns to the remarkably similar patterns
observed in diverse physical and biological systems [5]. Turing structures
have also been seen in electrical gas discharge systems [6]. Recently, it has
been suggested that the formation of stripe patterns on the marine angelfish
Pomacanthus can be explained on the basis of Turing mechanism involving
reaction-diffusion(RD) [7]. A RD neural network model has been proposed
based on nonsynaptic diffusion neurotransmission [8]. The model has the
features of short-range activation and long-rang inhibition, necessary ingre-
dients for the formation of Turing patterns. The network exhibits similar
self-organization behaviour.

The diverse examples mentioned above show that the Turing patterns
are not unique to a particular system. Also Turing mechanism embodies a
general principle of self-organization. A well-known model of a RD system in
which Turing patterns can form is the Gierer-Meinhardt(GM) model [9, 10].
In Section II, we describe the GM model and study the effect of randomness
in the structure of the RD system on the pattern formation process(Case I).
For this purpose the differential equations of the model are discretized on a
square lattice. We further study the situation in which there is a probability
p that at a lattice site both reaction and diffusion occur, otherwise there
is only diffusion(Case II). In Section III, we study the effect of anisotropic
and random diffusion coefficients(Case III and Case IV) on the formation of
Turing patterns. All the studies are based on computer simulation on a squre
lattice. Section IV contains a general discussion of the models studied.
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II. Randomness in structure and dynamics

The differential equations describing RD in the GM model are

∂a

∂t
= Da ∆a + ρa

a2

h
− µa a (1a)

∂h

∂t
= Dh ∆h + ρh a2 − µh h (1b)

where ∆ is the Laplacian given by ∆ = ∂2

∂x2 + ∂2

∂y2 , ‘a’ and ‘h’ denote the
concentrations of the activator and the inhibitor, Da, Dh, are the respec-
tive diffusion coefficients, µa, µh are the removal rates and ρa, ρh are the
cross-reaction coefficients. The conditions for the formation of stable Turing
patterns are Dh >> Da and µh > µa [10]. We also assume that ρa = µa and
ρh = µh. In this case, the steady state solution of equations (1a) and (1b)
is given by (a,h)=(1,1), i.e., the steady state is homogeneous. The homoge-
neous steady state is stable if local fluctuations created in the system decay
with time. If the fluctuations grow with time, the original homogeneous state
is unstable. A phase diagram (µ = µh

µa
versus D = Da

Dh
), based on the lin-

ear stability analysis, of the one-dimensional(1d) version of the GM model
is given in Ref.[10]. The phase diagram contains a region in which Turing
patterns can form. In this parameter regime, instability in the original ho-
mogeneous state leads finally to a steady state in which Turing patterns of
high activator concentration are formed. Appendix B of the same Ref.[10]
gives the parameter values for a two-dimensional(2d) RD system for which
Turing patterns can form in the steady state. We use these parameter val-
ues, Da = 0.005, ρa = µa = 0.01 and Dh = 0.2, ρh = µh = 0.02, for our
studies.

As in [10] a very simple discretization scheme is used. The Laplacian ∆
applied to the function a(x,t) is taken as

∆ a(xij , t) =
a(xi+1j , t) + a(xij+1, t) + a(xi−1j , t) + a(xij−1, t) − 4a(xij , t)

δ x2
(2)

where xij denotes a lattice site, xij = (iδx, jδx). Time is also discretized,
tk = kδt, and the time derivative approximated as

∂a(x, tk)

∂t
=

a(x, tk+1) − a(x, tk)

δt
(3)
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In all our simulations, we choose δx = δt = 1. The lattice chosen is of size
30 × 30. Also, periodic boundary conditions are assumed.

We first study the RD process on inhomogeneous substrata(CaseI). In
our case these are the (2d) percolation clusters, with site occuption probabil-
ity p, on which the activator and inhibitor react and dffuse. The percolation
clusters are generated in the usual manner with the help of a random number
generator. If the random number is less than or equal to p, the site of the
lattice is occupied, otherwise it is kept empty. All the sites of the square lat-
tice are examined successively and the occupation status of a site determined
with the help of the random number generator. The nearest-neighbour(n.n.)
occupied sites constitute a percolation cluster.

The differential equations (1a) and (1b) are discretized according to the
schemes specified in equations (2) and (3). The Laplacian in (2) is now
written as

∆ a(xij , t) = iocc(i + 1, j) × ( a(xi+1j , t) − a(xij , t) )

+ iocc(i, j + 1) × ( a(xij+1, t) − a(xij , t) )

+ iocc(i − 1, j) × ( a(xi−1j , t) − a(xij , t) )

+ iocc(i, j − 1) × (a(xij−1, t) − a(xij , t) ) (4)

The array iocc keeps track of the occupation status of the sites of the square
lattice. If the site xij is occupied then iocc(i,j)=1, otherwise it is equal to zero.
Equation(4) expresses the fact that diffusion to a site from a neighbouring
site takes place only if the neighbouring site belongs to the RD network, i.e.,
to a percolation cluster. One can easily check that the discretized differential
equations (with ρa = µa and ρh = µh) have a steady state solution given by
a=1 and h=1 for all the cluster sites. Random fluctuations of magnitude less
than 0.1 are created in the steady state with the help of the random number
generator. This fixes the values of a and h at all the cluster sites at time t=0.
The values of a and h at time t+1 are determined at a site xij belonging to
a cluster with the help of the discrete equations for a and h. This process is
repeated till the steady state is reached, i.e., the values of a and h at all the
cluster sites do not change within a specified accuracy.

We define an ‘activated’ zone as an island of n.n. sites in the steady
state, at each of which the activator concentration has a value greater than
1 which is the homogeneous steady state value. Figs. 1(a)-1(d) show the
concentration profiles in the activated zones for site occupation probabilities
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p=0.9, 0.7, 0.59, and 0.4 respectively. The value p = pc = 0.59 is the site
percolation threshold for a square lattice. For p > pc, a connected network
of sites spans the lattice, for p < pc, there is no spanning cluster. For p > pc,
the percolation clusters include both the spanning cluster as well as isolated
clusters in other parts of the lattice. For p < pc, the percolation clusters
consist of only the isolated clusters.

The Figures show that the number of activated zones increases as p de-
creases. This trend continues below the percolation threshold. Also, the
average height of the concentration peaks decreses. These results can be
understood in the following manner. With lesser connections in the RD
network, as p decreses, the inhibitor cannot diffuse to long distances and so
cannot prevent activator growth in the local regions. Thus in the steady state
there is a larger number of activated zones. The average height of activator-
concentration profiles decreases because of the inability of the inhibitor to
totally diffuse away from the activator zone. The greater concentration of
inhibitor in this zone limits the growth of the activator concentration more
than in the case of a regular RD network.

We next consider CaseII. In this case, the RD network is a fully connected
square lattice. Let p be the probablity that both reaction and diffusion
occur at a site. The other possibility, with probablity (1-p), is ordinary
diffusion. When p=1, i.e., there is no randomness in the dynamics, Turing
patterns form in the steady state. When p=0, i.e., there is no reaction,
simple diffusion takes over. The steady state in this case is homogeneous
with all concentration gradients removed. Figs. 2(a)-2(d) show the steady
state patterns for p=0.01, 0.05, 0.3 and 0.7 . For p=0.005, the steady state
is homogeneous. Thus for p as small as 0.01, i.e., when RD occurs at only
1% of the lattice sites a Turing pattern is formed. In this case, there is only
one activated zone which covers a large area. As p increses, the number
of activated zones increses. For small values of p, we have checked that an
activated zone need not be centred around a cluster of n.n. sites at which
RD occurs, a zone may form in the intermediate region of two such clusters.
In the light of this fact, it is interesting to note that even with very few RD
sites, the Turing mechanism is operative.
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III. Anisotropy and randomness in diffusion

coefficients

Anisotropy in the RD medium is reflected in the anisotropy of the diffusion
coefficients. Mertens et al [11] have studied the effect of anisotropic diffu-
sion coefficients on pattern formation in catalytic surface reactions. Their
conclusion is that anisotropy may give rise to new types of patterns. In our
Case III, we assume that for diffusion in the vertical direction, the diffu-
sion coefficients are Da = 0.005 and Dh = 0.2 . These are the values for
which Turing patterns can form in an isotropic medium. For diffusion in
the horizontal direction, the diffusion coefficients Da1 and Dh1 may have
different values. Figs. 3(a)-3(c) show the steady state patterns for the
cases (i) Da1 = 0.005 , Dh1 = 0.01, (ii) Da1 = 0.2 , Dh1 = 0.005 and (iii)
Da1 = 0.008 , Dh1 = 0.2 . In the first two cases, the stationary pattern
has a wave-like appearance. This Turing pattern is different from the one
consisting of islands that we have been considering so far. For a (1d) RD
system, the values of diffusion coefficients given in (i) and (ii) correspond to
the situation when the final steady state is homogeneous [10]. This fact is
reflected in the patterns seen in Figs. 3(a) and 3(b), the distribution of the
activator concentration is homogeneous in the horizontal direction. In the
third case, the diffusion coefficients are such that Turing patterns are formed
in the steady state. Fig.3(c) shows the usual Turing pattern consisting of
islands. Thus with an appropriate choice of diffusion coefficients, one may
generate different types of Turing patterns.

Case IV considers the situation of random diffusion coefficients. The
diffusion coefficient Dij for diffusion between a pair of sites is chosen from
a binary distribution. The diffusion coefficients for the activator and the
inhibitor are 0.005 and 0.2 respectively with a probablity p. The diffusion
coefficients have equal values, 0.005, with probablity (1-p). The diffusion
term is now discretized as

Da △ a =
∑

j

Dajk
[ a(j, t) − a(k, t) ] (5)

where k denotes the lattice site xij and j denotes the four n.n. sites. When
all the Dajk

’s are equal to Da, the original discretization is recovered. Figs.
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4(a)-4(b) show the steady state patterns for p = 0.5, 0.3 and 0.2 respectively.
In Fig. 4(a), the Turing activator-concentration peaks are above the steady
state value of 1. Figs. 4(b) shows that Turing patterns are still formed but
the peaks are above or below the value 2. This implies that there is an overall
activation at all the lattice sites. This is an interesting feature of the model
considered. Fig. 4(c) shows that at p = 0.2, the steady state is homogeneous
but has a higher concentration (a,h) = (2,2) than in the original steady state
for which (a,h) = (1,1). The transition from a steady state with Turing
patterns to a new homogeneous steady state is analogous to a dynamical
phase transition and occurs at a value of p in between p = 0.2 and p = 0.3.

IV. Discussion

In Case I, we have studied pattern formation in a square network with missing
connections. In chemical RD systems which exhibit Turing patterns, the
RD process takes place in a gel which consists of an irregularly-connected
network of pores of various diameters through which the molecules diffuse.
RD processes in the brain also occur in an irregular network. The present
study shows that disorder in the underlying network has no adverse effect on
the formation of Turing patterns. This is because the length scales involved
in the RD process are small.

In our model we have considered random n.n. connectivity. In a more
general context, when further-neighbour connections are also present, an
interesting problem to study is the effect of network connectivity on the
stability of the dynamical system. When small perturbations are applied to
a steady state, the stability of this state may be studied by linear stability
analysis, i.e., by Taylor-expanding in the neighbourhood of the steady state.
Only the first two terms in the expansion are kept, the second term contains
the derivative or Jacobian matrix. The original steady state is stable only if
all the eigenvalues of the Jacobian matrix have negative real parts. Consider
a randomly-assembled dynamical network. Full connectance implies that an
element of the network is connected to all the other elements. For random
connectivity, the Jacobian matrix has random elements. For such a Jacobian
matrix of zero mean, The Wigner-May Theorem [12, 13] states that the
dynamical system is almost surely unstable if the connectivity exceeds a
threshold. Raghavachari and Glazier [14] have considered 1d coupled map
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lattices with a scaling form of connectivity. Each pair of sites i and j are
connected with the probablity

pij =
1

|~ri − ~rj |α
, j = ±1, 2, 3, .... (6)

Where ~ri and ~rj are the coordinates of the ith and jth sites, respectively. The
n.n. coupling limit corresponds to α → ∞ and α → 0 is the global coupling
limit. For this model, the Jacobian matrix has all non-negative elements
and is unstable for low values of connectivity but is stable when connectivity
exceeds a critical value. In the light of these studies, it is of interest to include
further-neighbour connections in the model studied in Case I and study the
effect of the richer connectivity on the formation of Turing patterns. For
this purpose, a discretization scheme involving an extended neighbourhood
can be used. Further-neighbour connectivity may be important in neural
networks in which RD prosses are responsible for self-organization in the
neural activity [8].

In Case II, the model studied involves random dynamics. A possible
realization of this situation is as follows. Autocatalysis of the activator may
require the presence of a chemical molecule or some triggering mechanism
not available at all the lattice sites. The chemical molecule in question can
be static with diffusion coefficient zero because of a large size. The situation
is hypothetical but not unrealistic.

In Case III and Case IV, we have studied models with anisotropic and
random diffusion coefficients. In ordinary diffusion, molecules move from
regions of greater to regions of less concentration at a rate proportional to
the gradient of the concentration and also proportional to the diffusivity of
the substance. Normally, the diffusivities are inversely proportional to the
square roots of the molecular weights. However in a porous medium with
tortuous geometry, the diffusion coefficients may be space dependent. The
pores of the cell-walls in a biological system restrict the movement of large
molecules in addition to that imposed by their weights and most of them are
unable to pass through the walls of the cell. In aqueous solution, the activator
and inhibitor molecules may have the same diffusion coefficients but if the
RD system is embedded in a gel as in the experiments [2, 4] to observe
Turing patterns, the activator molecules being larger in size are effectively
trapped. This provides a big difference in diffusion coefficients of activator
and inhibitor. In these examples, the diffusion coefficient is determined by
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the geometrical structure of the RD medium. In a porous medium with
pore sizes distributed over a range, the diffusion coefficient may very well be
space-dependent.

Recent experimental evidence of Turing patterns in physical, chemical
and biological systems has given rise to renewed interest in the study of
these patterns. In this paper, we have considered the effect of randomness
and anisotropy on the pattern formation process. The studies have been
based on computer simulation and the results obtained show that the Turing
mechanism of pattern formation is fairly robust in the presence of randomness
and anisotropy.
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Figure Captions

Fig.1 Concentration profiles of the activator on a disordered lattice structure
for site occuption probablities (a) p = 0.9, (b) p = 0.7, (c) p = 0.59
and (d) p = 0.4 (Case I). The islands of high activator concentration
constitute the Turing pattern.

Fig.2 Turing patterns(‘a’ denotes the activator concentration) for (a) p =
0.01, (b) p = 0.05, (c) p =0.3 and (d) p = 0.7 (Case II), where p is the
probablity that at a lattice site both reaction and diffusion occur and
(1-p) the probablity that there is only diffusion. The size of the lattice
is 30 × 30 .

Fig.3 Steady-state patterns in the case of anisotropic diffusion coefficients
(Case III). For diffusion in the vertical direction, the diffusion coeffi-
cients of the activator and inhibitor are: Da = 0.005 and Dh = 0.2.
For diffusion in the horizontal direction, the diffusion coefficients of
the activator and inhibitor are: (a) Da1 = 0.005, Dh1 = 0.01 (b)
Da1 = 0.2, Dh1 = 0.005 and (c) Da1 = 0.008, Dh1 = 0.2 .

Fig.4 Steady-state pattern for random diffusion coefficients (Case IV). The
diffusion coefficients of the activator and inhibitor are 0.005 and 0.2,
respectively, with a probablity p. The diffusion coefficients have equal
values, 0.005, with probablity (1-p). The values of p that have been
considered are: (a) p = 0.5, (b) p = 0.3 and (c) p = 0.2 .
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