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Abstract. Let $A$ be a unital commutative $*$ -algebra. Let $\pi$ be a hermitian
representation of $A$ into (not necessarily bounded) Hilbert space operators.
Analytic vectors and bounded vectors for $\pi$ are investigated; and are used to
show that $\pi$ is a direct sum of bounded (operator) representations iff $\pi$ admits
a core consisting of bounded vectors. This, in turn, is used to show that if
$A$ is either of the polynomial algebras $\zeta t(x)$ or $\mathcal{P}(x, y)$ in one or two commut-
ing hermitian generators then $\pi$ is standard iff $\pi$ is a direct sum of bounded
representations. Various selfadjointness and standardness criteria for represen-
tations of these polynomial algebras are developed, highlighting the difference
between the representation theory of these two algebras, and suPplementing
known results.

1. Introduction and Preliminaries

Let $T:D(T)\subset H\rightarrow H$ be a linear operator (not necessarily bounded) defined
on a dense subspace $D(T)$ (Domain of $T$ ) of a Hilbert space $H$. Then $T$ is
formally normal if

$D(T)\subset D(T^{*})$ and $\Vert T\xi\Vert=\Vert T^{*}\xi\Vert$ for all $\xi\in D(T)$ .
A formally normal operator $T$ is normal if $T$ is closed and $D(T)=D(T^{*})$ . The
spectral theorem [14, \S 7.5] represents a normal operator as

$T=\int\lambda dE(\lambda)$

for a spectal measure $E$ . Following [8], [12], given an operator $T$ , a vector
$\xi$ in
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$C^{\infty}(T);=\bigcap_{n=1}^{\infty}D(T^{n})$ ( $=C^{\infty}$-vectors for $T$)

is a bounded vector (resp. an analytic vector) if there exist $a>0,$ $c>0$ such that
$\Vert T^{n}\xi\Vert\leqq ac^{n}$ for all $n\in N$ (resp. if there exists $t>0$ such that $\Sigma_{n=\iota}^{\infty}t^{n}\Vert T^{n}\xi\Vert/n$ !
$<\infty)$ . Bounded vectors are analytic, but not conversely. The space of all
bounded (resp. analytic) vectors will be denoted by $B(T)$ (resp. $D_{\omega}(T)$). Now
a closed formally normal operator $T$ is normal iff there exists a subspace
(linear manifold, not necessarily closed) $X\subset D(T),$ $TX\subset X,$ $T^{*}X\subset X$ such that
$B(T)\cap X$ is dense in $H[12]$ iff $T$ is a direct sum of bounded normal operators
(a consequence of the spectral Theorem) iff for a dense subspace $X$ of $D(T)$

satisfying $TX\subset X,$ $T^{*}X\subset X,$ $D_{\omega}(T)\cap X$ is dense in $H$ [$8$, Lemma 3.2]. The
purpose of this paper is to investigate the representation theoretic analogous
of these in the framework of unbounded representations [5], [6], [9]; and to
apply them to the representations of the polynomial algebras $\mathcal{P}(x)$ and $\mathcal{P}(x, y)$

in one and two commuting hermitian generators, thereby refining the main
results in [5].

Let $A$ be a $*$-algebra viz. a linear associating involutive algebra over com-
plex scalars and having identity 1. A hermitian representati0n (or $*$-representa-
tion) $(\pi, D(\pi),$ $H$) of $A$ on a Hilbert space $H$ is a mapping $\pi$ of $A$ into linear
operators (not necessarily bounded) all defined on a subspace $D(\pi)$ dense in $H$

such that for all $x,$ $y$ in $A$ , all scalars $\alpha,$ $\beta$ and all vectors $\xi,$
$\eta$ in $D(\pi)$ , the

following hold:

(i) $\pi(\alpha x+\beta y)\xi=\alpha\pi(x)\xi+\beta\pi(y)\xi$ ,
(ii) $\pi(x)D(\pi)\subset D(\pi)$ , and $\pi(x)\pi(y)\xi=\pi(xy)\xi$ ,
(iii) $\pi(1)=1$ , the identity operator,
(iv) $\pi(x^{*})\subset\pi(x)^{*}$ (: operator adjoint), $i$ . $e.,$ $\langle\pi(x)\xi, \eta\rangle=\langle\xi, \pi(x^{*})\eta\rangle$ .

It follows that for each normal element $x$ of $A,$ $x=h+ik$ with $h=h^{*},$ $k=k^{*}$ ,
$hk=kh$ , the operator $\pi(x)$ is formally normal. Unbounded representations have
been investigated in the contexts of Wightmann quantum field theory, repre-
sentations of Lie algebras, representation $thry$ of non-normed topological
$*$-algebras and algebras of unbounded operators. There is an analogy between
unbounded symmetric operators and unbounded hermitian representations [9].

The closure $(\overline{\pi}, D(\overline{\pi}),$ $H$ ) of a hermitian representation $(\pi, D(\pi),$ $H$) of $A$ is the
$*$-representation $\overline{\pi}$ defined on $D(\overline{\pi})=\cap\{D(\overline{\pi(x)})|x\in A\}$ as

$\overline{\pi}(x)=\overline{\pi(x)}|_{D(\#)}$ ,

$\overline{\pi(x)}$ denoting the closure of the operator $\pi(x)$ ; and $\pi$ is closed if $\pi=\overline{\pi},$
$i$ . $e$ .

$D(\pi)=D(\overline{\pi})$ . Hermitian adjoint $(\pi^{*}, D(\pi^{*}),$ $H$) of $a*$-representation $(\pi, D(\pi),$ $H$)

of $A$ is the representation (not necessarily satisfying (iv) above) with domain
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$D(\pi^{*})=\cap\{D(\pi(x^{*})^{*})|x\in A\}$ defined as
$\pi^{*}(x)=\pi(x^{*})^{*}|_{D(\pi*)}$ ;

and $\pi$ is selfadjoint if $\pi=\pi^{*},$ $i$ . $e$ . $D(\pi)=D(\pi^{*})$ . Note that given a hermitian
representation $\pi$ , the symmetric operator $\pi(h)$ , for $h=h^{*}$ in $A$ , need not be
essentially selfadjoint, even if $\pi$ is selfadjoint. In fact, $\pi$ is standard [5], [6],

[9] if $\pi(x)^{*}=\overline{\pi(x^{*})}$ for all $x\in A$ . We say that a representation $\pi$ is bounded
if each $\pi(x),$ $x\in A$ , is a bounded operator. A $\pi$-invariant subspace $M$ of $D(\pi)$ ,
for a hermitian representation $(\pi, D(\pi),$ $H$) of $A$ , defines a subrepresentation
$\pi_{M}$ with domain $D(\pi_{M})=M$ on the Hilbert space $\overline{M}$ (closure in $H$) as

$\pi_{M}(x)=\pi(x)|_{M}$ $(x\in A)$ .
We shall call a $\pi$-invariant subspace $X$ of $D(\pi)$ a core for $\pi$ if $\overline{\pi}=\overline{\pi}_{X}$

$(=(\pi|_{X})^{-})$ .

Deflnition 1.1. Let $(\pi, D(\pi),$ $H$) be a hermitian representation of a $*$-alge-
bra $A$ . The analytic vectors for $\pi$ are the vectors in

$D_{\omega}(\pi)=\bigcap_{x\in A}D_{\omega}(\pi(x))$ ;

and the bounded vectors for $\pi$ are the vectors in

$B(\pi)=\bigcap_{x\in A}B(\pi(x))$ .

It is shown in Section 2 that for a $closed*$-representation $\pi$ of a commuta-
tive $*$-algebra $A,$ $\pi$ is a direct sum of bounded representations iff $\pi$ is a closed
linear span (in an appropriate sense) of bounded representations iff $B(\pi)$ con-
tains a core for $\pi$ . In this case, $\pi$ is standard. This is used in Sections 3
and 4 to discuss standardness criteria for representations of polynomial algebras
$\mathcal{P}(x)$ and $\mathcal{P}(x, y)$ in commutin $g$ hermitian generators $x$ and $y$ , highlighting the
essential differences between the representation theory of these two algebras.
Given a representation $\pi$ of either $\mathcal{P}(x)$ or $\mathcal{P}(x, y)$ , it is shown that $\pi$ is
standard iff it is a direct sum of bounded representations. Standardness and
selfadjointness are equivalent for $\mathcal{P}(x)$ ; but not for $\mathcal{P}(x, y)$ . A selfadjoint re-
presentation $\pi$ of $\mathcal{P}(x, y)$ is standard iff $\pi(x^{2}+y^{2})$ is essentially selfadjoint.
We also discuss the problems of selfadjoint extensions for representations of
these polynomial algebras.

2. Representations and bounded vectors

Theorem 2.1. Let $(\pi, D(\pi),$ $H$ ) be a closed hermitian representation of a
commutative $*$-algebra A. The following are equivalent:
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(1) $\pi$ is a direct sum of bounded hermitian representations of $A$ .
(2) $\pi$ is a closed linear span of bounded hermitian representations of $A$ .
(3) There exists a subspace $X$ of $B(\pi)$ which forms a core for $\pi$ .

Under any of these conditions, $\pi$ is a standard representation; and for $x,$ $y$ in
$A$ , the normal oPerators $\overline{\pi(x)}$ and $\overline{\pi(y)}$ have mutually commuting spectral pro-
jections.

Let $\{(\pi_{i}, D(\pi_{\ell}), H_{\ell})|i\in I\}$ be a family of hermitian representations of $A$ .
The direct sum $\pi=\sum\pi_{i}$ is the representation $(\pi, D(\pi),$ $H$) of $A$ defined on
the Hilbert space $H=\oplus_{\ell}H_{i}$ with domain

$D(\pi)=\{\xi=(\xi_{i})\in H|\xi_{i}\in D(\pi_{\ell})(i\in I), \Sigma\Vert\pi_{i}(x)\xi_{i}\Vert^{2}<\infty(x\in A)\}$

defined as
$\pi(x)\xi=\Sigma\pi_{i}(x)\xi_{\ell}$ .

The closed linear span of bounded representations defined below is the repre-
sentation theoretic analogue of closed linear span of bounded operators [12].

Let $(D, \leqq)$ be a directed set. By $ H_{a}\uparrow$ is meant a family $\{H_{\alpha}|\alpha\in D\}$ of
Hilbert spaces $H_{a}$ such that for $\alpha\leqq\beta$ in D $H_{a}$ is a closed subspaces of $H_{\beta}$ , the
embedding $H_{a^{C}>}H_{\beta}$ being isometric. By $\pi_{a}\uparrow$ is meant a family $\{(z., D(\pi.),$ $H_{a}$ )
$|\alpha\in D\}$ of hermitian representations $\pi_{\alpha}$ of $A$ such that

(i) $ H_{a}\uparrow$ ,
$(iI)$ for each $\alpha,$ $D(\pi_{a})=H_{\alpha}$ and $\pi_{a}$ is bounded,
(iii) for each $x\in A,$ $\alpha\leqq\beta$ in $D,$ $\pi_{\alpha}(x)\subset\pi_{\beta}(x)$ .

Given $\pi_{a}\uparrow$ , define $\cup\pi_{a}$ by taking $D(\cup\pi_{\alpha})=\cup H_{a}$ , and

$(\cup\pi_{a})(x)=\cup\pi_{a}(x)$ ,

$i$ . $e.$ , for each $\xi\in H_{a},$ $(\cup\pi_{\alpha})(x)\xi=\pi_{a}(x)\xi$ . It is easily seen that this defines a
hermitian representation of $A$ on the Hilbert space V $H_{a}=closed$ linear span
(in this case, completion) of $\cup H_{a}$ with the inner product that is naturally de-
fined. Let V $\pi_{a}$ be the closure of $\cup\pi_{a}$ having domain $D(\pi_{\alpha})=\cap\{D((\cup\pi_{a})(x))$

$\ovalbox{\tt\small REJECT} x\in A\}$ ,

(V $\pi_{a}$ ) $(x)\xi=\overline{(\cup\pi_{a})(x)}\xi$ .
We call V $\pi_{\alpha}$ a closed linear span of bounded hermitian representations. In view
of Nelson’s Theorem [14, Th. 8.31, p. 261], $\pi_{\alpha}$ is a standard representation,
admitting a dense set of bounded vectors $H_{a}$ forming a core for $\pi$ . Theorem
2.1 establishes the converse.

Let $L^{+}(D(\pi))$ denote the $*$-algebra of all linear operators $T:D(\pi)\rightarrow D(\pi)$

such that $T^{*}D(\pi)\subset D(\pi)$ . The (formal) unbounded commutant of $\pi$ is

$\pi(A)^{c}=\{T\in L^{+}(D(\pi))|T\pi(x)\xi=\pi(x)T\xi(x\in A, \xi\in D(\pi))\}$ .
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Lemma 2.2. Let $(\pi, D(\pi),$ $H$) be a hermitian representation of a commutative
$*$-algebra A. Then the following hold.

(1) Each of $B(\pi)$ and $D_{\omega}(\pi)$ is a $\pi$-invariant subspace of $D(\pi)$ ; and

$ B(\pi)=\cap$ { $B(\pi(h))|h=h^{*}$ in $A$ } $\subset D_{\omega}(\pi)=\cap$ { $D_{\omega}(\pi(h))|h=h^{*}$ in $A$ }.

(2) $\pi(A)^{c}D_{w}(\pi)\subset D_{\omega}(\pi),$ $\pi(A)^{c}B(\pi)\subset B(\pi)$ .
(3) If there exists $Q\subset D(\pi)$ such that the linear span of $\pi(A)^{C}Q$ is dense in

$H$, and if $\pi$ is closed, then $\pi$ is standard; and for $x,$ $y$ in $A$ , the operat0rs $\overline{\pi(x)}$

and $\overline{\pi(y)}$ are normal, having mutually commuting spectral projections.
(4) Let $D=N^{A}=the$ set of all functions $f:A\rightarrow N$. For $f\in D$ , let

$B_{f}(\pi)=\{\xi\in D(\pi)|$ for each $x\in A$ there exists a positive number

$a_{x.\xi}$ satisfying $||\pi(x^{n})\Vert\leqq a_{x.\xi}(f(x))^{n}(n\in N)$ }.

Then $B(\pi)=\cup\{B_{f}(\pi)|f\in D\}$ , and each $B_{f}(\pi)$ is a $\pi$-invariant subspace of $D(\pi)$ .

Sublemma 2.3. Let $N$ be a formally normal operator in a Hilbert space $H$

with dense domain $D(N)$ such that $ND(N)\subset D(N),$ $N^{*}D(N)\subset D(N)$ . Let ${\rm Re} N$ and
${\rm Im} N$ denote respectivel$y$ the real and imaginary parts of N. The following hold.

(1) $D_{\omega}(N)=D_{\omega}({\rm Re} N)\cap D_{\omega}({\rm Im} N),$ $B(N)=B({\rm Re} N)\cap B({\rm Im}_{1}V)$ ,
(2) $\{N, N^{*}\}^{c}D_{\omega}(N)\subset D_{\omega}(N),$ $\{N, N^{*}\}^{c}B(N)\subset B(N)$ .

Proof of Sublemma. (1) One has ${\rm Re} N=(N+N^{*})/2,$ ${\rm Im} N=(N-N^{*})/2i$ , so
that $N={\rm Re} N+i{\rm Im} N$. Also, $D(N)\subset D(N^{*})$ ; and for any $\xi\in D(N)$ , $\Vert N\xi\Vert=$

$||N^{*}\xi\Vert,$ $ N^{*}N\xi=NN^{*}\xi$ . The assertion $D_{\omega}(N)=D_{\omega}({\rm Re} N)\cap D_{\omega}({\rm Im} N)$ has been
noted in the remark on p. 34 following [13, Prop. 1]. This can also be verified
by arguments similar to those for bounded vectors given below. Let $\xi\in B(N)$ ,
so that for suitable $a>0,$ $c>0,$ $\Vert N^{n}\xi\Vert\leqq ac^{n}$ for all $n\in N$. Then, for any $n\in N$,

$\Vert({\rm Re} N)^{n}\xi\Vert=\Vert(\frac{N+N^{*}}{2})^{n}\xi\Vert=\Vert\sum_{k=0}^{n}\left(\begin{array}{l}n\\k\end{array}\right)N^{k}(N^{*})^{n-k}\xi\Vert$

$\leqq\sum_{k\approx 0}^{n}\left(\begin{array}{l}n\\k\end{array}\right)\Vert N^{k}(N^{*})^{n-k}\xi\Vert=\Vert N^{n}\xi\Vert\sum_{k\approx 0}^{n}\left(\begin{array}{l}n\\k\end{array}\right)$

$\leqq 2^{n}ac^{n}=a(2c)^{n}$

Thus $\xi\in B({\rm Re} N)$ . Similarly, $\xi\in B({\rm Im} N)$ . If follows that $ B(N)\subset B({\rm Re} N)\cap$

$B({\rm Im} N)$ . Conversely, let $\xi\in B({\rm Re} N)\cap B({\rm Im} N)$ . Choose $a>0,$ $c>0$ such that
for all $n\in N,$ $\Vert({\rm Re} N)^{n}\xi\Vert\leqq ac^{n},$ $\Vert({\rm Im} N)^{n}\xi\Vert\leqq ac^{n}$ . Then, using Cauchy-Schwarz
inequality, we get, for each $n\in N$,
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$\Vert N^{n}\xi\Vert=\Vert({\rm Re} N+i{\rm Im} N)^{n}\xi\Vert$

$=\Vert\sum_{k=0}^{n}\left(\begin{array}{l}n\\k\end{array}\right)({\rm Re} N)^{n}(i{\rm Im} N)^{n-k}\xi\Vert$

$\leqq\Sigma\left(\begin{array}{l}n\\k\end{array}\right)\Vert({\rm Re} N)^{n}({\rm Im} N)^{n-k}\xi\Vert$

$\leqq\Sigma\left(\begin{array}{l}n\\k\end{array}\right)(\Vert({\rm Re} N)^{n}\xi\Vert\Vert({\rm Im} N)^{n-k}\xi\Vert)^{1/2}$

$\leqq\Sigma\left(\begin{array}{l}n\\k\end{array}\right)(ac^{n}ac^{n})^{1/2}=a(2c)^{n}$

Thus, $\xi\in B(N)$ , and $B({\rm Re} N)\cap B({\rm Im} N)\subset B(N)$ .
(2) The assertion concerning analytic vectors follows from [13, Prop. 2].

Let $\xi\in B(N)$ satisfying $\Vert N^{n}\xi\Vert\leqq ac^{n}$ for all $n\in N$. Let $T\in\{N, N^{*}\}^{c}$ . Then,

for any $n\in N$,

$\Vert N^{n}T\xi\Vert^{2}=\langle N^{n}T\xi, N^{n}T\xi\rangle=\langle(N^{*})^{n}N^{n}\xi, T^{*}T\xi\rangle$

$\leqq\Vert(N^{*})^{n}N^{n}\xi\Vert\Vert T^{*}T\xi||$

$\leqq\Vert T^{*}T\xi\Vert\Vert N^{2n}\xi\Vert$

$=(\sqrt{\Vert T^{*}T\xi\Vert})^{2}ac^{2n}=t^{2}c^{2n}$

It follows that $T\xi\in B(N)$ .

Proof of Lemma 2.2. Since $A$ is commutative, $\pi(A)\subset\pi(A)^{c}$ . Thus the
assertions (1) and (2) follow from the sublemma. If there exists a subset $ Q\subset$

$D_{\omega}(\pi)$ such that $\pi(A)^{c}Q$ is linearly dense in $H$, then [13, Th. 1] implies that
the formally normal operators $\pi(x),$ $x\in A$ , are all essentially normal. Thus,

for each $h=h^{*}$ in $A,$ $\overline{\pi(h)}$ is selfadjoint. This, bv [$9(I)$ , Th. 7.1], implies that
$\overline{\pi(x^{*})}=\pi(x)^{*}$ for all $x$ . Thus $\pi$ is standard. Futher, [13, Th. 2] also implies
that for $x,$ $y$ in $A$ the normal operators $\overline{\pi(x)}$ and $\overline{\pi(y)}$ have mutually commut-
ing spectral projections. This gives (3). For (4), it is obvious that each $B_{f}(\pi)$

is a subspace of $B(\pi)$ , and $B(\pi)=\cup\{B_{f}(\pi)|f\in D\}$ . We show that $\pi(A)B_{f}(\pi)\subset$

$B_{f}(\pi)$ . Let $f\in D,$ $\xi\in B_{f}(\pi),$ $y\in A$ . Then, for each $x\in A,$ $n\in N$,

$\Vert\pi(x)^{n}\pi(y)\xi\Vert^{t}=\langle\pi((x^{*}x)^{n})\xi, \pi(y^{*}y)\xi\rangle$

$\leqq\Vert\pi(y^{*}y)\xi\Vert\Vert\pi((x^{*}x)^{n})\xi\Vert$

$=\Vert\pi(y)^{*}\pi(y)\xi\Vert\Vert(\pi(x^{n}))^{*}(\pi(x)^{n})\xi\Vert$

$\leqq\Vert\pi(y)^{2}\xi\Vert\Vert\pi(x)^{2n}\xi\Vert$

$\leqq a_{y.\xi}f(y)^{2}a_{x.\text{\’{e}}}f(x)^{2n}$
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for suitable $a_{y.\xi}>0,$ $a_{x.\xi}>0$ . It follows that $\pi(y)\xi\in B_{f}(\pi)$ .

Proof of Theorem 2.1. That (2) implies (3) follows immediately from the
definition of closed linear span of bounded representations. Conversely, assume
(3). Let $D=N^{A}$ be directed by the partial order $f\leqq g$ if $f(x)\leqq g(x)$ for all
$x\in A$ . For $\alpha\in D$ , let $X_{a}=B_{\alpha}(\pi)\cap X$ , a $\pi$-invariant subspace by Lemma 2.2.
Let $H_{a}=\overline{X}_{\alpha}$ , closure in $H$. Clearly $ H_{\alpha}\uparrow$ . Define a hermitian representation
$\pi_{\alpha}$ of $A$ on $H_{\alpha}$ with domain $D(\pi_{\alpha})=X_{\alpha}$ by $\pi_{\alpha}(x)=\pi(x)|x_{\alpha},$ $x\in A$ . Then, for
all $\xi\in X_{\alpha},$ $x\in A,$ $n\in N$, one has

$\Vert\pi_{a}(x^{n})\xi\Vert\leqq a_{x,\xi}(a(x))^{n}$

Now
$\Vert\pi_{\alpha}(x^{n})\xi\Vert^{2}\leqq\Vert\xi\Vert\Vert(\pi_{a}(x^{n}))^{*}\pi_{\alpha}(x)^{n}\xi\Vert$

$=\Vert\xi\Vert\Vert\pi_{\alpha}(x)^{2n}\xi\Vert$ .

Hence, by iterations, one gets, for all $n\in N$,

$\Vert\pi_{a}(x)\xi\Vert^{2}\leqq\Vert\xi\Vert^{2(1-1/2^{n})}\Vert\pi_{\alpha}(x)^{2^{n}}\xi\Vert^{2/2^{n}}$

$\leqq\Vert\xi\Vert^{2(1-1/2^{n})}[a_{x.\xi}\alpha(x)^{2^{n}}]^{2/2^{n}}$

Hence $\Vert\pi_{\alpha}(x)\xi\Vert\leqq\alpha(x)\Vert\xi\Vert(\xi\in D(\pi_{\alpha}), x\in A)$ , showing that $\pi_{\alpha}$ is bounded; $\Vert\pi_{a}(x)\Vert$

$\leqq\alpha(x)(x\in A)$ . Hence, $D(\overline{\pi}_{\alpha})=H_{\alpha},\overline{\pi}_{\alpha}\uparrow,\overline{\pi}_{a}$ is bounded, and $\pi_{\alpha}\subset\overline{\pi}_{a}\subset\overline{\pi}=\pi$ .
$\Gamma hus\pi|_{X}\subset\bigcup_{\alpha}\pi_{a}\subset\pi$ . This gives, by assumption about $X$ , that $\overline{\pi}=(\pi|_{X})^{-}\subset$

$(\cup\overline{\pi}_{a})^{-}=\overline{\pi}_{\alpha}\subset\overline{\pi}=\pi$ showing that $\pi=\overline{\pi}_{\alpha}$ . Thus (3) implies (2). Now assume
(1), say $\pi=\sum\pi_{i}$ , with each $\pi_{i}$ a bounded hermitian representation with domain
$D(\pi_{i})=H_{i}$ . Then $H_{\ell}\subset B(\pi)$ for each $i$ , and it follows by the definition of direct
sum, that $B(\pi)$ is a core for $\pi$ . Thus (1) $\Rightarrow(3)\Rightarrow(2)$ . Finally, assume (2), so that
$\pi=\vee\{\pi_{\beta}|\beta\in J\},$ $\pi_{\beta}\uparrow$ , each $\pi_{\beta}$ bounded, and $D(\pi_{\beta})=H_{\beta}$ . Then $\nu^{H_{\beta}\subset B(\pi)\subset}$

$D(\pi)$ ; and since $\pi$ is closed, $D(\pi)=\overline{B(\pi)}^{c_{\pi}}$ closure in the locally convex topology
$t_{\pi}$ on $D(\pi)$ defined by seminorms $\xi\rightarrow\Vert\pi(x)\xi\Vert,$ $x\in A$ . (Note that $\pi$ being closed,
$(D(\pi), t_{\pi})$ is complete). Thus, for each $h=h^{*}$ in $A,,$ $D_{\omega}(\pi(h))$ is dense in $H$.
It follows from Nelson’s Analytic Vector Theorem [14, Th. 8.31, p. 261] that
$\pi(h)$ is essentially selfadjoint. Hence by [$9(I)$ , Th. 7.1], $\pi$ is standard, and
hence selfadjoint. Let $B(H)$ denote the $C^{*}$-algebra of all bounded linear opera-
tors on $H$. Selfadjointness of $\pi$ implies [$9(I)$ , Th. 4.7] that the weak bounded
commutant $\pi(A)_{W}^{\prime}=$ { $T\in B(H)|\langle T\pi(x)\xi,$ $\eta\rangle=\langle T\xi$ . $\pi(x^{*})\eta\rangle$ for $x\in A,$ $\xi,$ $\eta\in D(\pi)$ }

is a von Neumann algebra; and there is a one-one correspondence between
orthogonal projections in $\pi(A)_{W}^{\prime}$ and selfadjoint $\pi$-invarient subspaces of $D(\pi)$ .
Now let $\xi\in B(\pi),$ $ M=\pi(A)\xi$ . Then $M$ is $\pi$-invarient, $M\subset B(\pi)$ . Let $H_{\xi}=\overline{M}$

(norm closure in $H$), $M_{\xi}=\overline{M}^{t_{\pi}}$ (closure in $(D(\pi),$ $t_{\pi})$). Let $D(\pi_{\xi})=M_{\xi}$ ; and $\pi_{\text{\’{e}}}(x)$

$=\pi(x)|_{M\xi}(x\in A)$ . Then $(\pi_{\xi}, D(\pi_{\text{\’{e}}}),$ $H_{\xi}$) is a bounded closed hermitian repre-
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sentation of $A$ , hence is selfadjoint, with the result, the orthogonal projection
$E_{\xi}$ : $H\rightarrow H_{\xi}$ is in $\pi(A)_{W}^{\prime}$ . Thus $(1-E_{\xi})\in\pi(A)_{W}^{\prime}$ , $(1-E_{\xi})D(\pi)\subset D(\pi)$ . Let $N=$

$(1-E_{\xi})D(\pi),$ $H_{1}=H_{\xi}^{\perp}=\overline{N}$ . Let $D(\pi_{1})=\overline{N}^{t_{\pi}},$
$\pi_{1}=\pi|_{D(\pi_{1})}$ . Then $\pi_{1}$ is a selfadjoint

representation of $A$ , and there exists $\eta\in B(\pi)\cap H_{1}$ . As above, this would de-
fine a bounded closed hermitian representation $(\pi_{\eta}, D(\pi_{\eta}),$ $H_{\eta}$ ) such that $H_{\xi}\perp H_{\eta}$ .
Now, by Zorn’s Lemma, there exists a maximal family $(\xi_{i}|i\in I)$ of vectors in
$D(\pi)$ such that each $H_{i}=\overline{\pi(A)\xi_{i}}\subset D(\pi),$ $H_{i}\perp H_{j}(i\neq j)$ ; and $\pi_{i}=\pi|_{D(\pi\ell)}$ , with
$D(\pi_{\ell})=\overline{(\pi(A)\xi_{i}})^{t_{\pi}}$ , defines a bounded closed hermitian representation of $A$ . The
maximality and the assumption that $\pi$ is closed imply that $\pi=\sum\pi_{i}$ ; and (1)
follows. This completes the proof of Theorem 2.1.

Corollary 2.4. Let $(\pi, D(\pi),$ $H$) be a selfadjoint representation of a com-
mutative $*$-algebra A. Then $\pi=\pi_{c}\oplus\pi_{d}$ , where $\pi_{c}$ is a closed linear span of
bounded hermitian representations and $\pi_{a}$ is completely unbounded in the sense
that $\pi_{d}$ admits no nonzero bounded vector. Thus, if $\pi$ is irreducible, then either
$\pi$ is one dimensional or it admits no nonzero bounded vector.

Remark 2.5. Let $(\pi, D(\pi),$ $H$) be a selfadjoint representation of a com-
mutative $*$-algebra $A$ . By Lemma 2.2, $\pi(A)D_{w}(\pi)\subset D_{w}(\pi)$ . Let $D(\pi_{\omega})=closure$

of $D_{\omega}(\pi)$ in $(D(\pi), t_{\pi})$ . Let $H_{\omega}=norm$ closure of $D_{\omega}(\pi)$ in $H$. Let $\pi_{\omega}(x)=$

$\pi(x)|_{D(\pi_{\omega})}(x\in A)$ . Then $(\pi_{\omega}, D(\pi_{\omega}),$ $H_{\omega}$ ) is a closed hermitian representation
admitting a dense set of analytic vectors. Hence $\pi$ is standard, and so is self-
adjoint. Thus the projection $E_{\omega}$ : $H\rightarrow H_{\omega}$ is in $\pi(A)_{W}^{\prime}$ ; and the complementary
representation $(\pi_{\epsilon}, D(\pi_{\epsilon}),$ $H_{l}$), contains no nonzero analytic vector. Thus one
gets an analytic decomposition of $\pi$ as $\pi=\pi_{\omega}\oplus\pi_{s}$ .

Example 2.6. Let $Z$ be a measure space with positive measure $M$ . Fol-
lowing [7], a dense subalgebra $\mathfrak{U}$ of $L^{2}(Z, \mu)$ is a $*$-algebra in $L^{2}(Z, \mu)$ if $\mathfrak{U}$

is a $*$-algebra with pointwise operations and complex conjugation. Let $A$ be
any commutative $*$-algebra. Let $\phi$ be $a*$-homomorphism of $A$ onto a $*$-algebra
in $L^{2}(Z, \mu)$ . Define a hermitian representation $\sigma$ of $A$ in the Hilbert space
$L^{2}(Z, \mu)$ by $\sigma(x)=M_{\phi(x)},$ $M_{\phi(x)}g=\phi(x)g$ , viz. the multiplication operator with
maximum domain

$D(M_{\phi(x)})=\{g\in L^{2}(Z, \mu)|\phi(x)g\in L^{2}(Z, \mu)\}$ .
The domain of $\sigma$ is $D(\sigma)=\cap\{D(M_{\phi(x)})|x\in A\}$ . Then $\sigma$ is a standard repre-
sentation of $A$ . The following hold:

(i) $L_{2}^{w}(Z, \mu)=\bigcap_{2\leq p<\infty}L^{p}(Z, \mu)$ and $L^{\omega}(Z, \mu)=\bigcap_{1\leqq p<\infty}L^{p}(Z, \mu)$ are $*$-algebras

in $L^{2}(Z, \mu)[1]$ .
(ii) If $\mu$ is finite, then $L^{\infty}(Z, \mu)\subset L^{\omega}(Z, \mu)=L_{2}^{\omega}(Z, \mu)$ .
(iii) Any $*$-algebra in $L^{2}(Z, \mu)$ is contained in $L_{2}^{\omega}(Z, \mu)$ .
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(iv) $B(\sigma)=\{g\in D(\sigma)|_{bounded}^{foreach}onthesupportofgx\in A,\phi(x)isessentially\}$ .

3. Representations of $\mathscr{P}(x)$

Let $\mathscr{P}(x)$ be the free commutative algebra in one hermitian generator $x$ .
Thus $\mathscr{P}(x)$ is the $*$-algebra with identity consisting of all complex polynomials
in $x=x^{*}$ . Inoue and Takesu [5] have investigated selfadjoint representations
of $\mathscr{P}(x)$ . In what follows, the results in [5] are refined and supplimented using
the results in Section 2.

Theorem 3.1. Let $(\pi, D(\pi),$ $H$) be a closed hermitian representation of $\mathscr{P}(x)$ .
Then the following hold.

(A) $B(\pi)=B(\pi(x))$

(B) The following are equivalent
(1) $\pi$ is standard
(2) $\pi$ is a direct sum of bounded hermitian representations.

Proof. (A) Let $\xi\in B(\pi(x))$ . Choose $a>0,$ $c>0$ such that $|_{1}\{\pi(x)^{n}\xi\Vert\leqq ac^{n}$

for all $n\in N$. Let $P(x)=\sum_{j\Rightarrow 0}^{k}a_{j}x^{j}\in \mathscr{P}(x)$ . Then $P(x)^{n}=\sum_{J_{1}\cdot\cdots\cdot J_{n}\simeq 0}^{k}a_{J_{1}}\cdots a_{J_{n}}x^{j_{1}+\cdots+j_{n}}$ .

Hence, for all $n\in N$,

$\Vert\pi(P(x))^{n}\xi\Vert\leqq$ $\sum_{j_{1},\cdots.j_{n}=0}^{k}$ $a_{j_{1}}a_{j_{2}}\cdots a_{j_{n}}\Vert\pi(x)^{j_{1}+\cdots+j_{n}}\xi\Vert\leqq aP(c)^{n}$

Thus $\xi\in B(P(x))$ ; and (A) follows.
(B) By Theorem 2.1, (2) $\Rightarrow(1)$ . Assume that $\pi$ is standard. Then $\overline{\pi(x)}$ is

a selfadjoint operator; hence $B(\overline{\pi(x)})$ is dense in $H$. The spectral resolution

$\overline{\pi(x)}=\int_{-\infty}^{\infty}dE(\lambda)$

implies that

$B(\overline{\pi(x)})=\bigcup_{n=1}^{\infty}E[-n, n]$ $H=B(\overline{\pi(x)})\cap C^{\infty}(\overline{\pi(x)})$

[12, p. 365]. But since $\pi$ is selfadjoint, [5, Th. 2.1] implies that $D(\pi)=$

$C^{\infty}(\overline{\pi(x)})$ . Hence
$B(\pi)=B(\pi(x))=D(\pi)\cap B(\overline{\pi(x)})=B(\overline{\pi(x)})$ ,

which is dense in $D(\pi)$ ; and $\pi=(\pi|_{B(\pi)})^{-}$ , as $D(\pi|_{B(\overline{\pi})})$ is the completion of
$B(\pi)$ in the induced topology $t_{\pi}$ . Theorem 2.1 implies (2).

The following follows from Theorem 3.1, [5, Th. 2.1] and [3].
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Corollary 3.2. Lel $(\pi, D(\pi),$ $H$) be a closed hermitian representation of $\mathcal{P}(x)$ .
The following are equivalent;

(1) $\pi$ is standard.
(2) $\pi$ is a direct sum of bounded hermitian representations.
(3) $\pi$ is selfadjoint.
(4) $\pi(\mathcal{P}(x))_{W}^{\prime}D(\pi)=D(\pi)$ .
(5) $\pi(x)$ is essentially selfadjoint and $D(\pi)=C^{\infty}(\overline{\pi(x)})$ .
(6) $\pi(x)^{n}$ is essentially selfadjoint for all $n\in N$.
(7) $\pi(\mathcal{P}(x))_{W}^{\prime}=\pi(\mathcal{P}(x))_{s}^{\prime}$ and $D(\pi^{*})=\pi(\mathcal{P}(x))_{W}^{\prime}D(\pi)$ .
(8) $\pi(\mathcal{P}(x))_{W}^{\prime}=\pi(\mathcal{P}(x))_{l}^{\prime}$ .

Recall [3] that $\pi(A)_{l}^{\prime}=\{C\in\pi(A)^{\prime}|CD(\pi)\subset D(\pi)\}$ , the strong commutant for
a hermitian representation $\pi$ of a $*$-algebra $A$ .

The following refines [$9(I)$ , Lemma 3.2] and [5, Th. 2.4].

Proposition 3.3. Let $(\pi, D(\pi),$ $H$ ) be a closed hermitian representation of
$\mathcal{P}(x)$ . Then the following are equivalent.

(1) $\pi^{*}$ is standard.
(2) $\pi^{*}$ is hermitian.
(3) $\pi^{*}$ is selfadjoint.
(4) $\pi(x)$ is essentially selfadjoint.
(5) $\pi(\mathcal{P}(x))_{W}^{\prime}$ is an algebra.
(6) $D(\pi^{*})=C^{\infty}(\overline{\pi(x)})$ .

Proof. In above, (2) iff (3) iff (1) follow from [$9(I)$ , p. 95] and Corollary
3.2; (3) iff (4) is [5, Th. 2.4] and (4) iff (5) is [$9(I)$ , Lemma 3.2]. We show
(5) $\Rightarrow(6)\Rightarrow(3)$ . Assume (5). Let

$\overline{\pi(x)}=\int_{-\infty}^{\infty}\lambda dE(\lambda)$

be the spectral theorem for the selfadjoint operator $\overline{\pi(x)}$ . Let $\xi\in C^{\infty}(\overline{\pi(x)})=$

$\bigcap_{n=1}^{\infty}D(\overline{\pi(x)}^{n})$ . There exists a sequence $(\xi_{k})$ in $D(\pi)$ such that $\xi_{k}\rightarrow\xi$ . For each

$n\in N$,

$E_{n}=\int_{-n}^{n}dE(\lambda)$

is in $\pi(\mathcal{P}(x))_{W}^{\prime}$ ; and so, for all $n,$
$k$ ,

$E_{n}\xi_{k}\in\pi(\mathcal{P}(x))_{W}^{\prime}D(\pi)\subset D(\pi^{*})$

[$9(I)$ , Lemma 4.5]. Now, for each $n$ ,

$ E_{n}\xi_{k}\rightarrow E_{n}\xi$, $\pi(x)^{m}E_{n}\xi_{k}\rightarrow\overline{\pi(x)}^{m}E_{n}\xi$ $(m\in N)$ ,
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$\overline{\pi(x)}^{m}$ being bounded on $E_{n}D(\overline{\pi(x)})$ . Thus, for all $z\in \mathcal{P}(x),$ $\pi(z)E_{n}\xi_{k}\rightarrow\overline{\pi(z)}E_{n}\xi$

for all $n$ . Since $\pi^{*}$ is closed, $E_{n}\xi\in D(\pi^{*})$ for all $n\in N$. Also, as $ n\rightarrow\infty$ ,

$ E_{n}\xi\rightarrow\xi$ , $\overline{\pi(x)}^{m}E_{n}\xi\rightarrow\overline{\pi(x)}^{m}\xi$ , $\pi^{*}(x)^{m}E_{n}\xi\rightarrow\pi^{*}(x)^{m}\xi$ $(m\in N)$ .
As above, by the closedness of $\pi^{*},$ $\xi\in D(\pi^{*})$ . Thus $C^{\infty}(\overline{\pi(x)})\subset D(\pi^{*})$ . Also,

$D(\pi^{*})=\cap\{D(\pi(y^{*})^{*})|y\in \mathcal{P}(x)\}$

$\subset\cap\{D((\pi(x^{n}))^{*})|n\in N\}=\cap\{D((\pi(x)^{n})^{*})|n\in N\}$

$=\cap\{D((\pi(x)^{*})^{n})|n\in N\}$ (by [5, Lemma 2.2])

$=\cap\{D(\overline{\pi(x})^{n})|n\in N\}=C^{\infty}(\overline{\pi(x)})$ ,

$\pi(x)$ being essentially selfadjoint. It follows that (5) $\Rightarrow(6)$ . Now assume (6).

Observe that $\pi\subset\pi^{*}$ , hence $\pi^{**}\subset\pi^{*}$ . For any $z\in \mathcal{P}(x),$ $\pi^{*}(z)=\pi(z^{*})^{*}|_{D(\pi*)}$ ,

hence $\pi^{*}(z)\subset\pi(z^{*})^{*}$ , and so $\pi(z^{*})\subset(\pi^{*}(z))^{*}$ . Therefore,

$D(\pi^{**})=\cap\{D(\pi^{*}(z)^{*})|z\in \mathcal{P}(x)\}$

$\supset\cap\{D(\pi(z^{*})^{**})|z\in \mathcal{P}(x)\}=\cap\{D(\overline{\pi(z^{*})})|z\in \mathcal{P}(x)\}$

$=\cap\{D(\overline{\pi(z)})|z\in \mathcal{P}(x)\}=\cap\{D((\overline{\pi(x)})^{n})|n\in N\}=D(\pi^{*})$

by (6). Thus $\pi^{*}\subset\pi^{**}$ , and so $\pi^{*}=\pi^{**}$ showing that $\pi^{*}$ is selfadjoint.

Proposiiton 3.4. Let $(\pi, D(\pi),$ $H$) be a hermitian representation of $\mathcal{P}(x)$ .
The following are equivalent:

(1) $\pi$ has a standard extension in $H$.
(2) $\pi$ has a selfadjoint extension in $H$.
(3) $\pi(x)$ has a selfadjoint extension in $H$.

Proof. That (1) $\Rightarrow(2)\Rightarrow(3)$ follow from Corollary 3.2. Assume (3). Let $T$

be a selfadjoint operator with dense domain $D(T)$ in $H$ such that $D(\pi)\subset D(T)$

and $\pi(x)\subset T$ . Then $T=(T|_{B(T)})^{-}=(T|_{D_{\omega}(T)})^{-}=(T|_{C^{\infty}(T)})^{-}$ . Taking $D(\sigma)=C^{\infty}(T)$ ,
define $\sigma(P(x))=P(T)|_{Dt\sigma)}$ $(P(x)\in \mathcal{P}(x))$ . The hermitian representation
$(\sigma, D(\sigma),$ $H$) is an extension of $\pi$ satisfying $\overline{\sigma(x)}=T$ . Since $\overline{T^{n}}=(\overline{T})^{n}(n\in N)$ ,

$D(\overline{\sigma})=\cap\{D(\overline{\sigma(z)})|z\in \mathcal{P}(x)\}$

$\subset\cap\{D(\overline{\sigma(x^{n})})|n\in N\}=\cap\{D((T^{n}|_{D(\sigma)})^{-})|n\in N\}$

$\subset\cap\{D(\overline{T}^{n})|n\in N\}=\cap\{D(T^{n})|n\in N\}=D(\sigma)$ ,

showing that $\sigma$ is closed. Also,

$D(\sigma)=\bigcap_{n=1}^{\infty}D(T^{n})=\bigcap_{n=1}^{\infty}D(\overline{\sigma(x)}^{n})$ .
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Hence $\sigma$ is standard by Corollary 3.2.

It follows that $\pi$ is selfadjoint iff $\pi$ is closed and $\pi(x)$ admits a selfadjoint

extension $T$ in $H$ such that $D(\pi)=\bigcap_{n=1}^{\infty}D(T^{n})$ .

4. Representations of $\mathscr{P}(x, y)$

Let $\mathscr{P}(x, y)$ be the free commutative $*$-algebra with 1 generated by two
commuting hermitian generators $x,$ $y$ . In [5, Th. 3.2], various standardness
criteria for representations of $\mathscr{P}(x, y)$ have been discussed. In this section,
using Theorem 2.1, several other standardness criteria for $\pi$ are discussed.

Theorem 4.1. Let $(\pi, D(\pi),$ $H$) be a closed hermitian representation of
$\mathscr{P}(x, y)$ . Then the following hold:

(A) $B(\pi)=B(\pi(x)+i\pi(y))=B(\pi(x))\cap B(\pi(y))$ .
(B) The following are equivalent.

(1) $\pi$ is standard.
(2) $\pi$ is a direct sum of bounded hermitian representations.

Proof. (A) Sublemma 2.3 gives $B(\pi(x)+i\pi(y))=B(\pi(x))\cap B(\pi(y))$ . Define

$B(\pi(x), \pi(y))$

$=\{\xi\in D(\pi)|\exists a, c_{1}, c_{2}>0s. t. \Vert\pi(x)^{k}\pi(y)^{m}\xi\Vert\leqq ac_{1}^{k}c_{2}^{m}(k, m\in N)\}$ .
Let $\xi\in B(\pi(x), \pi(y))$ with $a,$ $c_{1},$ $c_{2}$ as above. Let

$P(x, y)=\sum_{\ell=0}^{k}\sum_{f=0}^{m}a_{\dot{i}f}x^{i}y^{j}$ .

Then, for any $n\in N$,

$P(x, y)^{n}=\sum_{i_{1}\ldots..t_{n}=0}^{k}\sum_{f_{1}\ldots..f_{n}=0}^{m}a_{\ell_{1}f_{1}}a_{\ell_{2}f_{2}}\cdots a_{\ell_{n^{j}n}}x^{\ell_{1}+i_{2}+\cdots+\ell_{n}}y^{j_{1}+\cdots+j_{n}}$ .

Hence,

$\Vert(\pi P(x, y))^{n}\xi\Vert=\Vert P(\pi(x), \pi(y))^{n}\xi\Vert$

$\leqq\Sigma a_{\ell_{1}f_{1}}a_{i_{2}j_{2}}\cdots a_{\iota_{n^{i}n}}\Vert\pi(x)^{i_{1}+\cdots+\ell_{n}}\pi(y)^{f_{1}+\cdots+f_{n}}\xi\Vert$

$\leqq aP(c_{1}, c_{2})^{n}$

Thus $\xi\in B(\pi(P(x, y)))$ for all $P(x, y)$ ; and $B(\pi(x), \pi(y))\subset B(\pi)$ . Conversely,
let $\xi\in B(\pi)$ . Let $n,$ $m$ be in $N$. Then
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$\Vert\pi(x)^{m}\pi(y)^{n}\xi\Vert^{2}=\langle\pi(x^{m}y^{n})\xi, \pi(x^{m}y^{n})\xi\rangle=\langle\pi(x)^{2m}\xi, \pi(y)^{2n}\xi\rangle$

$(*)$

$\leqq\Vert\pi(x)^{2m}\xi\Vert\Vert\pi(y)^{2n}\xi\Vert\leqq a_{x_{1}}c_{x_{1}}^{2m}a_{y_{1}}c_{y_{1}}^{2n}\leqq ac_{1}^{2m}c_{2}^{2n}$

for suitable $a,$ $c_{1}$ and $c_{2}$ . Thus $\xi\in B(\pi(x), \pi(y))$ , and $B(\pi)=B(\pi(x), \pi(y))$ .
Obviously, $B(\pi(x), \pi(y))\subset B(\pi(x))\cap B(\pi(y))$ ; whereas, above $(*)$ implies $B(\pi(x))$

$\cap B(\pi(y))\subset B(\pi(x), \pi(y))$ . This proves (A).

(B) Assume (1). By [5, Th. 3.2], $\overline{\pi(x)}$ and $\overline{\pi(y)}$ are selfadjoint operators
with mutually commuting spectral projections, so that $N=\overline{\pi(x)}+\dot{l}\overline{\pi(y)}$ is a
normal operator. As noted in [7, p. 399], $D(N^{n})=D((\overline{\pi(x)})^{n})\cap D((\overline{\pi(y)})^{n})$ ; hence

$C^{\infty}(N)=\bigcap_{n=1}^{\infty}D(N^{n})=D(\pi)$ by [5, Th. 3.2]. Let

$N=\int\lambda dE(\lambda)$

be the spectral resolution. Then $B(N)=\bigcup_{c>0}E(D_{\iota})H$, where $D_{c}=\{z\in C||z|\leqq c\}$ .
Hence $B(N)\subset C^{\infty}(N)$ . Thus

$B(N)=B(N)\cap C^{\infty}(N)=B(N)\cap D(\pi)$

$=B(\overline{\pi(x)}+i\overline{\pi(y)})\cap D(\pi)=B(\pi(x)+i\pi(y))=B(\pi)$ .

Thus, the $\pi$-invariant subspace $B(\pi)$ is dense in $H$ ; and $(\pi_{B(\pi)})^{-}=\pi$ . By Theo-
rem 2.1, (2) follows.

The following supplements [5, Th. 3.2]. For the sake of completeness and
comparision with Corollary 3.2, relavant statements from this reference are
included herein.

Theorem 4.2. Let $(\pi, D(\pi),$ $H$) be a hermitian representation of $\mathcal{P}(x, y)$ .
Then the following are eqiuvalent.

(1) $\pi$ is standard.
(2) $\pi$ is closed; and it is a direct sum of bounded hermitian representations.

(3) $\pi(x)+i\pi(y)$ is essentially normal, and $D(\pi)=\bigcap_{n=1}^{\infty}\{D((\overline{\pi(x)})^{n})\cap D((\overline{\pi(y)})^{n})\}$ .
(4) For each $x=1,2,$ $\cdots$ , $\pi(x)^{n}$ and $\pi(y)^{n}$ are essentially selfadjoint; $\pi(x)+$

$i\pi(y)$ has a normal extension in $H$ ; and $\pi$ is closed.
(4) For all $n=1,2,$ $\cdots$ , $(\overline{\pi(x)})^{n}$ and $(\overline{\pi(y)})^{n}$ are selfadjoint with mutually

commuling spectral projections.
(5) $\pi$ is closed, and $\pi(x^{2}+y^{2})$ is essentially selfadjoint.
(6) $\pi((x^{2}+y^{2})^{n})$ is essentially selfadjoint for all $n=1,2,$ $\cdots$

(7) $\pi(x^{2}+y^{2})_{W}^{\prime}D(\pi)=D(\pi)$ .
(8) $\pi$ is selfadjoint, and $\pi(x)+i\pi(y)$ has a normal extension in $H$.
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(9) $\pi(x)$ and $\pi(y)$ are essentially selfadjoint, $ D_{(}\pi$) $=\bigcap_{n=1}^{\infty}(D((\overline{\pi(x}))^{n})\cap D((\overline{\pi(y)})^{n}))$

and $\pi(x)+i\pi(y)$ has a normal extension in $H$.
(10) $\pi$ is closed, $\overline{\pi(x)}$ and $\overline{\pi(y)}$ are selfadjoint operators with mutually com-

muting spectral projections and $\pi(\mathcal{P}(x, y))_{W}^{\prime}D(\pi)=D(\pi)$ .

Proof. The assertions (1) iff (8) iff (9) iff (10) constitute [5, Th. 3.2];

where (1) iff (2) follows from Theorem 4.1. Now assume (1). Then

$\overline{\pi(x)}+\overline{i\pi(y)}=N=\int\lambda dE(\lambda)$

is a normal operator. In fact, $N=\overline{\pi(x)+i\pi(y).}$ Indeed, let $\xi\in D(N)$ . Then,

for $c>0$ ,
$\xi_{c}=E(\Delta_{0})\xi$ $(\Delta_{c}=\{z\in C||z|\leqq c\})$

is a bounded vector for $N$, and

$\xi_{c}\in\bigcap_{n}D(N^{n})=C^{\infty}(N)=\bigcap_{n}(D((\overline{\pi(x)})^{n})\cap D((\overline{\pi(y)})^{n}))=D(\pi)$ .

Also, $\xi_{c}\rightarrow\xi$ as $ c\rightarrow\infty$ , and $(\pi(x)+i\pi(y))\xi_{c}=N\xi_{c}$ form a Cauchy sequence $(c=1/n)$ .
Thus $\xi\in D(\overline{\pi(x)+\iota\pi(y)})$ , and $N\subset\overline{\pi(x)+i\pi(y)}$ . Since normal operators are maxi-
mal among formally normal operators, $N=\overline{\pi(x)+\iota\pi(y)}$. Thus $(1)\infty\Rightarrow(3)$ . Con-
versely, assume that $N=\overline{\pi(x)+i\pi(y)}$ is normal, and $ D(\pi)=\bigcap_{n=1}(D(\overline{(\pi(x}))^{n})\cap$

$D((\overline{\pi(y)})^{n}))$ , Then $D(\pi)=\bigcap_{n}D(N^{n})=C^{\infty}(N)$ . Thus, the formally normal operator
$T=\pi(x)+i\pi(y)$ with domain $D(T)=D(\pi)$ contains a dense set of analytic vectors,

and it satisfies
$TD(T)\subset D(T)$ , $T^{*}D(T)\subset D(T)$ .

One has
$\Vert T\xi\Vert^{2}=\Vert\pi(x)\xi\Vert^{2}+\Vert\pi(y)\xi\Vert^{2}$ $(\xi\in D(T))$ ,

and $D(T)$ is also invariant for $\pi(x)$ and $\pi(y)$ . By [4, Th. 2.1], one gets, for
all $\xi\in D(T),$ $n\in N$, that

$|1\pi(x)^{n}\xi\Vert\leqq\Vert T^{n}\xi\Vert$ , $\Vert\pi(y)^{n}\xi\Vert\leqq\Vert T^{n}\xi\Vert$ .
Thus, vectors in $D_{\omega}(T)$ are also analytic vectors for the hermitian operators
$\pi(x)$ and $\pi(y)$ . It follows from [16, Th. 3.1] that $\overline{\pi(x)}$ and $\overline{\pi(y)}$ are selfadjoint

operators with mutually commuting spectral projections; and $\overline{\pi(x)}+\overline{\dot{\iota}\pi(y)}$ is a
normal operator. Thus (3) $\Rightarrow(9)\Rightarrow(1)$ . Next, we show that (1) $\Leftrightarrow(4)$ . Assume
that $\pi$ is standard. Then, as above, $\overline{\pi(x)+i\pi(y)}=\overline{\pi(x)}+\overline{l\pi(y)}$ is a normal
operator; and for each $n=1,2,3,$ $\cdots\pi(x^{n})$ and $\pi(y^{n})$ are essentiallys elfadjoint

operators with domain $D(\pi)$ . Thus $\overline{\pi(x^{n})}=(\overline{\pi(x)})^{n}$ and $\overline{\pi(y^{n})}=(\overline{\pi(y)})^{n}$ are self-
adjoint operators having mutually commuting spectral projections. Thus (1)

implies each of (4) and (4). Conversely, assume that $\pi$ is closed, $\pi(x)^{n}$ and
$\pi(y)^{n}$ are essentially selfadjoint for all $n\in N$, and that there exists a normal
operator $N$ in $H$ which is an extension of $\pi(x)+i\pi(y)$ . Then, for all $n,$

$\overline{\pi(x)^{n}}$
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$=(\overline{\pi(x)})^{n},\overline{\pi(y)^{n}}=(\overline{\pi(y)})^{n}$ ; and by [5, Th. 3.1], there exists a standard represen-
tation $(\sigma, D(\sigma),$ $H$) of $\mathcal{P}(x, y)$ which is an extension of $\pi$ , where

$D(\sigma)=\bigcap_{n}(D(A^{n})\cap D(B^{n}))$ ,

$A={\rm Re} N=\frac{1}{2}\overline{(N+N^{*})}$ , $B={\rm Im} N=\frac{1}{2i}\overline{(N-N^{*})}$ .

But, A being an extension of the selfadjoint operator $\overline{\pi(x)}$, one has $\overline{\pi(x)}=A$ ;
and similarly, $\overline{\pi(y)}=B$ . Hence $\overline{\pi(x)}+\overline{i\pi(y)}=N$. Since $\pi$ is closed,

$D(\pi)=D(\overline{\pi})=\cap\{D(\pi(P(x, y))|P(x, y)\in \mathcal{P}(x, y)\}$

$=\bigcap_{n}\{D\overline{(P(\pi(x),\pi(y))}\}$

$=\bigcap_{n}(D(\overline{\pi(x)^{n}})\cap D\overline{(\pi(y)^{n}}))$

$=\bigcap_{n}(D((\overline{\pi(x)})^{n})\cap D((\overline{\pi(y)})^{n})=D(\sigma)$ .

Thus $\pi=\sigma$ ; and it follows that (4) $\Rightarrow(1)$ . It is immediate that $(4^{\prime})\Rightarrow(4)$ .
For the remaining assertions, let $h=x^{2}+y^{2}$ . By [9 (I), p. 99], $\mathcal{P}(h)$ domi-

nates $\mathcal{P}(x, y)$ in any $*$-representations, $i$ . $e.$ , given a hermitian representation $\pi$

of $\mathcal{P}(x, y)$ , for each $z\in \mathcal{P}(x, y)$ , there exists $w\in \mathcal{P}(h)$ such that I $\pi(z)\xi\Vert\leqq$

$\Vert\pi(w)\xi\Vert(\xi\in D(\pi))$ . Hence,

$\Vert\pi(z)^{2}\xi\Vert=\Vert\pi(z)\pi(z)\xi\Vert\leqq\Vert\pi(w)\pi(z)\xi\Vert=\Vert\pi(wz)\xi\Vert$

$=\Vert\pi(zw)\xi\Vert=\Vert\pi(z)\pi(w)\xi\Vert\leqq\Vert\pi(w)\pi(w)\xi\Vert$

$=\Vert\pi(w)^{2}\xi\Vert$ $(\xi\in D(\pi))$ .

By repeating, $\Vert\pi(z)^{n}\xi\Vert\leqq\Vert\pi(w)^{n}\xi\Vert$ for all $n\in N,$ $\xi\in D(\pi)$ . Let $(\pi_{1}, D(\pi_{1}),$ $H$) be
the hermitian representation of $\mathcal{P}(h)$ defined on $D(\pi_{1})=D(\pi)$ as $\pi_{1}(k)=\pi(k)$

$(k\in \mathcal{P}(h))$ . It follows from above that:
(a) on $D(\pi)=D(\pi_{1})$ , the induced topologies (as defined in the proof of

Theorem 2.1) agree; viz. $t_{\pi(\mathcal{P}(x.y))}=t_{n(\mathcal{P}(h))}$ . Hence $\pi$ is closed iff $\pi_{1}$ is closed.
(b) every analytic (resp. bounded) vector in $D(\pi)$ for $\pi(w)$ is analytic

(resp. bounded) for $\pi(z)$ .
Now we use above to show that (1) $\Leftrightarrow(5)\Leftrightarrow(6)\Leftrightarrow(7)$ . Clearly (1) $\Rightarrow(5)$ .

By [5, Th. 2.1] or Corollary 3.2, (5) $\Leftrightarrow(6)\Leftrightarrow(7)\Leftrightarrow\pi_{1}$ is $standard\Leftrightarrow\pi_{1}$ is self-
adjoint. Assume (5). For any $w\in \mathcal{P}(h),$ $\pi(w)$ is essentially normal with in-
variant domain $D(\pi)$ . Thus $D_{\omega}(\pi(w))$ is dense in $H$. It follows from above
that, for any $z\in \mathcal{P}(x, y),$ $D_{\omega}(\pi(z))$ is dense; hence by [8, Lemma 3.2], $\overline{\pi(z)}$ is
normal. Thus $\pi$ is standard. This completes the proof.

Remarks. Unlike $\mathcal{P}(x)$ (see Corollary 3.2), a selfadjoint hermitian repre-
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sentation of $\mathcal{P}(x, y)$ need not a standard. [ $9(I)$ , p. 102] gives an example of
an infinte dimensional irreducible selfadjoint representation $\pi$ of $\mathcal{P}(x, y)$ such
that (i) $\pi(\mathcal{P}(x, y))_{W}^{\prime}$ is a von Neumann algebra, (ii) $\pi(x)^{n}$ and $\pi(y)^{n}$ are essen-
tially selfadjoint for all $n$ , (iii) $\pi$ is not standard, (iv) $\pi(x)+i\pi(y)$ is not essen-
tially normal. Infact, in this case, $\pi(x)+i\pi(y)$ does not have a normal exten-
sion, even in a possibly larger Hilbert space [10]. This shows that for a
representation $\pi$ of $\mathcal{P}(x, y),$ $\pi(\mathcal{P}(x, y))_{W}^{\prime}$ being an algebra does not imply that
$\pi(x)+i\pi(y)$ is normal (compare with Proposition 3.3).

Question I. Let $(\pi, D(\pi),$ $H$) be a hermitian representation of $\mathcal{P}(x, y)$ .
Find suitable necessary and sufficient conditions for $\pi$ to be selfadjoint ?

A comparision of Corollary 3.2 and Theorem 4.2 suggests the following.
For a closed hermitian representation $(\pi, D(\pi),$ $H$) of $\mathcal{P}(x, y)$ , are the following
equivalent $P$

(1) $\pi$ is selfadjoint.
(2) $\pi(x)^{n}$ and $\pi(y)^{n}$ are essentially selfadjoint for all $n$ .
(3) $\pi(x)$ and $\pi(y)$ are selfadjoint and $D(\pi)=\bigcap_{n}\{D((\pi(\overline{x))^{n})}\cap D((\overline{\pi(y)})^{n})\}$ .
(4) $\pi(\mathcal{P}(x, y))_{W}^{\prime}D(\pi)=D(\pi)$ .

Question II. What is an analogue of Proposition 3.3 for $\mathcal{P}(x, y)$ ?
Let $\pi$ be a hermitian representation of $\mathcal{P}(x, y)$ . Are the following equivalent ?
(1) $\pi^{*}$ is hermitian (equivalently, selfadjoint [9 $(I)]$ ).

(2) $\pi(\mathcal{P}(x, y))_{W}^{\prime}$ is an algebra.
(3) $\pi(x)$ and $\pi(y)$ are essentially selfadjoint.

Further, is it ture that $\pi^{*}$ is standard iff $\pi(x)+i\pi(y)$ is essentially normal ?

Analogous to Proposition 3.4, it can be shown that given a closed hermitian
representation $(\pi, D(\pi),$ $H$ ) of $\mathcal{P}(x, y),$ $\pi$ has a standard extension in $H$ (resp.

in a larger Hilbert space $K$ containing $H$ isometrically) iff $\pi$ has a selfadjoint

extension in $H$ (resp. in $K$ ) and $\pi(x)+i\pi(y)$ has a normal extension in $H$ (resp.

in $K$ ). Given a symmetric operator $T$ with dense domain $D(T)$ in a Hilbert
space $H$, there exists a Hilbert space $K$ containing $H$ isometrically, and a self-
adjoint operator $S$ in $K$ which is an extension of $T$ [13]. Contrarily, there
exist formally normal operators $N$ in a Hilbert space $H$ which fail to admit
normal extension in $H$ or in any large Hilbert space $K$ containing $H$ isometri-
cally. In fact, if $A$ and $B$ are selfadjoint operators which commute on a com-
mon core $D$ and for which the spectral projections do not commute, then $N=$

$(A+iB)|_{D}$ is a formally normal operator having no normal extension in a pos-
sibly large Hilbert space [10]. Using these, one can construct a selfadjoint
representation of $\mathcal{P}(x, y)$ that does not admit a standard extension in any
larger Hilbert space [11].
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Question III. Does Tbeorem 2.1 hold for noncommutative $*$-algebras ?

Question IV. Let $(\pi, D(\pi),$ $H$ ) be a standard representation of a commuta-
tive $*$-algebra $A$ . Is $D(\pi)=D(\pi_{\omega})$ ? (Here $D(\pi_{\omega})=closure$ of $D_{\omega}(\pi)$ in $D(\pi)$ in
the induced topology defined by seminorms $\xi\rightarrow\Vert\pi(x)\xi\Vert,$ $x\in A.$ ) Is $B(\pi)$ a core
for $\pi$ ?

A Final Note: After the preparation of the manuscript, the author came
across a recently published (November 1992) paper by I. Ikeda and A. Inoue:
Invariant subspaces for closed $*$-representations of $*$-algebras, Proc. Amer.
Math. Soc., 116 (1992), 737-745. Ikeda and Inone have also discussed the
decompositions given in Corollary 2.4 and Remark 2.5, as well as part (B) of
Theorem 4.1.
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