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In the context of unbounded representation theory, representable func.
tionals on a star algebra are introduced and are characterized as extendable
functionals. This gives faithful representations of certain star algebras as
$op*$-algebras. Every representation of a pseudo-complete hermitian locally

convex *algebra is shown to be essentially selfadjoint. Also proved that a
Generalized $B^{*}.algebra$ (without identity) admits a bounded approximate
identity which yields the representability of every positive functional.

R. T. Powers [13, Theorem 6.3] has proved that the well known GNS con-
struction with a positive functional $f$ on a star algebra $A$ with identity yields a
closed strongly cyclic star representation $\pi$ of $A$ on a Hilbert space $H$ mapping

the elements of $A$ into closable linear operators all defined on a common domain
$D(\pi)$ dense in $H$; and $\pi$ represents $f$ in a suitable sense. In this Paper, we $con$.

sider the case when $A$ does not possess identity. In \S 2, representable functionals
on $A$ are introduced in the setting of unbounded representations; and are char.
acterized (as extendable functionals) as in the case of Banach star algebras [5,

Theorem 37.11]. This gives a number of sufficient conditions for the representa $\cdot$

bility of every positive functional which in turn are used to construct faithful
representations of certain algebras as $Op^{*}\cdot algebras$ [ $11$ , Definition 2.1]. In \S 3 we
give a couple of applications to locally convex $algebras$ . It is shown that every

representation of a hermitian pseudo.complete locally convex $algebra$ $A$ is essen.
tially selfadjoint. Further if $A$ has a bounded approximate identity and the
positive elements $A^{+}$ forms a closed convex cone, then $A$ is $*isomorphic$ to a
selfadjoint $Op^{*}$ algebra. We also show that a locally convex Generalized $B^{*}$ .
algebra [81 admits a bounded approximate identity.

1. Our notations and terminology will follow [13] except for a suitable modi.
fication when the algebra does not possess identity. They are outlined bellow.
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Notations and terminology. Let $A$ be a complex star algebra. A rePresenta $\cdot$

tion $(\pi, D(\pi),$ $H$ ) of $A$ on a Hilbert space $H$ is a mapping $\pi$ of $A$ into linear
operators all defined on a common domain $D(\pi)$ dense in $H$ such that for all $x,$ $y$

in $A;a,$ $\beta$ in $g$ and $\zeta,$
$\eta$ in $D(\pi)$ ;

(a) $\pi(ax+\beta y)\zeta=a\pi(x)\zeta+\beta\pi(y)\zeta$

(b) $\pi(x)D(\pi)\subset D(\pi)$ and $\pi(x)\pi(y)\zeta=\pi(xy)\zeta$ .
It is called hermitian or a star rePresentation if

(c) $D(\pi)\subset D(\pi(x)^{*})$ (here $D(\pi(x)^{*})$ denote the domain of the operator adjoint
$\pi(x)^{*}$ of $\pi(x))$ and $\pi(x^{*})\subset\pi(x)^{*}\backslash $ .

In case $A$ possesses identity 1, then
(d) $\pi(1)=I$.
Throughout we shall only consider hermition representations that are essential

in the sense that

{$\zeta eD(\pi)|\pi(x)\zeta=0$ for all $x$ in $A$} $=\{0\}$ .
It is easily seen that, $\pi$ is essential if and only if $\pi(A)D(\pi)$ is dense in $H$. By (c),
each $\pi(x)$ is a closable operator whose closure is denoted by $\overline{\pi(x)}$ . Let $A_{e}$ be the
star algebra obtained by adjoining identity to $A$ . Then $\pi.(x+\lambda 1)=\pi(x)+\lambda I(xeA$ ,
$\lambda\in\phi)$ defines a representation of $A_{*}$ with domain $D(\pi)$ . The induced toPotogy (or

the $A_{e}\cdot topology$) on $D(\pi)$ is the locally convex topology defined by the seminorms
$\zeta\rightarrow\Vert\pi_{\epsilon}(x)\zeta\Vert$ for varying $x$ in $A_{6}$ . The completion of $D(\pi)$ in this topology [11,

Lemma 3.2] is

$D(\overline{\pi})=\cap\{D(\overline{\pi.(x)})|x\in A_{*}\}$

$=\cap\{D\overline{(\pi(x)})|x\in A\}$

(The latter equality follows from: If $S$ and $T$ are densely defined operators in a
Hilbert space with $D(T)=D(S)$ , then $(T+S)^{-}=\overline{T}+\overline{S}$ provided either of them is
bounded). Now this defines a representation $\overline{\pi}$ of $A$ with domain $D(\overline{\pi})$ as $\overline{\pi}(x)=$

$\overline{\pi(x)}|_{D(\overline{\pi})}$ , called the closure of $\pi$ ; and $\pi$ is closed if $\pi=\overline{\pi}$ .
The hermitian adjoint of $\pi$ is a (not necessarily hermitian) representation

$(\pi^{*}, D(\pi^{*}),$ $H$ ) with

$D(\pi^{*})=\cap\{D(\pi(x^{*})^{*})|x\in A\}$

$=\cap\{D(\pi(x^{*})^{*})|xeA\}$ (as above)

with $\pi^{*}(x)=\pi(x^{*})^{*}|_{D(p)}$ . $\pi$ is essentially selfadjoint (respectively selfadjoint) if
$\overline{\pi}=\pi^{*}$ (respectively, $\pi=\pi^{*}$ ).

A vector $\zeta$ in $D(\pi)$ is called strongly cyclic (respectively cyclic) if $\pi(A)\zeta$ is dense
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in $D(\pi)$ in the induced topology (respectively, $\pi(A)\zeta$ is norm dense in $H.$ ). It is
called an ultracyclic vector if $\pi(A)\zeta=D(\pi)$ .

2. Let $f$ be a representable functional [5, Definition 37.10] on a Banach star
algebra $A$ . The GNS construction [5, Theorem 37.11] gives a cyclic represen.
tation $\pi$ of $A$ on a Hilbert space $H$ such that $f(x)=(\pi(x)\xi, \xi)$ where $\xi$ is a cyclic
vector. Due to the admissibility of $f$ [ $15$ , Ch. IV, \S 5] each $\pi(x)$ is a bounded
operator with the result that $\pi$ automatically turns out to be strongly cyclic. In
the context of unbounded representations, this, together with Powers’ work [13,

Theorem 6.3], suggests the following definition.

Definition 2.1. A positive functional $f$ on a star algebra $A$ is called rePresent $\cdot$

able if there exists a closed strongly cyclic representation $(\pi, D(\pi),$ $H$ ) of $A$ on a
Hilbert space $H$ with a strongly cyclic vector $\xi$ such that $f(x)=(\pi(x)\xi, \xi)$ for all $x$

in $A$ . In this case, $f$ is said to be represented by $\pi$ .
As for Banach star algebras, the above mentioned result of Powers shows that

every positive functional on a star algebra with identity is representable. It also
follow, by the same arguments as there, that a representable functional is repres-
ented by a unique (up to unitary equivalence) closed strongly cyclic representa.
tion. The following analogue of [5, Theorem 37.11] shows that representable
functionals on $A$ are precisely those that extend positively to $A_{e}$ .

Theorem 2.2. Apositive functional $f$ on a star algebra $A$ is representable if
and only if $|f(x)|^{2}\leqq kf(x^{*}x)$ holds for all $x$ in $A$ and for some constant $k$ dePending
on $f$ only.

Proof. Since $\pi(x^{*})\subset\pi(x)^{*}$ for each $x$ in $A$ , one way implication is trivial.
Conversely, let $|f(x)|^{2}\leqq kf(x^{*}x)$ for all $xeA$ . Then $g$ on $A_{\epsilon}$ defined as $g(x+\lambda 1)=$

$f(x)+k\lambda(xeA, \lambda\in\phi)$ gives a positive linear extension of $f$. The standard GNS
construction with $g$ is as follows:

Let $N_{g}=\{a\in A_{e}|g(a^{*}a)=0\}$; let $X_{g}=A/N_{g}$ , a vector space with the canonical
inner product $(a+N_{g}, b+N_{g})=g(b^{*}a)$ . For each $a$ $eA_{e},$ $\pi_{a^{\prime}}(a)$ on $X_{g}$ is defined by
$\pi_{g}^{\prime}(a)(b+N_{g})=ab+N_{g}(b\in A_{e})$ . Let $H_{g}$ be the Hilbert space completion of $X_{g}$ .
Then $\pi_{l}^{\prime}$ defines an ultracyclic representation of A. on $H_{g}$ with $D(\pi_{g}^{\prime})=X_{l}$ . Let
$(\pi_{g}, D(\pi,), H_{g})$ be its closure; for convenience, being denoted by $(\pi, D(\pi),$ $H$). It is
a closed strongly cyclic representation of $A_{\epsilon}$ such that $g(a)=(\pi(a)\xi_{0}, \xi_{0})(a\in A.)$ ;
$\xi_{0}=1+N_{g}$ being a strongly cyclic vector.

Let
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$N=$ {$y\in D(\pi)|\pi(a)y=0$ for all a $eA$ }
$=C1$ {$yeX_{g}|\pi(a)y=0$ for all a $eA$}

where Cl denotes the closure in $D(\pi)$ in the induced topology. Further, let

$M=$ {$zeD(\pi)|(z,$ $\eta)=0$ for all $\eta eN$ }
$=D(\pi)\cap N^{\perp}$ where $N^{\perp}=H\ominus N$ .

From the facts that $\pi$ is closed and the induced topology on $D(\pi)$ is finer than the
norm topology, it follows at once that $N$ is a closed subspace of $H$. Thus $H=$

$N\oplus N^{\perp}$ and $D(\pi)=N+M$ which too is a direct sum. As $N$ and $M$ are both $\pi$ .
invariant subspaces, $\pi=\pi_{1}+\pi_{2}$ where $\pi_{1}$ is $(\pi|_{N}, D(\pi_{1})=N,$ $H_{1}=N$ ) and $\pi_{2}$ is $(\pi|_{r}$ ,
$D(\pi_{2})=M,$ $H_{2}=N^{1}$ ), each a representation of $A_{\epsilon}$ . Also $\xi_{0}=v+u$ with $veD(\pi_{1})$ ,
$u\in D(\pi_{2}),$ $u\neq 0$ and for each $x\in A,$ $f(x)=(\pi_{2}(x)u, u)$ . Let $K=(\pi(A)u)^{-}$ , the closure
in $H$ of $\pi(A)u$ . Define a representation $\pi_{\theta}$ of $A$ in $K$ with $D(\pi_{S})=\pi(A)u$ as $\pi_{3}(a)=$

$\pi_{2}(a)|_{D(\eta)}$ . We show that its closure $(\overline{\pi}_{3}, D(\overline{\pi}_{8}),$ $K$ ) is the desired representation of
$A$ with $u$ as a strongly cyclic vector such that $f(a)=(\overline{\pi},(a)u,$ $u$ ) $(a\in A)$ , and for this,

it only suffices to show that $ueD(\overline{\pi}_{8})$ .
By the definition, $D(\overline{\pi}_{8})=\cap\{D\overline{(\pi_{3}(a)}^{K})|a\in A\}$ where now $\overline{\pi_{f}(a)}^{K}$ is the closure of

$\pi_{8}(a)$ as an operator in $K$ with domain $D(\pi_{8})$ . Then

$u\in D(\pi)$

$=D(\overline{\pi})$ as $\pi$ is closed
$=\cap\{D\overline{(\pi(a)})|a\in A\}$

and so $u\in D(\overline{\pi(a)})$ for each $a\in A$ . Further, the graph of the operator $\overline{\pi(a)}$ being

$G(\overline{\pi(a}))=\{\{\pi(x+\lambda 1)\xi_{0}, \pi(a)\pi_{e}(x+\lambda 1)\xi_{0}\}|x\in A, \lambda\in\phi\}^{-}$ (the closure in $H\times H$)

$=\{\{n(x)u+\lambda v, \pi(a)(\pi(x)u+\lambda v)\}|x\in A, \lambda e\phi\}^{-}$

there are sequences $(x_{n})$ in $A,$ $(\lambda_{n})$ in $\phi$ such that $\pi(x.)u+\lambda.v\rightarrow u$ and $\pi(a)(\pi(x_{n})u+$

$\lambda.v)\rightarrow\pi(a)u$ both in $H$. As $D(\pi)=N\oplus M$ , also a direct sum in the norm topology,

it follows that $\pi(x_{n})u\rightarrow u$ and $\lambda_{n}\rightarrow 0$ ; and so $\pi(a)\pi(x_{n})u\rightarrow\overline{\pi(a)u}$. Thus $u\in D(\overline{\pi_{8}(a)}^{K})$

for each $aeA$ and so $ueD(n_{s})$ . This completes the proof.

The following corollary contains the varients of some of the results known
[5, \S 37] in the context of automatic continuity of positive functionals on Banach
star algebras. Note that a representable functional on a Banach star algebra is
continuous.

Corollary 2.3.
(a) Let $A$ be a star algebra and $f$ a positive functional on A. For each $b$ in
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$A$ , define $f_{b}(x)=f(b^{*}xb)(x\in A)$ . Then each $f_{b}$ is a representable Positive
functional on $A$ .

(b) Let $(\pi, D(\pi),$ $H$ ) be a representation of a star algebra A. For each $\zeta\in D(\pi)$ ,
let $F(x)=(\pi(x)\zeta, \zeta)$ . Then each $F_{\zeta}$ is a representable positive functional
on $A$ .

(c) Let $A$ be a star algebra such that (i) $A^{2}=A$ and (ii) each nonzero positive

functional on $A$ dominates a nonzero representable functional. (Then

each positive functional on $A$ is fepfesentable.)

Proof. (a) is a immediate from the Cauchy.Schwartz inequality [5, Lemma
37.6 (ii)], whereas (b) is obvious. (c) is a varient of a continuity theorem of
Murphy [5, Theorem 37.13] and is proved thus: Let $f$ be positive; $g$ be represent.
able with $f\geqq g$ . Let $\tilde{g}$ be the positive extension of $g$ to $A_{\iota}$ . As finite linear com.
binations of elements of type $a^{*}a(aeA)$ span $A$ , a simple verification shows that
$\tilde{f}(x+\lambda 1)=f(x)+\lambda\tilde{q}(1)$ defines a positive linear extension of $f$ on $A_{\iota}$ . The assertion
follows from Theorem 2.2.

$Op^{*}.algebras$ [ $11$ , Definition 2.1] provides a fairly general class of unbounded
operator algebras. The next result gives construction of a faithful representation
of a certain star algebra as an $OP^{*}\cdot algebra$ (without identity).

Corollary 2.4. Let $A$ be a star algebra and $R(A)$ be the set of all representable
functionals on A. The following are equivalent.

(a) For each nonzero $x$ in $A$ , there exists an $f$ in $R(A)$ such that $f(x^{*}x)>0$ .
(b) There exists a closed $faith\Gamma ul$ representation of $A$ as an $OP^{*}\cdot algebra$ .
Proof. For $f$ in $R(A)$ , let $(\pi_{f}, D(\pi_{f}),$ $H_{f}$) be the closed representation of $A$

with a strongly cyclic vector $\xi_{f}$ that represents $f$. Let $(\pi, D(\pi),$ $H$ ) be the direct.
sum [13, remark following Theorem 7.5] of the $\pi_{f}s$ . Then $\pi$ is closed. Assume
(a). Let $x\in A,$ $x\neq 0$ . Let $feR(A)$ be such that $f(x^{*}x)>0$ . Let $\xi^{\prime}=(\xi_{g}^{\prime}|geR(A))$

be the vector $\xi_{g}^{\prime}=0,$ $(g\neq f);\xi_{g}^{\prime}=\xi_{f},$ $(g=f)$ . Then $||\pi(x)\xi^{\prime}\Vert^{2}=\Vert\pi_{f}(x)\xi_{f}||^{2}=f(x^{*}x)>0$ .
Hence $\pi$ is faithful.

Conversely, if $\pi$ is any faithful representation of $A$ , then given $x\neq 0$ in $A$ ,
$\pi(x)\eta\neq 0$ for some $\eta\in D(\pi)$ . The functional $f(x)=(\pi(x)\eta, \eta)$ is in $R(A)$ and $f(x^{*}x)=$

$||\pi(x)\eta||^{2}>0$ .
3. Now we consider locally convex *algebras [2, \S 21. Throughout the con-

tinuity of the involution is assumed. It is immediate from [15, Chapter IV, \S 5]
that if $f$ is a representable functional on a star algebra $A$ and if $\pi$ represents $f$,
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then each $\pi(x)$ is a bounded operator if and only if $f$ is admissible. In this case,
$\pi$ is called a bounded representation. A result due to Powell [12, Theorem 2]

(where too admissible functionals are considered, but in a different sense) leads to
the following.

Propnsition 3.1. Let $A$ be a pseudo.complete locally convex $algebra$ such that
$A=A_{0}$ , the set of all bounded elements of A. Let $f$ be a rePresentable functional on
A. Then each representatiOn of $A$ that represents $f$ is a bounded cyclic rePresenta $\cdot$

tion.

Proof. Let $f(x)=(\pi(x)\xi_{0}, \xi_{0})$ where $\xi_{0}$ is a strongly cyclic vector. Let $K=$

$\pi(A)\xi_{0}$ and let $\xi=\pi(y)\xi_{0}$ for $y\in A$ . Then $\Vert\pi(x)\xi\Vert^{2}=f(y^{*}x^{*}xy)\leqq\beta(x^{*}x)f(y^{*}y)$ by [12,

Theorem 2]. Here $\beta(x^{*}x)$ is the radius of boundedness [1, Definition] of $x^{*}x$

which is finite as $x\in A=A_{0}$ . Hence $\Vert\pi(x)\xi\Vert\leqq\beta(x^{*}x)^{1/2}\Vert\xi\Vert$ for all $\xi\in K$ . Let $\xi e$

$D(\pi)$ . As $K$ is dense in $D(\pi)$ in the induced topology and since the induced
topology is finer than the norm topology, there exists a net $(x_{\alpha})$ in $A$ such that
$\pi(x_{\alpha})\xi_{0}\rightarrow\xi$ and $\pi(x)\pi(x_{\alpha})\xi_{0}\rightarrow\pi(x)\xi(x\in A)$ both in the norm. This gives, for each $x$

in $A$ ,

$\Vert\pi(x)\xi\Vert=\lim\Vert\pi(x)\pi(x_{\alpha})\xi_{0}||$

$\leqq\beta(x^{*}x)^{1/2}\lim_{\alpha}\Vert\pi(x_{\alpha})\xi_{0}\Vert$

$=\beta(x^{*}x)^{1/2}\Vert\xi\Vert$ .
Thus each $\pi(x)$ is a norm bounded operator on $D(\pi)$ . Hence $x\rightarrow w(x)=\overline{\pi(x)}$ defines
a $*homomorphism$ of $A$ into $\beta(H)$ (The $C^{*}$ -algebra of all bounded operators on
$H)$ which is a cyclic representation. Hence the result.

It follows that each representable functional on such an algebra is admissible.
The next result gives an important case where $A\neq A_{0}$ in general, but certain
representable functionals are admissible.

Proposition 32. Let $A$ be a conplete locally-n-convex *algebra and let $f$ be a
continuous representable functional on A. Then each representation of $A$ that
represents $f$ is a bounded cyclic rePresentation.

The functional $f$ is extendable, and continuity implies that it is admissible [6,

Theorem 6.11 Thus, in particular, each representable functional on a Frechet
*algebra is admissible.

We say that a locally convex $algebra$ $A$ has a bounded aPproximate identity
if there exists a net $(u_{\alpha})$ in $A$ such that

(i) $(u_{a})$ is bounded;
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(ii) for each $x$ in $A,$ $u_{\alpha}x\rightarrow x$ and $xu_{\alpha}\rightarrow x$

and
(iii) $(u.*u.)$ is also bounded.
Note that in $A$ , if the product of two bounded sets is bounded, in particular,

if $A$ is lmc, then (i) implies (iii). The next result which corresponds to [5,

Theorem 37.15] is an immediate corollary of Theorem 2.2.

Proposition 3.3. Let $A$ be a locally convex *algebra with a bounded $ap$

Proximate identity. Then each continuous positive functional on $A$ is rePresent $\cdot$

able.

From this stems the following modification of corollary 2.4. In analogy with
[2, \S \S 2, 3] a locally convex *algebra $A$ is hermitian if for each $h=h^{*}$ in $A$ , the
Allan spectrum [1, Definition 3.1] $\sigma_{4}(h)\subset R\cup t\infty$ }, or equivalently, for such $h,$ $-h^{2}$

has a bounded adverse.

Corollary 3.4. Let $A$ be a locally convex *algebra with a bounded approx.
imate identity. If the set $A^{+}=\{x^{*}x|xeA\}$ forms a closed convex cone in $A$ , then
$A$ admits a faithful closed *representation $\pi$ as an $op*$-algebra. Further, if $A$

is pseudo.complete and hermitian, then $\pi$ represents $A$ as a selfadjoint $op*$-blgebn.

Proof. Let $x\neq 0$ be in $A$ . Let $y=x^{*}x$ . Then $-y\in A\sim A^{+}$ . Hahn.Banach
Theorem gives a continuous linear functional $f$ on $A$ such that $f(A^{+})\geqq 0$ and
$f(y)<0$ . Thus $f$ is positive which, by above result, is representable. The conclu.
sion follows from Corollary 2.4 except for the final part which is a consequence of
the result that follows.

Theorem 3.5. Every representation $(\pi, D(\pi),$ $H$ ) of a pseudo-complete hermitian
locally $convex*algebra$ is essentially selfadjoint.

Proof. We can assume $\pi$ to be closed. Let $\beta^{*}$ denote the set of all $B\subset A$

such that $B^{2}=B,$ $B^{*}=B,$ $B$ is absolutely convex and is closed and bounded. For
each such $B$ , we consider the *normed algebra $A(B)=\{\lambda x|\lambda\in\phi, xeB\}$ with the
norm $||x||_{B}=\{\lambda>0|x\in\lambda B\}$ . Pseudo.completeness of $A$ implies that it is Banach.
First we show:

(i) $x\rightarrow\overline{\pi(x)}$ defines a continuous $homomorphism$ of $A(B)$ into $\beta(H)$ .
For $\xi eD(\pi)$ , consider $F_{\epsilon}(x)=(\pi(x)\xi, \xi)$ on $A$ . By Corollary 2.3, it is re.

presentable on $A$ and so on $A(B)$ ; hence is norm continuous by [5, \S 37]. Then
$||\pi(x)\xi\Vert^{g}=F_{\xi}(x^{*}x)\leqq\Vert F_{\xi}||||x^{*}x||\leqq||F_{\xi}\Vert\Vert x\Vert^{2}$ ; and if $\tilde{F}_{\xi}$ is the positive extension of $F_{\xi}$

to $(A(B)).$ , then $||F_{\epsilon}||\leqq\tilde{F}_{\xi}(1)\leqq\Vert\xi\Vert^{2}$ . It follows that $||\pi(x)\xi||\leqq||x||\Vert\xi\Vert$ which gives
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(i) with $\Vert\overline{\pi(x)}\Vert\leqq\Vert x\Vert(x\in A(B))$ .
Next we show:
(ii) For each $h=h^{*}$ in $A,$ $(\overline{\pi(h)})^{*}=\overline{\pi(h)}=\pi(h)^{*}$ .
Indeed, let $h$ be as above. Let a $eq\sim R$ . Since $A$ is hermitian, the quasi

inverse [15, Ch. I, \S 51 $k=(\alpha^{-1}h)_{-1}$ is bounded. Then for some $\beta\neq 0,$ $S=$

$\{(\beta^{-1}k)^{n}|n=1,2, \cdots\}$ is a bounded set. Obviously, its closed absolutely convex
hull $B$ is in $\rho*$ . By (i) above, $\pi(k)$ is a bounded operator. Also, for each $\xi eD(\pi)$ ,
$\pi((a^{-1}h)_{-1})\xi=(\alpha^{-1}\pi(h))_{-1}\xi=(\alpha^{-1}\overline{\pi(h)})_{-1}\xi$ . Hence $\overline{\pi((a^{-1}h)_{-1}}$) $\subset(a^{-1}\overline{\pi(h)})_{-1}$ each a bound.
ed closed operator. Therefore $(I-a^{-1}\overline{\pi(h)})^{-1}=I-(\alpha^{-1}\overline{\pi(h)})_{-1}$ is a bounded operator

defined on the whole of $H$ . Thus the (operator theoretic) spectrum of $\overline{\pi(h}$) is real.
But $\pi(h)=\pi(h^{*})\subset\pi(h)^{*}=(\overline{\pi(h)})^{*}$ , and so $\overline{\pi(h)}\subset(\overline{\pi(h)})^{*}$ . Since a closed symmetric oper.
ator with real spectrum is selfadjoint, $\overline{\pi(h)}=(\overline{\pi(h}))^{*}$ .

Finally, (ii) is used to prove:
(iii) For each $xeA,\overline{\pi(x)}=\pi(x^{*})^{*}$ .
The argument for this is standard, e.g. as in [8, Lemma 7.10]. This, with

the definition of $\pi^{*}$ , gives $D(\pi)=D(\overline{\pi})=D(\pi^{*})$ which firnishes the proof of the
theorem.

An important case to which Proposition 3.3 applies is to unbounded Hilbert
algebras [101; more generally to the $GB^{*}$ -algebras. We can suitably modify [2,

Definition in \S 31 (or [8, Definition 2.51) to define a $GB^{*}\cdot algebra$ without identity.
It is a routine matter to verify that if $A$ is a locally convex $GB^{*}\cdot algebra$ with
unit ball $B_{0}$ , then $A(B_{0})=\{\lambda x|\lambda\in g, xeB_{0}\}$ is a $B^{*}\cdot algebra$ (with the Minkowski
functional $\Vert\cdot\Vert_{r_{0}}$ of $B_{0}$ as norm), and $A_{e}$ is also a $GB^{*}$ -algebra with underlying
$B^{*}$-subalgebra $(A(B_{0}))_{e}$ . A recent result due to the author [4] (proved for $GB^{*}$ .
algebra with identity and holds in the non unital can also) is: if $A$ is a $GB^{*}$ .
algebra with unit ball $B_{0}$ , then the $B^{*}\cdot algebraA(B_{0})$ is sequentially dense in $A$ .
This gives the following important result.

Theorem 3.6. A locally convex $GB^{*}\cdot algebra$ possesses a bounded aPproximate
identity consisting of Positive elements.

Proof. Given a locally convex $GB^{*}\cdot algebra$ $A$ with unit ball $B_{0}$ , let $(u_{\lambda}|\lambda eA)$

be an approximate identity for $A(B_{0})$ [ $3$ , Theorem 1.8.2] contained in $B_{0}$ and con.
sisting of positive elements. Continuity of $(A(B_{0}), \Vert\cdot\Vert_{\iota_{0}})\rightarrow(A, t)(t$ denotes the
topology of $A$ ) implies that for each $xeA(B_{0}),$ $xu_{\lambda_{t}^{\rightarrow}}x$ and $u_{\lambda_{t}^{X\rightarrow X}}$ . Let $t^{\prime}$ be the
associated barrel topology on $A[2,$ \S 51 Then as in [2, \S 51, $(A, t^{\prime})$ is easily
seen to be a locally convex $GB^{*}\cdot blgebra$ with the same unit ball $B_{0}[8$ , Corollary
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7.8]. Further $t^{\prime}$ is finer than $t$ and, though $t^{\prime}$ need not be barrelled, an adaptation
of [8, Lemma 6.3] shows that $(A, t^{\prime})$ is hypocontinuous. We show that $(u_{\lambda}|\lambda\in\Lambda)$

is the desired approximate identity, and for this it suffices to prove that for each
$x\in A,$ $xu_{\lambda_{t}}\rightarrow x$ and $u_{\lambda}x_{\iota}\rightarrow x$ .

Given $x$ in $A$ and a o.neighbourhood $W$ in $(A, t^{\prime})$ , continuity of addition and
hypocontinuity of multiplication gives o-neighbourhoods $V$ and $U$ in $(A, t^{\prime})$ such
that $U+U\subset W,$ $V+V\subset U,$ $B_{0}V\subset U$ and $VB_{0}\subset U$ . By the sequential denseness of
$A(B_{0})$ in $(A, t^{\prime})$ , there exists a sequence $(x_{n})$ in $A(B_{0})$ such that $x_{n}-x\in V$ for all
$n\geqq n_{0}$ , some $n_{0}$ . Then

$u_{\lambda}x-x=(u_{\lambda}x-u_{\lambda}x_{n_{0}})+(u_{\lambda}x_{n_{0}}-x_{n_{0}})+(x_{n_{0}}-x)\in B_{0}V+V+V\subset W$ eventually.

Thus $u_{\lambda}x_{\ell}\sim x$ and similarly $xu_{\lambda_{\ell}}\rightarrow x$ . This proves the assertion.
It now follows from Proposition 3.3 and the automatic continuity of a posi-

tive functional in the largest locally convex $GB^{*}\cdot topology[8$ , \S \S 6, 8 $]$ that every
positive functional on a $GB^{*}\cdot algebra$ $A$ is representable, which by Theorem 3.5
is represented by a selfadjoint representation. This can be used to construct a
faithful selfadjoint representation of $A$ as an extended $C^{*}\cdot algebra$ without identity
as in [8, \S 7]. In particular, this applies to unbounded Hilbert algebras and to
$b^{*}\cdot algebras$ [$2$ , Example 3.3].
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