Yokohama Mathematical Journal Vol. 29, 1981

REPRESENTABILITY OF POSITIVE FUNCTIONALS ON ABSTRACT STAR ALGEBRAS WITHOUT IDENTITY WITH APPLICATIONS TO LOCALLY CONVEX *ALGEBRAS

By

SUBHASH J. BHATT

(Received September 30, 1980)

In the context of unbounded representation theory, representable functionals on a star algebra are introduced and are characterized as extendable functionals. This gives faithful representations of certain star algebras as Op^* -algebras. Every representation of a pseudo-complete hermitian locally convex *algebra is shown to be essentially selfadjoint. Also proved that a Generalized B*-algebra (without identity) admits a bounded approximate identity which yields the representability of every positive functional.

R.T. Powers [13, Theorem 6.3] has proved that the well known GNS construction with a positive functional f on a star algebra A with identity yields a closed strongly cyclic star representation π of A on a Hilbert space H mapping the elements of A into closable linear operators all defined on a common domain $D(\pi)$ dense in H; and π represents f in a suitable sense. In this paper, we consider the case when A does not possess identity. In §2, representable functionals on A are introduced in the setting of unbounded representations; and are characterized (as extendable functionals) as in the case of Banach star algebras [5, Theorem 37.11]. This gives a number of sufficient conditions for the representability of every positive functional which in turn are used to construct faithful representations of certain algebras as Op*-algebras [11, Definition 2.1]. In § 3 we give a couple of applications to locally convex *algebras. It is shown that every representation of a hermitian pseudo-complete locally convex *algebra A is essentially selfadjoint. Further if A has a bounded approximate identity and the positive elements A^+ forms a closed convex cone, then A is *isomorphic to a selfadjoint Op^* -algebra. We also show that a locally convex Generalized B^* algebra [8] admits a bounded approximate identity.

1. Our notations and terminology will follow [13] except for a suitable modification when the algebra does not possess identity. They are outlined bellow.

Notations and terminology. Let A be a complex star algebra. A representation $(\pi, D(\pi), H)$ of A on a Hilbert space H is a mapping π of A into linear operators all defined on a common domain $D(\pi)$ dense in H such that for all x, yin A; α, β in \mathcal{C} and ζ, η in $D(\pi)$;

- (a) $\pi(\alpha x + \beta y)\zeta = \alpha \pi(x)\zeta + \beta \pi(y)\zeta$
- (b) $\pi(x)D(\pi) \subset D(\pi)$ and $\pi(x)\pi(y)\zeta = \pi(xy)\zeta$.

It is called hermitian or a star representation if

(c) $D(\pi) \subset D(\pi(x)^*)$ (here $D(\pi(x)^*)$ denote the domain of the operator adjoint $\pi(x)^*$ of $\pi(x)$) and $\pi(x^*) \subset \pi(x)^*$.

In case A possesses identity 1, then

(d) $\pi(1) = I$.

Throughout we shall only consider hermition representations that are essential in the sense that

$$\{\zeta \in D(\pi) \mid \pi(x)\zeta = 0 \text{ for all } x \text{ in } A\} = \{0\}$$
.

It is easily seen that, π is essential if and only if $\pi(A)D(\pi)$ is dense in H. By (c), each $\pi(x)$ is a closable operator whose closure is denoted by $\overline{\pi(x)}$. Let A_e be the star algebra obtained by adjoining identity to A. Then $\pi_e(x+\lambda 1)=\pi(x)+\lambda I$ ($x \in A$, $\lambda \in \mathcal{C}$) defines a representation of A_e with domain $D(\pi)$. The *induced topology* (or the A_e -topology) on $D(\pi)$ is the locally convex topology defined by the seminorms $\zeta \rightarrow ||\pi_e(x)\zeta||$ for varying x in A_e . The completion of $D(\pi)$ in this topology [11, Lemma 3.2] is

$$D(\bar{\pi}) = \bigcap \{ D(\overline{\pi_{\bullet}(x)}) \mid x \in A_{\bullet} \}$$
$$= \bigcap \{ D(\overline{\pi(x)}) \mid x \in A \}$$

(The latter equality follows from: If S and T are densely defined operators in a Hilbert space with D(T)=D(S), then $(T+S)^-=\overline{T}+\overline{S}$ provided either of them is bounded). Now this defines a representation $\overline{\pi}$ of A with domain $D(\overline{\pi})$ as $\overline{\pi}(x) = \overline{\pi(x)} \mid_{D(\overline{\pi})}$, called the *closure* of π ; and π is *closed* if $\pi = \overline{\pi}$.

The hermitian adjoint of π is a (not necessarily hermitian) representation $(\pi^*, D(\pi^*), H)$ with

$$D(\pi^*) = \bigcap \{ D(\pi_{\bullet}(x^*)^*) \mid x \in A_{\bullet} \}$$
$$= \bigcap \{ D(\pi(x^*)^*) \mid x \in A \} \text{ (as above)}$$

with $\pi^*(x) = \pi(x^*)^* |_{D(x^*)}$. π is essentially selfadjoint (respectively selfadjoint) if $\bar{\pi} = \pi^*$ (respectively, $\pi = \pi^*$).

A vector ζ in $D(\pi)$ is called *strongly cyclic* (respectively *cyclic*) if $\pi(A)\zeta$ is dense

in $D(\pi)$ in the induced topology (respectively, $\pi(A)\zeta$ is norm dense in H.). It is called an *ultracyclic* vector if $\pi(A)\zeta = D(\pi)$.

2. Let f be a representable functional [5, Definition 37.10] on a Banach star algebra A. The GNS construction [5, Theorem 37.11] gives a cyclic representation π of A on a Hilbert space H such that $f(x) = (\pi(x)\xi, \xi)$ where ξ is a cyclic vector. Due to the admissibility of f [15, Ch. IV, §5] each $\pi(x)$ is a bounded operator with the result that π automatically turns out to be strongly cyclic. In the context of unbounded representations, this, together with Powers' work [13, Theorem 6.3], suggests the following definition.

Definition 2.1. A positive functional f on a star algebra A is called *represent*able if there exists a closed strongly cyclic representation $(\pi, D(\pi), H)$ of A on a Hilbert space H with a strongly cyclic vector ξ such that $f(x) = (\pi(x)\xi, \xi)$ for all xin A. In this case, f is said to be represented by π .

As for Banach star algebras, the above mentioned result of Powers shows that every positive functional on a star algebra with identity is representable. It also follow, by the same arguments as there, that a representable functional is represented by a unique (up to unitary equivalence) closed strongly cyclic representation. The following analogue of [5, Theorem 37.11] shows that representable functionals on A are precisely those that extend positively to A_e .

Theorem 2.2. A positive functional f on a star algebra A is representable if and only if $|f(x)|^2 \leq kf(x^*x)$ holds for all x in A and for some constant k depending on f only.

Proof. Since $\pi(x^*) \subset \pi(x)^*$ for each x in A, one way implication is trivial. Conversely, let $|f(x)|^2 \leq kf(x^*x)$ for all $x \in A$. Then g on A_e defined as $g(x+\lambda 1) = f(x)+k\lambda$ ($x \in A$, $\lambda \in \mathcal{C}$) gives a positive linear extension of f. The standard GNS construction with g is as follows:

Let $N_g = \{a \in A_e \mid g(a^*a) = 0\}$; let $X_g = A/N_g$, a vector space with the canonical inner product $(a + N_g, b + N_g) = g(b^*a)$. For each $a \in A_e$, $\pi_g'(a)$ on X_g is defined by $\pi_g'(a)(b+N_g) = ab + N_g$ $(b \in A_e)$. Let H_g be the *Hilbert* space completion of X_g . Then π_g' defines an ultracyclic representation of A_e on H_g with $D(\pi_g') = X_g$. Let $(\pi_g, D(\pi_g), H_g)$ be its closure; for convenience, being denoted by $(\pi, D(\pi), H)$. It is a closed strongly cyclic representation of A_e such that $g(a) = (\pi(a)\xi_0, \xi_0)$ $(a \in A_e)$; $\xi_0 = 1 + N_g$ being a strongly cyclic vector.

Let

$$N = \{ y \in D(\pi) \mid \pi(a)y = 0 \text{ for all } a \in A \}$$
$$= Cl \{ y \in X_g \mid \pi(a)y = 0 \text{ for all } a \in A \}$$

where Cl denotes the closure in $D(\pi)$ in the induced topology. Further, let

 $M = \{ z \in D(\pi) \mid (z, \eta) = 0 \text{ for all } \eta \in N \}$ $= D(\pi) \cap N^{\perp} \quad \text{where} \quad N^{\perp} = H \bigoplus N .$

From the facts that π is closed and the induced topology on $D(\pi)$ is finer than the norm topology, it follows at once that N is a closed subspace of H. Thus H= $N \oplus N^{\perp}$ and $D(\pi)=N+M$ which too is a direct sum. As N and M are both π invariant subspaces, $\pi=\pi_1+\pi_2$ where π_1 is $(\pi \mid_N, D(\pi_1)=N, H_1=N)$ and π_2 is $(\pi \mid_N, D(\pi_2)=M, H_2=N^{\perp})$, each a representation of A_e . Also $\xi_0=v+u$ with $v \in D(\pi_1)$, $u \in D(\pi_2), u \neq 0$ and for each $x \in A, f(x)=(\pi_2(x)u, u)$. Let $K=(\pi(A)u)^-$, the closure in H of $\pi(A)u$. Define a representation π_3 of A in K with $D(\pi_3)=\pi(A)u$ as $\pi_3(a)=$ $\pi_2(a)\mid_{D(\pi_3)}$. We show that its closure $(\bar{\pi}_3, D(\bar{\pi}_3), K)$ is the desired representation of A with u as a strongly cyclic vector such that $f(a)=(\bar{\pi}_3(a)u, u)$ $(a \in A)$, and for this, it only suffices to show that $u \in D(\bar{\pi}_3)$.

By the definition, $D(\bar{\pi}_3) = \bigcap \{ D(\overline{\pi_3(a)^K}) \mid a \in A \}$ where now $\overline{\pi_3(a)^K}$ is the closure of $\pi_3(a)$ as an operator in K with domain $D(\pi_3)$. Then

 $u \in D(\pi)$ = $D(\overline{\pi})$ as π is closed = $\bigcap \{ D(\overline{\pi(a)}) \mid a \in A \}$

and so $u \in D(\overline{\pi(a)})$ for each $a \in A$. Further, the graph of the operator $\overline{\pi(a)}$ being

 $G(\overline{\pi(a)}) = \{ \{\pi_{\mathfrak{s}}(x+\lambda 1)\xi_{0}, \ \pi(a)\pi_{\mathfrak{s}}(x+\lambda 1)\xi_{0}\} \mid x \in A, \ \lambda \in \mathcal{C} \}^{-} \text{ (the closure in } H \times H) \\ = \{ \{\pi(x)u+\lambda v, \ \pi(a)(\pi(x)u+\lambda v)\} \mid x \in A, \ \lambda \in \mathcal{C} \}^{-}$

there are sequences (x_n) in A, (λ_n) in \mathcal{C} such that $\pi(x_n)u + \lambda_n v \to u$ and $\pi(a)(\pi(x_n)u + \lambda_n v) \to \pi(a)u$ both in H. As $D(\pi) = N \oplus M$, also a direct sum in the norm topology, it follows that $\pi(x_n)u \to u$ and $\lambda_n \to 0$; and so $\pi(a)\pi(x_n)u \to \overline{\pi(a)u}$. Thus $u \in D(\overline{\pi_3(a)}^{\mathbb{Z}})$ for each $a \in A$ and so $u \in D(\overline{\pi_3})$. This completes the proof.

The following corollary contains the varients of some of the results known [5, § 37] in the context of automatic continuity of positive functionals on Banach star algebras. Note that a representable functional on a Banach star algebra is continuous.

Corollary 2.3.

(a) Let A be a star algebra and f a positive functional on A. For each b in

A, define $f_b(x) = f(b^*xb)$ ($x \in A$). Then each f_b is a representable positive functional on A.

- (b) Let (π, D(π), H) be a representation of a star algebra A. For each ζ∈ D(π), let F_ζ(x)=(π(x)ζ, ζ). Then each F_ζ is a representable positive functional on A.
- (c) Let A be a star algebra such that (i) $A^2 = A$ and (ii) each nonzero positive functional on A dominates a nonzero representable functional. (Then each positive functional on A is representable.)

Proof. (a) is a immediate from the Cauchy-Schwartz inequality [5, Lemma 37.6 (ii)], whereas (b) is obvious. (c) is a varient of a continuity theorem of Murphy [5, Theorem 37.13] and is proved thus: Let f be positive; g be representable with $f \ge g$. Let \tilde{g} be the positive extension of g to A_o . As finite linear combinations of elements of type $a^*a(a \in A)$ span A, a simple verification shows that $\tilde{f}(x+\lambda 1)=f(x)+\lambda \tilde{g}(1)$ defines a positive linear extension of f on A_o . The assertion follows from Theorem 2.2.

 Op^* -algebras [11, Definition 2.1] provides a fairly general class of unbounded operator algebras. The next result gives construction of a faithful representation of a certain star algebra as an Op^* -algebra (without identity).

Corollary 2.4. Let A be a star algebra and R(A) be the set of all representable functionals on A. The following are equivalent.

- (a) For each nonzero x in A, there exists an f in R(A) such that $f(x^*x)>0$.
- (b) There exists a closed faithful representation of A as an Op*-algebra.

Proof. For f in R(A), let $(\pi_f, D(\pi_f), H_f)$ be the closed representation of A with a strongly cyclic vector ξ_f that represents f. Let $(\pi, D(\pi), H)$ be the directsum [13, remark following Theorem 7.5] of the π_f 's. Then π is closed. Assume (a). Let $x \in A, x \neq 0$. Let $f \in R(A)$ be such that $f(x^*x) > 0$. Let $\xi' = (\xi_g' | g \in R(A))$ be the vector $\xi_g' = 0, (g \neq f); \xi_g' = \xi_f, (g = f)$. Then $||\pi(x)\xi'||^2 = ||\pi_f(x)\xi_f||^2 = f(x^*x) > 0$. Hence π is faithful.

Conversely, if π is any faithful representation of A, then given $x \neq 0$ in A, $\pi(x)\eta \neq 0$ for some $\eta \in D(\pi)$. The functional $f(x) = (\pi(x)\eta, \eta)$ is in R(A) and $f(x^*x) = ||\pi(x)\eta||^2 > 0$.

3. Now we consider locally convex *algebras [2, §2]. Throughout the continuity of the involution is assumed. It is immediate from [15, Chapter IV, §5] that if f is a representable functional on a star algebra A and if π represents f,

then each $\pi(x)$ is a bounded operator if and only if f is admissible. In this case, π is called a bounded representation. A result due to Powell [12, Theorem 2] (where too admissible functionals are considered, but in a different sense) leads to the following.

Propnsition 3.1. Let A be a pseudo-complete locally convex *algebra such that $A=A_0$, the set of all bounded elements of A. Let f be a representable functional on A. Then each representation of A that represents f is a bounded cyclic representation.

Proof. Let $f(x) = (\pi(x)\xi_0, \xi_0)$ where ξ_0 is a strongly cyclic vector. Let $K = \pi(A)\xi_0$ and let $\xi = \pi(y)\xi_0$ for $y \in A$. Then $\|\pi(x)\xi\|^2 = f(y^*x^*xy) \leq \beta(x^*x)f(y^*y)$ by [12, Theorem 2]. Here $\beta(x^*x)$ is the radius of boundedness [1, Definition] of x^*x which is finite as $x \in A = A_0$. Hence $\|\pi(x)\xi\| \leq \beta(x^*x)^{1/2} \|\xi\|$ for all $\xi \in K$. Let $\xi \in D(\pi)$. As K is dense in $D(\pi)$ in the induced topology and since the induced topology is finer than the norm topology, there exists a net (x_α) in A such that $\pi(x_\alpha)\xi_0 \rightarrow \xi$ and $\pi(x)\pi(x_\alpha)\xi_0 \rightarrow \pi(x)\xi$ $(x \in A)$ both in the norm. This gives, for each x in A,

 $\|\pi(x)\xi\| = \lim \|\pi(x)\pi(x_{\alpha})\xi_{0}\|$ $\leq \beta(x^{*}x)^{1/2} \lim_{\alpha} \|\pi(x_{\alpha})\xi_{0}\|$ $= \beta(x^{*}x)^{1/2} \|\xi\|.$

Thus each $\pi(x)$ is a norm bounded operator on $D(\pi)$. Hence $x \rightarrow w(x) = \overline{\pi(x)}$ defines a *homomorphism of A into $\beta(H)$ (The C*-algebra of all bounded operators on H) which is a cyclic representation. Hence the result.

It follows that each representable functional on such an algebra is admissible. The next result gives an important case where $A \neq A_0$ in general, but certain representable functionals are admissible.

Proposition 32. Let A be a complete locally-m-convex *algebra and let f be a continuous representable functional on A. Then each representation of A that represents f is a bounded cyclic representation.

The functional f is extendable, and continuity implies that it is admissible [6, Theorem 6.1]. Thus, in particular, each representable functional on a Frechet *algebra is admissible.

We say that a locally convex *algebra A has a bounded approximate identity if there exists a net (u_{α}) in A such that

(i) (u_{α}) is bounded;

(ii) for each x in A, $u_{\alpha}x \rightarrow x$ and $xu_{\alpha} \rightarrow x$

and

(iii) $(u_{\alpha}^*u_{\alpha})$ is also bounded.

Note that in A, if the product of two bounded sets is bounded, in particular, if A is lmc, then (i) implies (iii). The next result which corresponds to [5, Theorem 37.15] is an immediate corollary of Theorem 2.2.

Proposition 3.3. Let A be a locally convex *algebra with a bounded approximate identity. Then each continuous positive functional on A is representable.

From this stems the following modification of corollary 2.4. In analogy with [2, §§ 2, 3] a locally convex *algebra A is hermitian if for each $h=h^*$ in A, the Allan spectrum [1, Definition 3.1] $\sigma_A(h) \subset \mathbf{R} \cup \{\infty\}$, or equivalently, for such $h, -h^2$ has a bounded adverse.

Corollary 3.4. Let A be a locally convex *algebra with a bounded approximate identity. If the set $A^+=\{x^*x|x \in A\}$ forms a closed convex cone in A, then A admits a faithful closed *representation π as an Op*-algebra. Further, if A is pseudo-complete and hermitian, then π represents A as a selfadjoint Op*-blgebra.

Proof. Let $x \neq 0$ be in A. Let $y = x^*x$. Then $-y \in A \sim A^+$. Hahn-Banach Theorem gives a continuous linear functional f on A such that $f(A^+) \ge 0$ and f(y) < 0. Thus f is positive which, by above result, is representable. The conclusion follows from Corollary 2.4 except for the final part which is a consequence of the result that follows.

Theorem 3.5. Every representation $(\pi, D(\pi), H)$ of a pseudo-complete hermitian locally convex *algebra is essentially selfadjoint.

Proof. We can assume π to be closed. Let β^* denote the set of all $B \subset A$ such that $B^2 = B$, $B^* = B$, B is absolutely convex and is closed and bounded. For each such B, we consider the *normed algebra $A(B) = \{\lambda x \mid \lambda \in \mathcal{Q}, x \in B\}$ with the norm $\|x\|_B = \{\lambda > 0 \mid x \in \lambda B\}$. Pseudo-completeness of A implies that it is Banach. First we show:

(i) $x \to \pi(x)$ defines a continuous *homomorphism of A(B) into $\beta(H)$.

For $\xi \in D(\pi)$, consider $F_{\xi}(x) = (\pi(x)\xi, \xi)$ on A. By Corollary 2.3, it is representable on A and so on A(B); hence is norm continuous by [5, §37]. Then $\|\pi(x)\xi\|^2 = F_{\xi}(x^*x) \le \|F_{\xi}\| \|x^*x\| \le \|F_{\xi}\| \|x\|^2$; and if \widetilde{F}_{ξ} is the positive extension of F_{ξ} to $(A(B))_{\epsilon}$, then $\|F_{\xi}\| \le \widetilde{F}_{\xi}(1) \le \|\xi\|^2$. It follows that $\|\pi(x)\xi\| \le \|x\| \|\xi\|$ which gives

(i) with $\|\overline{\pi(x)}\| \le \|x\|$ $(x \in A(B))$.

Next we show:

(ii) For each $h=h^*$ in A, $(\overline{\pi(h)})^*=\overline{\pi(h)}=\pi(h)^*$.

Indeed, let *h* be as above. Let $\alpha \in \mathcal{Q} \sim R$. Since *A* is hermitian, the quasi inverse [15, Ch. I, §5] $k = (\alpha^{-1}h)_{-1}$ is bounded. Then for some $\beta \neq 0$, $S = \{(\beta^{-1}k)^* \mid n=1, 2, \cdots\}$ is a bounded set. Obviously, its closed absolutely convex hull *B* is in β^* . By (i) above, $\pi(k)$ is a bounded operator. Also, for each $\xi \in D(\pi)$, $\pi((\alpha^{-1}h)_{-1})\xi = (\alpha^{-1}\pi(h))_{-1}\xi = (\alpha^{-1}\overline{\pi(h)})_{-1}\xi$. Hence $\overline{\pi((\alpha^{-1}h)_{-1})} \subset (\alpha^{-1}\overline{\pi(h)})_{-1}$ each a bounded closed operator. Therefore $(I - \alpha^{-1}\overline{\pi(h)})^{-1} = I - (\alpha^{-1}\overline{\pi(h)})_{-1}$ is a bounded operator defined on the whole of *H*. Thus the (operator theoretic) spectrum of $\overline{\pi(h)}$ is real. But $\pi(h) = \pi(h^*) \subset \pi(h)^* = (\overline{\pi(h)})^*$, and so $\overline{\pi(h)} \subset (\overline{\pi(h)})^*$. Since a closed symmetric operator with real spectrum is selfadjoint, $\overline{\pi(h)} = (\overline{\pi(h)})^*$.

Finally, (ii) is used to prove:

(iii) For each $x \in A$, $\overline{\pi(x)} = \pi(x^*)^*$.

The argument for this is standard, e.g. as in [8, Lemma 7.10]. This, with the definition of π^* , gives $D(\pi) = D(\bar{\pi}) = D(\pi^*)$ which firmishes the proof of the theorem.

An important case to which Proposition 3.3 applies is to unbounded Hilbert algebras [10]; more generally to the GB^* -algebras. We can suitably modify [2, Definition in §3] (or [8, Definition 2.5]) to define a GB^* -algebra without identity. It is a routine matter to verify that if A is a locally convex GB^* -algebra with unit ball B_0 , then $A(B_0) = \{\lambda x \mid \lambda \in \mathcal{C}, x \in B_0\}$ is a B^* -algebra (with the Minkowski functional $\|\cdot\|_{B_0}$ of B_0 as norm), and A_* is also a GB^* -algebra with underlying B^* -subalgebra $(A(B_0))_*$. A recent result due to the author [4] (proved for GB^* algebra with identity and holds in the non unital can also) is: if A is a GB^* algebra with unit ball B_0 , then the B^* -algebra $A(B_0)$ is sequentially dense in A. This gives the following important result.

Theorem 3.6. A locally convex GB^* -algebra possesses a bounded approximate identity consisting of positive elements.

Proof. Given a locally convex GB^* -algebra A with unit ball B_0 , let $(u_2 \mid \lambda \in \Lambda)$ be an approximate identity for $A(B_0)$ [3, Theorem 1.8.2] contained in B_0 and consisting of positive elements. Continuity of $(A(B_0), \|\cdot\|_{B_0}) \rightarrow (A, t)$ (t denotes the topology of A) implies that for each $x \in A(B_0)$, $xu_2 \rightarrow x$ and $u_2x \rightarrow x$. Let t' be the associated barrel topology on A [2, §5]. Then as in [2, §5], (A, t') is easily seen to be a locally convex GB^* -blgebra with the same unit ball B_0 [8, Corollary

7.8]. Further t' is finer than t and, though t' need not be barrelled, an adaptation of [8, Lemma 6.3] shows that (A, t') is hypocontinuous. We show that $(u_1 | \lambda \in \Lambda)$ is the desired approximate identity, and for this it suffices to prove that for each $x \in A$, $xu_{\lambda \to t} x$ and $u_{\lambda}x_{\to t} x$.

Given x in A and a o-neighbourhood W in (A, t'), continuity of addition and hypocontinuity of multiplication gives o-neighbourhoods V and U in (A, t') such that $U+U\subset W$, $V+V\subset U$, $B_0V\subset U$ and $VB_0\subset U$. By the sequential denseness of $A(B_0)$ in (A, t'), there exists a sequence (x_n) in $A(B_0)$ such that $x_n-x\in V$ for all $n\geq n_0$, some n_0 . Then

 $u_{\lambda}x - x = (u_{\lambda}x - u_{\lambda}x_{n_0}) + (u_{\lambda}x_{n_0} - x_{n_0}) + (x_{n_0} - x) \in B_0V + V + V \subset W$ eventually.

Thus $u_{\lambda}x \rightarrow x$ and similarly $xu_{\lambda} \rightarrow x$. This proves the assertion.

It now follows from Proposition 3.3 and the automatic continuity of a positive functional in the largest locally convex GB^* -topology [8, §§ 6, 8] that every positive functional on a GB^* -algebra A is representable, which by Theorem 3.5 is represented by a selfadjoint representation. This can be used to construct a faithful selfadjoint representation of A as an extended C*-algebra without identity as in [8, §7]. In particular, this applies to unbounded Hilbert algebras and to b^* -algebras [2, Example 3.3].

Acknowledgement. The author is thankful to Dr. M. H. Vasavada for the help he has offered during the period of preparation of this paper.

References

- G. R. Allan: A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965) 399-421.
- [2] G. R. Allan: On a class of locally convex algebras, ibid. (3)17(1967) 91-114.
- [3] W. Arveson: An invitation to C*-algebras, (Springer-Verlag, Berlin, 1976).
- [4] S. J. Bhatt: A note on Generalized B*-algebras, Journal Indian Math. Soc. (to appear).
- [5] F.F. Bonsall and J. Duncan: Complete normed algebras, (Springer-Verlag, Berlin, 1973).
- [6] R.M. Brooks: On locally m-convex *-algebras, Pacific J. Math. 23(1967) 5-23.
- [7] R. M. Brooks: On representing F*-algebras, ibid. 39(1971) 51-69.
- [8] P.G. Dixon: Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970) 693-715.
- [9] S. Gudder and W. Scrugg: Unbounded representations of *algebras, Pacific J. Math. 70(1977) 369-382.
- [10] A. Inoue: Unbounded Hilbert algebras as locally convex *algebras, Math. Rep. College Gen. Edu., Kyushu Univ., Japan, X-2(1972) 113-128.
- [11] G. Laßner: Topological algebras of operators, Rep. Math. Phys. 3(1972) 239-293.
- [12] J. D. Powell: Representations of locally convex *algebras, Proc. American Math. Soc. 44(1974) 341-346.

- [13] R. T. Powers: Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971) 85-124.
- [14] R. T. Powers: Self-adjoint algebras of unbounded operators-II, Trans. American Math. Soc. 187 (1974) 261-293.
- [15] C.E. Rickart: General Theory of Banach Algebras, (Van Nostrand, 1960).

Department of Mathematics Sardar Patel University Vallabh Vidyanagar-388120 India