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In the context of unbounded representation theory, representable func-
tionals on a star algebra are introduced and are characterized as extendable
functionals. This gives faithful representations of certain star algebras as
Op*.algebras. Every representation of a pseudo-complete hermitian locally
convex *algebra is shown to be essentially selfadjoint. Also proved that a
Generalized B*.algebra (without identity) admits a bounded approximate
identity which yields the representability of every positive functional.

R.T. Powers [13, Theorem 6.3] has proved that the well known GNS con-
struction with a positive functional f on a star algebra A with identity yields a
closed strongly cyclic star representation = of A on a Hilbert space H mapping
the elements of A into closable linear operators all defined on a common domain
D(n) dense in H; and = represents f in a suitable sense. In this paper, we con-
sider the case when A does not possess identity. In §2, representable functionals
on A are introduced in the setting of unbounded representations; and are char-
acterized (as extendable functionals) as in the case of Banach star algebras [5,
Theorem 37.11]. This gives a number of sufficient conditions for the representa-
bility of every positive functional which in turn are used to construct faithful
representations of certain algebras as Op*-algebras [11, Definition 2.1]. In §3 we
give a couple of applications to locally convex *algebras. It is shown that every
representation of a hermitian pseudo-complete locally convex *algebra A is essen-
tially selfadjoint. Further if A has a bounded approximate identity and the
positive elements A+ forms a closed convex cone, then A is *isomorphic to a
selfadjoint Op*-algebra. We also show that a locally convex Generalized B*-
algebra [8] admits a bounded approximate identity.

1. Our notations and terminology will follow [13] except for a suitable modi-
fication when the algebra does not possess identity. They are outlined bellow.
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Notations and terminology. Let A be a complex star algebra. A representa-
tion (z,D(z), H) of A on a Hilbert space H is a mapping = of A into linear
operators all defined on a common domain D(x) dense in H such that for all z, y
in A; a,8 in € and ¢, » in D(z);

@) m(az+BY)i=an@);+ Br(y);

(b) n(@)D(xr)C D(r) and n(x)n(y);=n(xy).

It is called hermitian or a star representation if
() D)< D(z(x)*) (here D(z(x)*) denote the domain of the operator adjoint
n(x)* of n(x)) and m(x*)Cr(x)*.
In case A possesses identity 1, then

@ =~)=I.

Throughout we shall only consider hermition representations that are essential
in the sense that

{CéD(n) |(@)=0 for all & in A}={0}.

It is easily seen that, r is essential if and only if 7(4)D(x) is dense in H. By (c),
each n(x) is a closable operator whose closure is denoted by z(x). Let A, be the
star algebra obtained by adjoining identity to A. Then n,(x+ Al)=xr(x)+ I (x€ A,
A€ @) defines a representation of A, with domain D(r). The induced topology (or
the A,-topology) on D(z) is the locally convex topology defined by the seminorms
{—llz(2)Cll for varying # in A,. The completion of D(r) in this topology [11,
Lemma 3.2] is ’

D@=N{D(x,(x)) | x€ A}
=N {D@@)) | € A}
(The latter equality follows from: If S and T are densely defined operators in a

Hilbert space with D(T)=D(S), then (T+S) =T+S provided either of them is
bounded). Now this defines a representation # of A with domain D(#) as #(x)=

. 7(@) |ocs>, called the closure of =, and r is closed if r=7.

The hermitian adjoint of = is a (not necessarily hermitian) representation
(z*, D(z*), H) with

D(*)= {D(r,(x*)*) | x € A}
=N {D(x(z*)*) | z€ A} (as above)
with #*(@)=n(@*)* |px+y. = is essentially selfadjoint (respectively selfadjoint) if
w=n* (respectively, ==n%*).
A vector ¢ in D(x) is called strongly cyclic (respectively cyclic) if n(A){ is dense
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in D(z) in the induced topology (respectively, n(A)¢ is norm dense in H.). It is
called an ultracyclic vector if 7(A),=D(x).

2, Letfbea repi’esentable functional [5, Definition 37.10] on a Banach star
algebra A. The GNS construction [5, Theorem 37.11] gives a cyclic represen-
tation = of A on a Hilbert space H such that f(x)=(z(x)¢, §) where ¢ is a cyclic
vector. Due to the admissibility of f [15, Ch. IV, §5] each »(x) is a bounded
operator with the result that = automatically turns out to be strongly cyclic. In
the context of unbounded representations, this, together with Powers’ work [13,
Theorem 6.3], suggests the following definition.

Definition 2.1. A positive functional f on a star algebra A is called represent-
able if there exists a closed strongly cyclic representation (r, D(z), H) of A on a
Hilbert space H with a strongly cyclic vector & such that f(z)= (z(2)¢, &) for all z
in A. In this case, f is said to be represented by =.

As for Banach star algebras, the above mentioned result of Powers shows that
every positive functional on a star algebra with identity is representable. It also
follow, by the same arguments as there, that a representable functional is repres-
ented by a unique (up to unitary equivalence) closed strongly cyclic representa-
tion. The following analogue of [5, Theorem 37.11] shows that representable
functionals on A are precisely those that extend positively to A,.

Theorem 2.2. A positive functional f on a star algebra A is representable if
and only if | f(@)|*<kf(x*x) holds for all x in A and for some constant k depending
on f only.

Proof. Since n(z*)Cn(x)* for each z in A, one way implication is trivial.
Conversely, let | f(x)|2<kf(x*x) for all € A. Then g on A, defined as g(x+ il)=
f@)+ki(we A, 2€ @) gives a positive linear extension of f. The standard GNS
construction with g is as follows:

Let Ny={a€ A, | gla*a)=0}; let X,=A/N,, a vector space with the canonical
inner product (@+ Ny, b+ Ny)=9(b*a). For each a € A,, n,/(@) on X, is defined by
7/ (@)(b+ Ny)=ab+ N, (be A,). Let H, be the Hilbert space completion of X,.
Then =,/ defines an ultracyclic representation of A, on H, with D(z,/)=X,. Let
(mq, D(n,), H,) be its closure; for convenience, being denoted by (x, D(x), H). It is
a closed strongly cyclic representation of A, such that g(a)=(z(a)é,, &) (a € A,);
&,=1+ N, being a strongly cyclic vector.

Let
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N={y e D(x)|n(a)y=0 for all a € A}
=Cl{ye X, | n(a)y=0 for all a € A}

where Cl denotes the closure in D(r) in the induced topology. Further, let

M={ze D(r)|(z,7)=0 for all e N}
=D(®)N N* where N=HON.

From the facts that = is closed and the induced topology on D(r) is finer than the
norm topology, it follows at once that N is a closed subspace of H. Thus H=
N®N* and D(@)=N+M which too is a direct sum. As N and M are both z-
invariant subspaces, n=nr,+nr, where =, is (z |y, D(x;)=N, Hy=N) and =, is (7 |,
D(ry)=M, H,=N*), each a representation of A,. Also &=v+u with v € D(r,),
u € D(r,), u+0 and for each x€ A, f(@)=(r,(x)u, #). Let K= (x(A)u)", the closure
in H of n(A)u. Define a representation 7; of A in K with D(r;)=n(A)u as n;(a)=
73(a) |pxgy. We show that its closure (%;, D(%;), K) is the desired representation of
A with u as a strongly cyclic vector such that f(a)= (7s(a)u, #) (a € A), and for this,
it only suffices to show that u € D(%;).

By the definition, D(%;)= N {D{r;(@)¥) | a € A} where now r,(@)* is the closure of
ri(a) as an operator in K with domain D(r;). Then

u € D(n)
=D(7) as r is closed
=N {D(x(a)) | a € A}

and so # € D(z(a)) for each a€ A. Further, the graph of the operator z(a) being

G(@))={{r,(x+ A1)&,, m(a)r(x+ A1)} |x€ A, A€ @} (the closure in Hx H)
={{n(@)u+ iv, r@)x@)u+ )} |xc A, 2€ @}

there are sequences (%,) in A, (4,) in € such that =(x,)u+ 2,v—u and =n(a)(x(x,)u+
A0)—rn(a)u both in H. As D(z)=N@PM, also a direct sum in the norm topology,
it follows that z(x,)u—u and A,—0; and so n(a)r(®,)u—n(@)u. Thus u € D(rs(@)®)
for each a € A and so u € D(%;). This completes the proof.

The following corollary contains the varients of some of the results known
[5, §37] in the context of automatic continuity of positive functionals on Banach
star algebras. Note that a representable functional on a Banach star algebra is
continuous.

Corollary 2.3.
(@) Let A be a star algebra and f a positive functional on A. For each b in
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A, define fo(x)=f(b*xb) (x€ A). Then each f, is a representable positive
Sfunctional on A.

(b) Let (x, D(x), H) be a representation of a star algebra A. For each { € D(n),
let Fy(x)=(x(x), ). Then each Fr is a representable positive functional
on A.

(c) Let A be a star algebra such that (i) A*=A and (ii) each nonzero positive
Sfunctional on A dominates a nonzero representable functional. (Then
each positive functional on A is representable.)

Proof. (a) is a immediate from the Cauchy-Schwartz inequality [5, Lemma
37.6 (ii)], whereas (b) is obvious. (c) is a varient of a continuity theorem of
Murphy [5, Theorem 37.13] and is proved thus: Let f be positive; g be represent-
able with f=g. Let § be the positive extension of g to A,. As finite linear com-
binations of elements of type a*a(a € A) span A, a simple verification shows that
f(x+ Al)=f(x)+ A§(1) defines a positive linear extension of f on A.. The assertion
follows from [Theorem 2.2.

Op*-algebras (11, Definition 2.1] provides a fairly general class of unbounded
operator algebras. The next result gives construction of a faithful representation
of a certain star algebra as an Op*.-algebra (without identity).

Corollary 2.4. Let A be a star algebra and R(A) be the set of all representable
Junctionals on A. The following are equivalent.

(@) For each nonzero x in A, there exists an f in R(A) such thqt Sflx*x)>0.

(b) There exists a closed faithful representation of A as an Op*-algebra.

Proof. For f in R(A), let (z;, D(x;), H,;) be the closed representation of A
with a strongly cyclic vector &, that represents f. Let (z, D(x), H) be the direct-
sum [13, remark following Theorem 7.5] of the n,’s. Then r is closed. Assume
(@). Letze A, x+0. Letfe R(A) be such that f(x*2)>0. Let &=(&,’| g€ R(A))
be the vector §/=0, (9#f); &/=¢&;, (9=1). Then [lz@)¢&’|I*= |z, (@)é/I*=1f(x*2) > 0.

’ Hence = is faithful.

Conversely, if = is any faithful representation of A, then given £+0 in A,
n(x)n+#0 for some n€ D(x). The functional f(x)= (z(x)n, ») is in R(A) and f(x*x)=
lz(x)5li2>0.

3. Now we consider locally convex *algebras [2, §2]). Throughout the con-
tinuity of the involution is assumed. It is immediate from [15, Chapter IV, §5]
that if f is a representable functional on a star algebra A and if » represents f,
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then each n(x) is a bounded operator if and only if f is admissible. In this case,
m is called a bounded representation. A result due to Powell [12, Theorem 2]
(where too admissible functionals are considered, but in a different sense) leads to

the following.

Propnsition 3.1. Let A be a pseudo-complete locally convex *algebra such that
A=A,, the set of all bounded elements of A. Lel f be a representable functional on
A. Then each representation of A that represents f is a bounded cyclic representa-
tion. "

Proof. Let f(x)=(n(x)¢,, §,) Where &, is a strongly cyclic vector. Let K=
n(A)é, and let §=xn(y)&, for y€ A. Then [z(@)&[*=f(y*x*zy) < B(a*x) f(y*y) by [12,
Theorem 2]. * Here B(x*x) is the radius of boundedness [1, Definition] of a*
which is finite as x€ A=A,. Hence ||z(@)¢|| < B(x*x)2|&|| for all €€ K. Let &€
D(z). As K is dense in D(zx) in the induced topology and since the induced
topology is finer than the norm topology, there exists a net (x,) in A such that
()€ & and n(x)n(x,)Ee—>n(x)é (® € A) both in the norm. This gives, for each x
in A,

lz@)§ll=1im ||z (@)7(@q) &l
= B(@*2)"* lim [lx(@a)ol

=B@*x)' 2 ||¢]| .

Thus each n(x) is a norm bounded'operator on D(r). Hence w—»w(w)ﬁﬂx—) deﬁnés
a *homomorphism of A into S(H) (The C*-algebra‘of all bounded operators on
H') which is a cyclic representation. Hence the result. '

It follows that each representable functional on such an algebra is admissible.
The next result gives an important case where A+ A, in general, but certain
representable functionals are admissible.

Proposition 3 2. Let A be a complete locally-m-convex *algebra and let f be a
continuous representable functional on A. Then each representation of A that
represents f is a bounded cyclic representation.

The functional f is extendable, and continuity implies that it is admissible [6,
Theorem 6.1]. Thus, in particular, each representable functional on a Frechet
*algebra is admissible.

We say that a locally convex *algebra A has a bounded approximate identity
if there exists a net (#,) in A such that

(i) (u,) is bounded;
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(ii) for each 2 in A, u,x—x and 2u,—x
and

(iii) (#.*u,) is also bounded.

Note that in A, if the product of two bounded sets is bounded, in particular,
if A is lmc, then (i) implies (iii). The next result which corresponds to [5,
Theorem 37.15] is an immediate corollary of Theorem 2.2.

Proposition 3.3. Let A be a locally convex *algebra with a bounded ap-
proximate identity. Then each continuous positive functional on A is represent-
able.

From this stems the following modification of corollary 2.4. In analogy with
[2, §§ 2, 3] a locally convex *algebra A is hermitian if for each A=h* in A, the
Allan spectrum [1, Definition 3.1] a,(k)C RU {0}, or equivalently, for such %, —h?
has a bounded adverse.

Corollary 3.4. Let A be a locally convex *algebra with a bounded approx-
“imate identity. If the set A*={x*x|x € A} forms a closed convex cone in A, then
A admits a faithtul closed *representation = as an Op*-algebra. Further, if A
is pseudo-complete and hermitian, t hen n represents A as a selfadjoint Op*-bilgebra.

Proof. Let 2#0 be in A. Let y=«*x¢. Then —ye€ A~A*. Hahn-Banach
Theorem gives a continuous linear functional f on A such that f(A*)=0 and
) <0. Thus f is positive which, by above result, is representable. The conclu-
sion follows from except for the final part which is a consequence of
the result that follows.

Theorem 3.5. Every representation (z, D(z), H) of a pseudo-complete hermitian
locally convex *algebra is essentially selfadjoint.

Proof. We can assume n to be closed. Let g* denote the set of all BC A
such that B®=B, B*=B, B is absolutely convex and is closed and bounded. For
each such B, we consider the *normed algebra A(B)={Az | A€ &, x € B} with the
norm ||#ll,={A>0|x € AB}. Pseudo-completeness of A implies that it is Banach.
First we show:

(i) x—r(x) defines a continuous *homomorphism of A(B) into B(H).

For &€ D(r), consider Fi(x)=(x(x)¢, §) on A. By [Corollary 2.3, it is re-
presentable on A and so on A(B); hence is norm continuous by [5, §37]. Then
lx(@)&]1>=Fe(x*x) < | Fell lle*all <||Fell |2l|%; and if F¢ is the positive extension of F,
to (A(B)),, then [|Fe]|<sFe(1)<|&2. It follows that [[z(®)&]l < ||l &l which gives
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() with [z@| =zl @e AB).

Next we show:

(ii) For each h=h* in A, (x(h)*=r(k)=n(h)*.

Indeed, let 2 be as above. Let a€ @ ~R. Since A is hermitian, the quasi
inverse [15, Ch. I, §5] k=(a"'h)., is bounded. Then for some B#0, S=
{(B"%k)" |n=1,2,---} is a bounded set. Obviously, its closed absolutely convex
hull Bis in g*. By (i) above, =(k) is a bounded operator. Also, for each ¢ € D(x),
2((a~h)-1)é=(a " 'n(h))_1§=(a"'x(h))_,&. Hence z((a~Th)_,) < (a~'x(k)); each a bound-
ed closed operator. Therefore (I—a~'z(h))'=I—(a"'z(h))_, is a bounded operator
defined on the whole of H. Thus the (operator theoretic) spectrum of #(%) is real.
But #(h)=n(h*)Cr(h)*=(x(h))*, and so =(h)C (x(k))*. Since a closed symmetric oper-
ator with real spectrum is selfadjoint, =(k)=(x(h))*.

Finally, (ii) is used to prove:

(iii) For each z€ A, n(@)=n(x*)*.

The argument for this is standard, e.g. as in [8, Lemma 7.10]. This, with
the definition of n*, gives D(x)=D(%)=D(z*) which firnishes the proof of the
theorem. '

An important case to which Proposition 3.3 applies is to unbounded Hilbert
algebras [10]; more generally to the GB*-algebras. We can suitably modify [2,
Definition in § 3] (or [8, Definition 2.5]) to define a GB*-algebra without identity.
It is a routine matter to verify that if A is a locally convex GB*-algebra with
unit ball By, then A(By)={iz| A€ €, x € B,} is a B*-algebra (with the Minkowski
functional ||+|ls, of B, as norm), and A, is also a GB*-algebra with underlying
B*.subalgebra (A(By)).. A recent result due to the author [4] (proved for GB*.
algebra with identity and holds in the non unital can also) is: if A is a GB*.
algebra with unit ball B,, then the B*.algebra A(B,) is sequentially dense in A.
This gives the following important result. ‘

Theorem 3.6.‘ A locally convex GB*-algebra possesses a bounded approximate
identity consisting of positive elements.

Proof. Given a locally convex GB*-algebra A with unit ball B,, let (#;| 2€ A)
be an approximate identity for A(B,) [3, Theorem 1.8.2] contained in B, and con-
sisting of positive elements. Continuity of (A(By), ||-|ls)—>(A4,1) (¢ denotes the
topology of A) implies that for each x € A(B,), wu;»% and u,x—>x. Let ¢/ be the
associated barrel topology on A [2, §5]. Then as in [2, §5], (A4,¢#) is easily
seen to be a locally convex GB*-blgebra with the same unit ball B, [8, Corollary
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7.8]. Further # is finer than ¢ and, though #’ need not be barrelled, an adaptation
of [8, Lemma 6.3] shows that (A, #/) is hypocontinuous. We show that (¥;| i€ A)
is the desired approximate identity, and for this it suffices to prove that for each
TEA, zu;7>¢ and uxw.

Given x in A and a o-neighbourhood W in (A4, /), continuity of addition and
hypocontinuity of multiplication gives o-neighbourhoods V and U in (A4, #/) such
that U+UCW, V+VcU, B,VcU and VB,cU. By the sequential denseness of
A(B,) in (A, t’), there exists a sequence (z,) in A(B,) such that z,—x€V for all
n=n, some n,. Then

u;x-¥x=(u;x—u1w,.o)+(u;x,.o—m,.,,)+(w,.o—w) €B,V+V+VCW eventually.

Thus u@>¢ and similarly zu;—>x. This proves the assertion.

It now follows from Proposition 3.3 and the automatic continuity of a posi-
tive functional in the largest locally convex GB*-topology [8, §§ 6, 8] that every
positive functional on a GB*.algebra A is representable, which by [Theorem 3.5
is represented by a selfadjoint representation. This can be used to construct a
faithful selfadjoint representation of A as an extended C*-algebra without identity
as in [8, §7]. In particular, this applies to unbounded Hilbert algebras and to
b*.algebras [2, Example 3.3].

Acknowledgement. The author is thankful to Dr. M. H. Vasavada for the
help he has offered during the period of preparation of this paper.

References

[1] G.R. Allan: A spectral theory for locally convex algebras, Proc. London Math. Soc.
(3)15(1965) 399-421.

[2] G.R. Allan: On a class of locally convex algebras, ibid. (3)17(1967) 91-114.

[3] W. Arveson: An invitation to C*.algebras, (Springer-Verlag, Berlin, 1976).

[4] S.]. Bhatt: A note on Generalized B*.algebras, Journal Indian Math. Soc. (to appear).

[5] F.F. Bonsall and J. Duncan: Complete normed algebras, (Springer-Verlag, Berlin,
1973) .

[6] R.M. Brooks: On locally m-.convex *.algebras, Pacific J. Math. 23(1967) 5-23.

[7] R.M. Brooks: On representing F*.algebras, ibid. 39(1971) 51-69.

[8] P.G. Dixon: Generalized B*.algebras, Proc. London Math. Soc. (3)21(1970) 693-715.

[9] S. Gudder and W. Scrugg: Unbounded representations of *algebras, Pacific J. Math.
70(1977) 369-382.

[10] A. Inoue: Unbounded Hilbert algebras as locally convex *algebras, Math. Rep. College
Gen. Edu., Kyushu Univ., Japan, X-2(1972) 113-128.

[11] G. LaBner: Topological algebras of operators, Rep. Math. Phys. 3(1972) 239-293.

[12] J.D. Powell: Representations of locally convex *algebras, Proc. American Math.
Soc. 44(1974) 341-346.




16
(13]
[14]

[15]

SUBHASH ]J. BHATT

R.T. Powers: Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21
(1971) 85-124.

R.T. Powers: Self.adjoint algebras of unbounded operators-II, Trans. American Math.
Soc. 187(1974) 261-293.

C.E. Rickart: General Theory of Banach Algebras, (Van Nostrand, 1960).

Department of Mathematics
Sardar Patel University
Vallabh Vidyanagar-388120
India




	1. Our notations and terminology ...
	2. Let $f$ be a representable ...
	Theorem 2.2. ...

	3. Now we consider locally ...
	Theorem 3.5. ...
	Theorem 3.6. ...

	References

