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1. Introduction 

An analysis of the informed best first 

search strategy has been carried out for 

AND/OR graphs. The heuristic cost function 

F has been decomposed as F = G+H, which is 

a generalization of f = g+h for ordinary 

graphs [lo, 2, 41. The idea of minimum of 

pathmax of F has been used to show that mo- 

st of the properiiies, which hold for path- 

finding algorithms as shown in [2,4], also 

hold for AND/OR graphs. Compared to those 

found in literature, more relaxed conditi- 

ons for admissibility and consistency fcr 

AND/OR graphs have been established. The 

best-first search strategy has been ana- 

lysed under admissible and monotone res- 

trictions. Questions of optimality in ter- 

ms of node expansions have been studied. 

The use of weighted cost functions is ana- 

lysed. Non-additive cost measures have a?- 

so been discussed. 
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2. Preliminary Definitions and Algorithm 

BFS 

The sink nodes of any AND/OR graphare 

called tip nodes. If the tip nodes are pri- 

mitive subproblems which can be solved dir- 

ectly, they are called terminal nodes. If 

I;he tip nodes are unsolvable they called 

non terminal nodes. The other nodes are of 

two types: OR and AND. Since the complete 

AND/OR graph, G (referred to as the impli- 

cit graph) has a large number of nodes, the 

search algorithm works on an explicit gra- 

E!L, G', which initially consists of the st- 

art node s. When a tip node of G' is expa- 

nded, its successors are added to G'. 

A potential solui-ion graph(psg) D' is 

a finite subgraph of G' as defined below: 

ii> s is in D’, (ii) if n is an OR node in 

G' and CL is in i)' then exactly one of its 

successors in G' is in D', (iii) if n is 

an AND node in G' and n is in D’ then all 

its immediate successors in G’ are in D', 

(iv) every maximal (directed) path in D' 

ends in a tip node of G’. 

A solution graph D is a finite subgr- 

aph of the implicit graph G which is defi- 

ned below: 
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(i) s isin D, (ii) if n is an OR node in G 

and n is in D, then exactly one of its imm- 

ediate successors in G is in D, (iii) if n 

is an AND node in G and n is in D, thenaB 

its immediate successors in G are in D, 

(iv) every maximal (directed) path in D en- 

ds in a terminal node. 

A partial solution(ps) P of a solution 

graph D is a subgraph of D as defined below: 

(i) s is in P, (ii) if for any node n in P, 

any of its immediate successors in D is in 

p, then all these successors are in P. 

A psg D' is said to be solved if it is 

a solution graph. A psg is said to be unso- 

lvable if it contains a non-terminal node -- 

as a tip node. 

The best-first search algorithm, BFS, 

is given below: 

Algorithm BFS 

1. Initially the explicit graph, G', cons- 

;ists!only OF ,the start node, s. 

2. From G' constructed so far select the 

most promising psg D', which is not un- 

: '1 solvablei If all,psg's are:unsolvab?e, 

'exit with'failure, 

3. If D' is solved, exit with success. 

Otherwise expand a node n in D' genera- 

ting all its successors. Add them to G'. 

4. Goto 2. 

In pathfinding problems, algorithms l- 

ike A"[lO], BFi'[4], A[2] fall in this cate- 

gory. For AND/OR graph AO"[lO] is of this 

type. 

We now introduce the idea 08 cost. In- 

itially we assume that the costs are addit- 

ive and the graphs are additive AND/OR gra- 

phs like those of [6, 71. Each arc from no- 

des m to n has a finite positive cost 

C(m,n>. Each node n in G has a heuristic 

estimate h(n). The actual minimal cost is 

h'(n). For terminal nodes h(n) = h':'(n) =O. 

For non terminal nodes h(n) = h+'(n) ~6,. 

Let R be a psg or ps. Corresponding 

to every node n in R we define 

I 

0 if n is a tip node of R 
G(R,n)= x{Gr(R 

j 
,nj) + C(n,rlj)3 for non tip 

nodes with immediate successors 

n.. 
J 

. 1 

h(n) if n is a tip node of R 
H(R9n)= zH(R,nj) f or non tip nodes with 

j 
immediate successors n.. 

3 

H"(R,n)= 
h*(n) if n is a tip node of R 

xH:*(R,nj) for non tip nodeswith 
j 

immediate successors ni. 

G(R) = G(R,s). H(R) = H(R,s). 

H+'(R) = Ei+'(R,s). F(R) = G(R) + H(R). 

For any psg I)', 3FS selects the psg 

D' with minimum F(D') as the most promisi- 

ng psg. Observe that h*(s) is the minimal 

cost solution of G. 

3. Conditions for Obtaining Minimal Cost 

Solutions 

We analyse BFS in the light of the ge- 

neral theory of heuristic search[2, 4, 111. 

Definitions: (Generalization of Bagchi and 

Mahanti [z]) 

(i) Let Dl, D2, . . . be solution graphs of 

G. We write P E D i if P is a ps of Di. 

For each i, let pathmax Mi= max F(F). 
P&D. 1 

(ii> Let Q = iyinl Mi 
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(iii) Let Dil, Di2,..., Dik, for some k>=l, relaxed admissibility criteria than h<=h", 

be minimal cost solution graphs of G. because h<=h"+H<=H' but not the reverse. 

Let Qopt = min Mi. 
l<=i<=k 3 

Coroilary 3: If h<=h': for allnodes in G, 

BFS terminates with minimal cost solution. 
Lemma 1: At any step before BFS terminates, 

Theorem 2: 
G' contains at least one ps from every sol- 

If for any AND/OR graph G, the- 

re exists at least one minimal cost solu- 
ution graph as a psg. 

Proof: An induction on the steps of the al- 
tion graph Dmin for which F(Dmin) = 

max F(P), then BFS terminates with mini- 
gorithm. PC Dmin 

Lemma 2: At any step before BFS terminates mum cost solution. 

there is a psg D' in G' such thatF(D')<=Q. Proof: Let BFS terminate with solution gr- 

Proof: Consider the solution graph D which aph D. Glearly, F(D)<= Q<= max [F(P) 1 

determines the value of Q. By Lemma 1, we P'Dmin 

= F(D 
have D' as a psg of G' which is also a ps 

min) = h“'(s). Also since Dmin is the 

of D. Cleariy, F(D') <= Q. minimal cost solution, F(D)>=F(Dmin). Thus 

Theorem 1: Algorithm BPS terminates with a F(D) = F(Dmin) = h*(s). 

solution graph D (if it exists) of cost 4 . The Monotone (Consistent) Restriction 

F(D) <= Q. The monotone restrictiin given in[lO] 

Proof: Similar to Nilsson [lo, pg. 781, as- is one of the most popular types of heuri- 

suming the cost of the arcs to be positive stic estimates studied for pathfinding al- 

and finite. A contradiction can be reached gorithms. We now concentrate on some of the 

using Lemma 2. properties of such restrictions in AND/OR 

Corollary 1: If Q = Qopt = h*(s) then BFS graphs. We define the monotone restriction 

terminates with a solution graph D of cost as: 

F(D) = h"(s). Definition: If two ps's or psg's Rl andR2 

Corollary 2: If H(P) <= H"(P) for all ps are such that RI is a subgraph of R2 then 

then BFS terminates with minimal cost solu- F(Rl) <= F(K2) ( or H(R1) <= cost (R~,R~) 

tion. + H(R2), where cost(R1, R2) = G(R2) -G(Rl) 

Proof: For the minimal cost solution graph >. 

we have It is obvious that Martelli and Mont- 

F(D min) =p~~x { G(P) + K(P)} as H<=Hj'( anari's [6] consistent restriction implies 

min the above but not the reverse. In fact, si- 

So F(Dmin) = Qopt. Also F(Dmin) = h"(s). milar to the admissibility criteria, it is 

Thus Q = Qopt = h*(s). Result follows from defined over H and not h. Also, for path- 

Corollary 1. finding algorithms, this condition clearly 

It may be noted that this is a more becomes Nilsson's monotone restriction[lO]. 

Theorem 3: The monotone restriction impli- 



es that the F values or' sequences 0E psg's 

selected by BFS is nondecreasing. 

Proof: Obvious. 

Theorem 4: If the heuristic estimate follo- 

ws monotone restriction, then BFS termina- 

tes with minimal cost solution. 

Proof: For all solution graphs Di of G, we 

have by the monotone restriction F(Di) = 

max F(P). So for the minimal cost solu- 
PED. 

tionl)Dmin, F(Dmin) = max. F(P). Result 
P'Dmin 

follows from Theorem 2. 

5. Questions of Optimality 

The question of optimality of BFS in 

terms of node expansions raises a numberof 

problems. For AND/OR graphs with two admis- 

sible estimating functions hl and h2, such 

that h">= hl> h2 for all nodes in G, we ca- 

nnot conclude that h 1 expands no more nodes 

than h2. An example can easily be found to 

support the above statement. But this see- 

ms to put the idea that the more informed 

heuristic is more eEficient at fault. The 

problem arises out of two major reasons; 

(i) for AND/OR graphs we have two evaiua- 

tion functions, one to select the most 

promising psg D' in G' and then to select 

the node in D’ to expand. 

(ii) the expansion of a single node in G' 

may lead to the extension of more than one 

psg. So the promise of a psg may change 

even when that psg is not selected for exp- 

ansion by BFS. 

Now if we impose two restrictions to 

overcome these problems, certain results 

hold. The restrictions are: 

Rl : Whenever two algqrithms BFS, andBFS2 . . 
select the same psg for extension, they se- 

lect the same node for expansion(that is 

the second evaluation function in (ii) ab- 

ove is consistent). 

R2: Expansion of a node leads to the ext- 

ension of only one psg in G'. 

' Lemma 3: If Q = Qopt = h"(s) then the con- 

ditions for a psg D' in G' to be selected 

is: necessary condition : F(D')<= h"(s) 

sufficient condition: F(D')< h"(s) 

Proof: Clear from Lemma 2 and Corollary 1. 

Lemma 4: Rl and R2 implies that whenever 

two algorithms BFS1 and i3FS2 select the sa- 

me node for expansian, they have selected 

the same psg. 

Proof: By induction on the sequence of 

psg's generating the psg D' containing the 

node n. 

Theorem 5: For two such algorithms BFSl and 

BFS2 using heuristic estimates hl and h2, 

respectively, if for all psg's D' we have 

Ha(D’) >= H1(D’) > H2(D'), where Hi corres- 

ponds to hi, then BFS2 expands every node 

expanded by BFSl, provided Rl and R2 hold. 

ProoE: Similar to Nilsson [lo, pp. 811. By 

induction on the such trees of psg's form- 

ed by the two algorithms and using Lemma 3 

and Lemma 4. 

Corollary 4: If h'>= hl> h2 for G then 

Theorem 5 holds with restrictions Rl and 

R2. 

Corollary 6: For ordinary graphs Theorem 5 

holds without restrictions. 
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graph. 

Q<= max F(P)<= max I G(P) + H*(P) t 
P6Dmin PEDmin 

6. Weighted Heuristic Search 

As in pathfinding algorithms[lO, pp. 

881, for AND/OR graphs the relative weights 

of G and H in the cost function F can be 

controlled using F(W,D') = (1-W) G (D') + 

W H (D'), O<= W<= 1. For ordinary graphs 

some recent results on weighted evaluation 

functions can be found in [l, 41. Here we 

derive two important results for AND/OR grr! 

aphs. 

Theorem 6: If BFS uses an evaluation func- 

tion F(W,D') = (1-W) G (D') + W H (D') for 

all psg's and H/H" is bounded above by d, 

then W < l/(l+d) constitutes the range of 

admissibility of BPS. 

Proof: Similar to Dechter and Pearl [4, 

PP. 5131 utilizing Theorem 2 to force F to 

attain its maximal value for some minimal 

cost solution graph Dmin. 

Coroliary 7: If H <= H", then DFS gives mi- 

nimum cost solution for W < l/Z. 

eHi':(P) . f(P)} 

Q<=H 
5: 

(s) +eh 
$: 

(s) = h 
9: 

(s)[l + e]. 

It may be noted that H(D')/[G(D') + 

H(D')l is an interesting form of f(D') 

which can be used. 

7. Non-Additive Cost Measures 

, 

In case of dynamic weighting we gener- 

alize the result of Pohl as in Dechter and 

Pearl [4]. 

Theorem 7: Let F(D') = G(D') + H(D')[l + 

Finally we discuss the case where F 

need not be additive (that is F = G + H 

type) in nature. Dechter and Pearl [4] ha- 

ve discussed such functions for pathfindi- 

ng algorithms. We generalize the same idea 

for AND/OR graphs. We assume that for solu- 

tion graph F is monotonic in nature, such 

that, C(01) > C(D2)3F(Dl) > F(D2), where 

CEDi) is the actual cost of the solution 

graph Di. Thus we define 

NC(D’)] where D' is a solution gr- 

F(l)')= 
\ 

oph and w.> is monotonic. 

r?(D' ) where D' is not a soluti- 
;;t;;ryPh and fl(.) is ar- 

. 

Theorem 8: BFS is y -1(Q) admissible, that 

is, the cost of the solution graph found 

by BFS is at most y/-'(Q) . 

Proof: Similar to [4, pp. 511. 

Theorem 9: If for any AND/OR graph search- 

ed by BFS, there exists at least one opti- 

mal cost solution graph Dmin for which 

e RD')] be a weighted cost function of BFS, 
F(D,in) = max F(P) then BFS terminates 

" Dmin 

where f(D') is a pathdependent function of with minimum cost solution. 

D' satisfying $(D') <= 1, then BFS termina- Proof: Similar to Theorem 2 where \y(C)=C 

tes with cost at most H"(s)[ 1 +e] provi.d- and utilizing the monotonicity of u/ as in 

ed H <= H". [4, PP. 5121. 

Proof: Let Dmin be a minimal cost solution 
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8. Conclusion 

Finally to conclude, we would like to 

stress that both pathfinding and problem 

reduction searches are the same problem, 

the former being a special case of the lat- 

Ler. For example, in the popular case of 

additive cost, both are the same problemof 

optimizing F = G + H. Though the branch-and 

-bound framework has been a method to study 

these two problems rogether as shown in[9], 

the present approach helps us to establish 

that nearly all the results for pathfinding 

search strategies also hold for AND/OR 

graphs. 
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