Best First Search in And/Or Graphs
P.P. Chakrabarti
S. Ghose
S.C. DeSarkar
Department of Computer Science \& Engg.
Indian Inslitute of Technology Kharagpur 721302, India

1. Introduction

An analysis of the informed best first search strategy has been carried out for AND/OR graphs. The heuristic cost function F has been decomposed as $F=G+H$, which is a generalization of $\mathrm{f}=\mathrm{g}+\mathrm{h}$ for ordinary graphs [10, 2, 4]. The idea of minimum of pathmax of F has been used to show that most of the properifes, which hold for pathfinding algorithms as shown in [2,4], also hold for AND/OR graphs. Compared to those found in literature, more relaxed conditions for admissibility and consistency Ecr AND/OR graphs have been established. The best-first search strategy has been analysed under admissible and monotone restrictions. Questions of optimality in terms of node expansions have been studied. The use of weighted cost functions is analysed. Non-additive cost measures have also been discussed.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specfic permission.

2. Preliminary Definitions and Algorithm BFS

The sink nodes of any AND/OR graph are called tip nodes. If the tip nodes are prim mitive subproblems which can be solved directly, they are called terminal nodes. If the tip nodes are unsolvable they called non terminal nodes. The other nodes are of two types: $O R$ and $A N D$. Since the complete AND/OR graph, G (referred to as the implicit graph) has a large number of nodes, the search algoritha works on an explicit graph, G', which initially consists of the start node s. Whea a tip node of G^{\prime} is expanded, its successors are added to G^{\prime}.

A potential solution graph(psg) D^{\prime} is
a finite subgraph of G^{\prime} as defined below: (i) s is in D^{\prime}, (ii) if n is an $O R$ node in G^{\prime} and a is in D^{\prime} then exactly one of its successors in G^{\prime} is in D^{\prime}, (iii) if n is ar AND node in G^{\prime} and n is in D^{\prime} then all its immediate successors in G^{\prime} are in D^{\prime}, (iv) every maximal (directed) path in D^{\prime} ends in a tip node of G^{\prime}.

A solution graph D is a finite subgraph of the implicit graph G which is defined below:
(i) s isin $D,(i i)$ if n is an $O R$ node in G and n is in D, then exactly one of its immediate successors in G is in D, (iii) if n is an AND node in G and n is in D, then all its immediate successors in G are in D, (iv) every maximal. (directed) path in D ends in a terminal node.

A partial solution(ps) P of a solution graph D is a subgraph of D as defined below: (i) s is in P, (ii) if for any node n in P, any of its immediate successors in D is in P, then all these successors are in P.

A psg D^{\prime} is said to be solved if it is a solution graph. A psg is said to be unsolvable if it contains a non-terminal node as a tip node.

The best-first search algorithm, BFS, is given below:

Algorithm BFS

1. Initially the explicit graph, G^{\prime}, cons-
; iststonly of the start node, s.
2. From G^{\prime} constructed so far select the most promising psg D^{\prime}, which is not unsolvable: If all:psg's are unsolvable, exit with'failure。
3. If D^{\prime} is solved, exit with success. Otherwise expand a node n in D^{\prime} generating all its successors. Add them to G^{\prime}. 4. Goto 2.

In pathfinding problems, algorithms like $A^{*}[10], B F^{*}[4], A[2]$ fall in this category. For AND/OR graph $A 0^{*}[10]$ is of this type.

We now introduce the idea of cost. Initially we assume that the costs arc additive and the graphs are additive AND/OR gra-
phs like those of [6, 7]. Each arc from nodes m to n has a finite positive cost
$\mathrm{C}(\mathrm{m}, \mathrm{n})$. Each node n in G has a heuristic estimate $h(n)$. The actual minimal cost is $h^{*}(n)$. For terminal nodes $h(n)=h^{*}(n)=0$. For non terminal nodes $h(n)=h^{*}(n)=\boldsymbol{C}$.

Let R be a psg or ps. Corresponding to every node n in R we define
$G(R, n)=\left\{\begin{array}{l}0 \text { if } n \text { is a tip node of } R \\ \sum_{j}\left\{\left(G, n_{j}\right)+C\left(n, n_{j}\right)\right\} \text { for non tip }\end{array}\right.$
nodes with immediate successors n_{j}.
$H(R, n)=\left\{\begin{array}{l}h(n) \text { if } n \text { is a tip node of } R \\ \sum_{j} H\left(R, n_{j}\right) \text { for non tip nodes with }\end{array}\right.$
immediate successors n_{j} •
$H^{*}(R, n)=\left\{\begin{array}{l}h^{*}(n) \text { if } n \text { is a tip node of } R \\ \sum_{j}^{*} H^{*}\left(R, n_{j}\right) \text { for non tip nodes with }\end{array}\right.$
immediate successors n_{j}.
$G(R)=G(R, s) \cdot H(R)=H(R, s)$.
$H^{*}(R)=H^{*}(R, s) \cdot F(R)=G(R)+H(R)$.
For any psg D^{\prime}, BFS selects the psg D^{\prime} with minimum $E\left(D^{\prime}\right)$ as the most promising psig. Observe that $h^{*}(s)$ is the minimal cost solution of G.
3. Conditions for Obtaining Minimal Cost

Solutions
We analyse BFS in the light of the general theory of heuristic search[2, 4, 11]. Definitions: (Generalization of Bagchi and Mahanti [2])
(i) Let D_{1}, D_{2}, \ldots be solution graphs of G. We write $P \in D_{i}$ if P is a ps of D_{i}. For each i, let pathmax $M_{i}=\max _{P \in D_{i}} F(P)$. (ii) Let $Q=\min _{i>=1} M_{i}$
(iii) Let $D_{i_{1}}, D_{i_{2}}, \ldots, D_{i_{k}}$, for some $\left.k\right\rangle=1$, be minimal cost solution graphs of G. Let $Q_{\text {opt }}=\min _{1<=j<=k} M_{i_{j}}$
Lemma 1: At any step before BFS terminates, G' contains at least one ps from cvery solution graph as a psg.

Proof: An induction on the steps of the algorithm.

Lemma 2: At any step before BFS terminates there is a psg D^{\prime} in G^{\prime} such that $F\left(D^{\prime}\right)<=Q$. Proof: Consider the solution graph D which determines the value of Q. By Lemma 1 , we have D^{\prime} as a psg of G^{\prime} which is also a $p s$ of D. Clearly, $F\left(D^{\prime}\right)<=Q$.

Theorem 1: Algorithm BFS terminates with a solution graph D (if it exists) of cost $F(D)<=Q$.

Proof: Similar to Nilsson [10, pg. 78], assuming the cost of the arcs to be positive and finite. A contradiction can be reached using Lemma 2.
Corollary 1: If $Q=Q_{o p t}=h^{*}(s)$ then BFS terminates with a solution graph D of cost $F(D)=h^{*}(s)$.
Corollary 2: If $H(P)<=H^{*}(P)$ for all $p s$ then BFS terminates with minimal cost solution.

Proof: For the minimal cost solution graph we have

$$
E\left(D_{\min }\right)=\max _{P \in D_{\text {min }}}\{G(P)+H(P)\} \text { as } H<=H^{*}
$$

So $F\left(D_{\min }\right)=Q_{\text {opt }}$. Also $F\left(D_{\min }\right)=h^{*}(s)$.
Thus $Q=Q_{\text {opt }}=h^{*}(s)$. Result follows from Corollary 1.

It may be noted that this is a more
relaxed admissjbility criteria than $h<=h^{*}$, because $h<=h^{*} \Rightarrow \mathrm{H}\left\langle=\mathrm{H}^{* *}\right.$ but not the reverse. Coroilary 3: If $h<=h^{*}$ for all inodes in G, BFS terminates with minimal cost solution. Theorem 2: If for any AND/OR graph G, there exists at least one minimal cost solution graph $D_{\text {min }}$ for which $F\left(D_{\min }\right)=$ $\max F(P)$, then BFS terminates with mini$P \in D_{\text {min }}$
mum cost solution.
Proof: Let BFS terminate with solution graph D. Glearly, $F(D)<=Q<=\max \quad[F(P)]$ $P \in D_{\text {min }}$
$=F\left(D_{\min }\right)=h^{*}(s)$. Also since $D_{\text {min }}$ is the minimal cost solution, $F(D)\rangle=F\left(D_{\text {min }}\right)$. Thus $F(D)=F\left(D_{\min }\right)=h^{*}(s)$.
4. The Monotone (Consistent) Restriction

The monotone restriction given in [1.0] is one of the most popular types of heuristic estimates studied for pathfinding algorithms. We now concentrate on some of the properties of such restrictions in AND/OR graphs. We define the monotone restriction as:

Definition: If two ps's or psg's R_{1} and R_{2} are such that R_{1} is a subgraph of R_{2} then $F\left(R_{1}\right)<=F\left(R_{2}\right) \quad\left(\right.$ or $H\left(R_{1}\right)<=\operatorname{cost}\left(R_{1}, R_{2}\right)$ $+H\left(R_{2}\right)$, where cost $\left(R_{1}, R_{2}\right)=G\left(R_{2}\right)-G\left(R_{1}\right)$).

It is obvious that Martelli and Montanari's [6] consistent restriction implies the above but not the reverse. In fact, similar to the admissibility criteria, it is defined over H and not h. Also, for pathfinding algorithms, this condition clearly becomes Nilsson's monotone restriction[10]. Theorem 3: The monotone restriction impli-
es that the F values of sequences of psg's selected by BFS is nondecreasing.

Proof: Obvious.
Theorem 4: If the heuristic estimate follows monotone restriction, then BFS terminates with minimal cost solution.

Proof: for all solution graphs D_{i} of G, we have by the monotone restriction $F\left(D_{i}\right)=$
 follows from Theorem 2.
5. Questions of Optimality

The question of optimality of BFS in terms of node expansions raises a number of problems. For AND/OR graphs with two admissible estimating functions h_{1} and h_{2}, such that $\left.h^{*}\right\rangle=h_{1}>h_{2}$ for all nodes in G, we cannot conclude that h_{1} expands no more nodes than h_{2}. An example can easily be found to support the above statement. But this seems to put the idea that the more informed heuristic is more efficient at fault. The problem arises out of two major reasons;
(i) for AND/OR graphs we have two evaluation functions, one to select the most promising psg D^{\prime} in G^{\prime} and then to select the node in D^{\prime} to expand.
(ii) the expansion of a single node in G^{\prime} may lead to the extension of more than one psg. So the promise of a psg may change even when that psg is not selected for expansion by BFS.

Now if we impose two restrictions to overcome these problems, certain results hold. The restrictions are:

R1: Whenever two algigrithms BFS_{1} and BFS_{2} select the same psg for extension, they select the same node for expansion(that is the second evaluation function in (ii) above is consistent).

R2: Expansion of a node leads to the extension of only one psg in G'. Lemma 3: If $Q=Q_{o p t}=h^{*}(s)$ then the conditions for a psg D^{\prime} in G^{\prime} to be selected is: necessary condition : $F\left(D^{\prime}\right)<=h^{*}(s)$ sufficient condition: $F\left(D^{\prime}\right)<h^{*}(s)$

Proof: Clear from Lemma 2 and Corollary 1. Lemma 4: R1 and R2 implies that whenever two algorithms $B F S_{1}$ and $B F S_{2}$ select the same node for expansian, they have selected the same psg.
Proof: By induction on the sequence of psg's generating the psg D^{\prime} containing the node n.

Theoren 5: For two such algorithms BFS_{1} and BFS_{2} using heuristic estimates h_{1} and h_{2}, respectively, if for all psg's D^{\prime} we have $H^{*}\left(D^{\prime}\right)>=H_{1}\left(D^{\prime}\right)>H_{2}\left(D^{\prime}\right)$, where H_{i} corresponds to h_{i}, then $B F S_{2}$ expands every node expanded by BFS_{1}, provided R1 and R2 hold. Proof: Similar to Nilsson [10, pp. 81]. By induction on the such trees of psg's formed by the two algorithns and using Lemma 3 and Lerama 4.
Corollary 4: If $h^{*}>=h_{1}>h_{2}$ for G then Theorem 5 holds with restrictions R1 and R2.

Corollary 6: For ordinary graphs Theorem 5 holds without restrictions.
graph.

```
\(Q<=\max _{P \in D_{\text {min }}} F(P)<=\max _{P \in D_{\text {min }}}\left\{G(P)+H^{*}(P)+\right.\)
\(\left.e H^{*}(P) \cdot \rho(P)\right\}\)
\(Q<=h^{*}(s)+e h^{*}(s)=h^{*}(s)[1+e]\).
```

It may be noted that $H\left(D^{\prime}\right) /\left[G\left(D^{\prime}\right)+\right.$ $\left.H\left(D^{\prime}\right)\right]$ is an intcresting form of $\rho\left(D^{\prime}\right)$ which can be used.
7. Non-Additive Cost Measures

Finally we discuss the case where F need not be additive (that is $F=G+H$ type) in nature. Dechter and Pearl [4] have discussed such functions for pathfinding algorithms. We generalize the same idea for AND/OR graphs. We assume that for solution graph F is monotonic in nature, such that, $C\left(D_{1}\right)>C\left(D_{2}\right) \Rightarrow F\left(D_{1}\right)>F\left(D_{2}\right)$, where $C\left(D_{i}\right)$ is the actual cost of the solution graph D_{i}. Thus we define

$$
F\left(D^{\prime}\right)= \begin{cases}Y\left[C\left(D^{\prime}\right)\right] & \text { where } D^{\prime} \text { is a solution gr- } \\
\text { aph and } \left.Y^{\prime} .\right) \text { is monotonic } . \\
\emptyset\left(D^{\prime}\right) & \begin{array}{l}
\text { where } D^{\prime} \text { is not a soluti- } \\
\text { on graph and } \emptyset(.) \text { is ar- } \\
\text { bitrary. }
\end{array}\end{cases}
$$

Theorem 8: BFS is $\Psi^{-1}(Q)$ admissible, that is, the cost of the solution graph found by BFS is at most $\Psi^{-1}(Q)$.
Proof: Similar to [4, pp. 51].
Theorem 9: If for any AND/OR graph searched by BFS, there exists at least one optimal cost solution graph $D_{\text {rain }}$ for which $F\left(D_{\text {min }}\right)=\max _{P \in D_{\text {min }}} F(P)$ then BFS terminates with minimum cost solution. Proof: Similar to Theorem 2 where $\Psi(C)=C$ and utilizing the monotonicity of Ψ as in [4, pp. 512].
8. Conclusion

Finally to conclude, we would like to stress that both pathfinding and problem reduction searches are the same problem, the former being a special case of the latter. For example, in the popular case of additive cost, both are the same problemof optimizing $F=G+H$. Though the branch-and -bound framework has been a method to study these two problems rogether as shown in [9], the present approach helps us to establish that nearly all the results for pathfinding search strategies also hold for AND/OR graphs.

References

1. A. Bagchi and P.K. Srimani: "Weighted Heuristic Search in Networks", Journal of Algorithms 6, (1985) pp. 550-576.
2. A. Bagchi and A. Mahanti: "Search algorithms under different kinds of heuristics - A comparative study", J. ACM 30, 1 (Jan. 1983) pp. 1-21.
3. A. Bagchi and A. Mahanti: "Admissible
\because. heuristic searah.in AND/OR graph", Theoretical Computer Science 24, 2 (July 1983) pp. 207-219.
4. R. Dechter and J. Pearl: "Generaiized Best Eirst Search Strategies and the 0ptimality of A^{*} ", J. ACM 32,3 (July 1985) pp. 505-536.
5. A. Mahanti and A. Bagchi: "AND/OR graph heuristic search methods", J. ACM 32, 1 (Jan. 1985) pp. 28-51.
6. A. Martelli and U. Montanari: "Additive AND/OR graphs", in Proc. of 3rd Int.

Joint Conf. on AI (Stanford, Calif. Aug. 1973) pp. 1-11.
7. A. Martelli and U. Montanari: "Optimizing decision trees through heuristically guided search', Commun of ACM 12 , 12 (Dec. 1978) pp. 1025-1039.
8. L. Mero: "A heuristic search algorithm with modifiable estimate", Artificial Intelligence 23, 1 (1984) pp. 13-27.
9. D. S. Nau, V. Kumar and L. N. Kanal: "General branch-and-bound and its rełation to A^{*} and $A O^{*}$ ", Artificial Inteligence (1984).
10. N. J. Nilsson: "PRINCIPLES OF ARTIFICIAL INTELLIGENCE', Tioga, Palo Alto, Calif. 1980.
11. J. Pearl: "HEURISTICS: INTELLIGENT SEARCH STRATEGIES FOR COMPUTER PROBLEM SOLVING", Addison Wesley, Reading, Mass 1984.

