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ON JORDAN REPRESENTATIONS

OF UNBOUNDED OPERATOR ALGEBRAS

SUBHASH J. BHATT

Abstract. Every closed Jordan '-representation of an £C*-algebra is the sum of a

closed '-representation and a closed '-antirepresentation.

Atsushi Inoue [3] has recently initiated the study of a class of unbounded operator

algebras, called £C*-algebras. They seem to be quite useful in connection with

unbounded Hilbert algebras. The purpose of this note is to prove the following

theorem concerning the structure of unbounded 7*-representations of these algebras.

Theorem. Every closed J*-representation it of an EC*-algebra A is a direct sum of a

closed *-representation w, and a closed *-antirepresentation tr2.

A mapping w of a *-algebra A with identity 1 into linear operators (not necessarily

bounded) all defined on a common domain D(tt) dense in a Hilbert space K is called

a 7*-representation of A on K if, for all x, y E A, a, ß E C and £, tj G D(ir), the

following hold:

1. tr(ax + ßy)e = air(x)Í + ßtt(y)&

2.(7t(x)t,V)=(è,«(x*)r1),

3. it(x)D(it) C D(tt) and ir(xy + yx)£ = ir(x)ir( v)£ + tt(y)ir(x)£,

4. 77(1) = 7. _

The closure ñ of tt is a 7*-representation on K defined as ■ñ(x) —-n(x) (x E A), with

domain D(-n) = C\{D(it(x))\x E A) where D(m(x)) denotes the domain of the

closure tr(x) of the operator tr(x) in K. The map it is closed if tr — -n.

Our theorem is an extension of a result of Stornier [6, Theorem 3.3] on C*-algebras.

Let A be an £C*-algebra on a dense subspace D of a Hilbert space 77. Then its

bounded part Ah = [T\ T is a bounded operator in A) is a C*-algebra. We apply

Steirmer's theorem to Ab. Since 7iC*-algebras are concrete realizations of locally

convex Gfi*-algebras [2, Theorem 7.11], the proof is completed by applying next a

density theorem [1] viz. If A is a Gfi*-algebra with unit ball B0, then the fi*-algebra

A(B0) is sequentially dense in A. Note that A(B0) = {Xx \ X G C, x G BQ} with the

Minkowski functional II • Il B as the norm.

We shall need the following elementary lemmas.
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Lemma A. Let A be a locally convex GB*-algebra with unit ball B0. Let it be a

J*-representation of A on K. Then x -^tt(x) defines a J*-homomorphism of the

B*-algebra A(B0) into B(K), the algebra of all bounded linear operators on K.

We omit the easy proof.

Lemma B. Let A be a locally convex GB*-algebra. Let r be the largest locally convex

GB*-topology on A. Let m be a J*-representation of A on K. Let aw be the weak

topology on tr(A) defined by the seminorms tt(x) -» |(w(x)|, tj)| for £, tj in D(tt).

Then tt: (A, t) -» (tr(A), a„) is continuous.

Proof. By the polarization identity, aw is also determined by the seminorms

p(tr(x)) = \(ir(x)£, £)| for £ G D(-n). For any such ¿, let / on A be defined by

f(x) = (tr(x)^, £). Let x G A. By [2, Proposition 5.1], x*x = h2 for some A > 0.

Then f(x*x) = <w(A2)|, £> = («(hf&Ç)= lk(A)£||2>0. Thus / is a positive

linear functional on A which by [2, §8] is r-continuous. Now the result follows

immediately.

Proof of the theorem. Let A be an £C*-algebra over a domain D dense in 77, a

Hilbert space. Let A = {T\T E A). Let a be the weak topology on A defined by the

seminorms T -* p^¡v(T) — \(TÇ, tj)| for £, îj G D. Then [2, Theorem 7.12] shows that

(Ä, o) is a locally convex Gfi*-algebra with unit ball B0 = {f E A~\ \\T\\ < 1} so

that the underlying fi*-algebra is Ab = A n ß(H). Let t be the largest locally

convex Gfi*-topology on A [2, §6]. From now on, for the sake of simplicity, we omit

writing the bar over the elements of A.

By Lemma A, T -» (K^) = ■ff(7') defines a 7*-representation of /4A into ß(K). Let

fi be the C*-algebra in B(K) generated by <$>(Ab). Hence [6, Theorem 3.3] there exist

orthogonal central projections E and F in the von Neumann algebra generated by B

such that T -> ^¿T) = <t>(T)E defines a ""-representation of Ab on A", = EK and

T -» <$>2(T)F defines a *-antirepresentation of Ab on Ä"2 = FA. Also E + F = I. Let

7J>(w,) = ED(tt), D(ir2) = FD(tr).

We show that, for each TEA, £, -q E D(tr), (Eit(T)Ç, tj>= <£|, tt(7Tt)>.

Indeed, by the density theorem, there is a sequence T„ in z4fe such that Tn -* T in t.

By Lemma B,

(7fW(r)|,7,>=<7r(r)¿,£T,>=lim(77(7;)¿,£^)=Um(^(7;)|,7,)

= lim(fl-(7J,)7¿£, tj)    as £ is central
n

= ]im(EZ,ir(T„)*T,)
n

= lim<£€,îr(7?)îï)    as ff(7?) C *(7;)*

= (£¿,7r(r*)7,>

again by Lemma B and the continuity of the involution

=   (£|,77(r)*7,>.

This shows that 17 -» (££, tr(T)*r)) defines, for each £ G D(tt), a norm bounded

linear   functional   on   D(tt),   and   so   E£ G D(tr(T)**) = D(tr(T)).   Thus
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££ G (~){D(w(j)) I T G A} = D(ñ) = D(tt). Thus ED(ir) C D(ir). Similarly

FD(rr) C D(-tt) and so D(ttx) + D(tr2) C D(tt), D(trx) + D(tt2) = D(it).

Clearly D(ttx) is dense in AT, and D(ir2) is dense in K2. Let, for each TEA,

irx(T) = tt(T)E, tt2(T) = w(7')F with domains 7)(w,) and 7J>(7r2) respectively. We

show that w, and 7r2 are the required maps.

Let TEA. For each n = 1,2,... let T„ = 7/(1 + ¿T*r)-1, (Here the sum and the

product are in the strong sense.) First we show that Tn -» T in t.

T-T„= }¡TT*T(l + ±T*T)~l

by [5, Theorem 13.13].

Now by the separate continuity of multiplication in r, given an ¿»-neighbourhood V,

there exists an o-neighbourhood U such that TT*U C V. Further, as B0 is T-bounded,

JFB0 C U for sufficiently small r > 0. It follows that r - r„ G V eventually. Thus

Tn -» T in t.

Next we show that ir(/4)7J>(i7-,) C ¿»(tt,) andi7(/4)7)(w2) C 7)(tt2). Let£, tj G D(<n).

By Lemma B,

(w(r)££,T,)= iim (*(?;)£€, i,)

= Um(£7r(r„)£|,Tj)    as7r(r„)££ G A

= lim(7r(rn)7i£,7ÍT,>

= (tt(T)EI-, £tj)    again by Lemma B

= (7fW(7')7f|,T,>

and so tt(T)E£ = Eit(T)E£ E D(itx). Hence 7r(/4)7)(u-,) C 7>(w,). Similarly

it(A)D(tt2) C D(tt2). Thus w,(r) and w^T) are operators in Kx and Ä"2 respectively.

Now given T, S in A, again by the density theorem, there exist sequences Tn and

Sn in A such that 7; -» T, S„ -» S in t. As (A, t) is barrelled [2, Lemma 6.2], it is

hypocontinuous by [2, Lemma 6.3]. Since the multiplication in a hypocontinuous

algebra is easily see to be sequentially jointly continuous, TnS„ -» TS. Then for each

£, tj in D(it{ ), repeated uses of Lemma B give

{ttx(T)ttx(S)^j))= lim ]im(wx(T„)^(Sk)è,v)
n        k

= lim(,r,(7>,(S„)£,T,>
n

= lim (*|(7^$,)£» w)    as ^ is a representation

= (»,(75)«,^).

Thus ir, is a *-representation. Similarly w2 is a *-antirepresentation.

It only remains to show that each of w, and 7t2 is closed. Let TEA and

£ G D(ttí(T)), the domain of the closure in K. Then for some sequence {£„, 7r,(r)£n}
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in the graph of ttx(T), £„ -» £ in K{. Then clearly £ G D(m(T)) and so

£ G D(m) = D(tr). Also 7r, is closed, and similarly so is tt2.

This completes the proof of the theorem.

Note that what is essentially required in the proof is the fact that A is a locally

convex Gfi*-algebra. Hence [4, Corollary 3.4] immediately gives the following.

Corollary. Let D be a pure unbounded Hilbert algebra over a maximal unital

Hilbert algebra D0. Then each closed J*-representation of D is the direct sum of a

closed *-representation and a closed *-antirepresentation.
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