ON JORDAN REPRESENTATIONS OF UNBOUNDED OPERATOR ALGEBRAS

SUBHASH J. BHATT

ABSTRACT. Every closed Jordan *-representation of an EC^* -algebra is the sum of a closed *-representation and a closed *-antirepresentation.

Atsushi Inoue [3] has recently initiated the study of a class of unbounded operator algebras, called EC^* -algebras. They seem to be quite useful in connection with unbounded Hilbert algebras. The purpose of this note is to prove the following theorem concerning the structure of unbounded J^* -representations of these algebras.

THEOREM. Every closed J*-representation π of an EC*-algebra A is a direct sum of a closed *-representation π_1 and a closed *-antirepresentation π_2 .

A mapping π of a *-algebra A with identity 1 into linear operators (not necessarily bounded) all defined on a common domain $D(\pi)$ dense in a Hilbert space K is called a J*-representation of A on K if, for all $x, y \in A$, $\alpha, \beta \in \mathbb{C}$ and $\xi, \eta \in D(\pi)$, the following hold:

1. $\pi(\alpha x + \beta y)\xi = \alpha \pi(x)\xi + \beta \pi(y)\xi$,

2. $\langle \pi(x)\xi,\eta\rangle = \langle \xi,\pi(x^*)\eta\rangle,$

3.
$$\pi(x)D(\pi) \subset D(\pi)$$
 and $\pi(xy + yx)\xi = \pi(x)\pi(y)\xi + \pi(y)\pi(x)\xi$,

4. $\pi(1) = I$.

The closure $\overline{\pi}$ of π is a J*-representation on K defined as $\overline{\pi}(x) = \overline{\pi(x)}$ ($x \in A$), with domain $D(\overline{\pi}) = \bigcap \{D(\overline{\pi(x)}) | x \in A\}$ where $D(\overline{\pi(x)})$ denotes the domain of the closure $\overline{\pi(x)}$ of the operator $\pi(x)$ in K. The map π is closed if $\pi = \overline{\pi}$.

Our theorem is an extension of a result of Størmer [6, Theorem 3.3] on C*-algebras. Let A be an EC*-algebra on a dense subspace D of a Hilbert space H. Then its bounded part $\overline{A}_b = \{\overline{T} \mid T \text{ is a bounded operator in } A\}$ is a C*-algebra. We apply Størmer's theorem to \overline{A}_b . Since EC*-algebras are concrete realizations of locally convex GB*-algebras [2, Theorem 7.11], the proof is completed by applying next a density theorem [1] viz. If A is a GB*-algebra with unit ball B_0 , then the B*-algebra $A(B_0)$ is sequentially dense in A. Note that $A(B_0) = \{\lambda x \mid \lambda \in \mathbb{C}, x \in B_0\}$ with the Minkowski functional $\|\cdot\|_{B_0}$ as the norm.

We shall need the following elementary lemmas.

1980 Mathematics Subject Classification. Primary 46L99.

© 1982 American Mathematical Society 0002-9939/81/0000-1030/\$02.00

Received by the editors September 29, 1980 and, in revised form, April 2, 1981.

Key words and phrases. EC*-algebra, J*-representation, GB*-algebra.

LEMMA A. Let A be a locally convex GB^* -algebra with unit ball B_0 . Let π be a J^* -representation of A on K. Then $x \to \overline{\pi(x)}$ defines a J^* -homomorphism of the B^* -algebra $A(B_0)$ into B(K), the algebra of all bounded linear operators on K.

We omit the easy proof.

LEMMA B. Let A be a locally convex GB*-algebra. Let τ be the largest locally convex GB*-topology on A. Let π be a J*-representation of A on K. Let σ_{π} be the weak topology on $\pi(A)$ defined by the seminorms $\pi(x) \to |\langle \pi(x)\xi, \eta \rangle|$ for ξ, η in $D(\pi)$. Then $\pi: (A, \tau) \to (\pi(A), \sigma_{\pi})$ is continuous.

PROOF. By the polarization identity, σ_{π} is also determined by the seminorms $p(\pi(x)) = |\langle \pi(x)\xi, \xi \rangle|$ for $\xi \in D(\pi)$. For any such ξ , let f on A be defined by $f(x) = \langle \pi(x)\xi, \xi \rangle$. Let $x \in A$. By [2, Proposition 5.1], $x^*x = h^2$ for some $h \ge 0$. Then $f(x^*x) = \langle \pi(h^2)\xi, \xi \rangle = \langle \pi(h)^2\xi, \xi \rangle = ||\pi(h)\xi||^2 \ge 0$. Thus f is a positive linear functional on A which by [2, §8] is τ -continuous. Now the result follows immediately.

PROOF OF THE THEOREM. Let A be an EC^* -algebra over a domain D dense in H, a Hilbert space. Let $\overline{A} = \{\overline{T} \mid T \in A\}$. Let σ be the weak topology on A defined by the seminorms $T \to p_{\xi,\eta}(T) = |\langle T\xi, \eta \rangle|$ for $\xi, \eta \in D$. Then [2, Theorem 7.12] shows that (\overline{A}, σ) is a locally convex GB^* -algebra with unit ball $B_0 = \{\overline{T} \in \overline{A} \mid ||T|| \le 1\}$ so that the underlying B^* -algebra is $\overline{A}_b = \overline{A} \cap \beta(H)$. Let τ be the largest locally convex GB^* -topology on A [2, §6]. From now on, for the sake of simplicity, we omit writing the bar over the elements of A.

By Lemma A, $T \to \phi(T) = \overline{\pi(T)}$ defines a J*-representation of \overline{A}_b into $\beta(K)$. Let *B* be the C*-algebra in B(K) generated by $\phi(\overline{A}_b)$. Hence [6, Theorem 3.3] there exist orthogonal central projections *E* and *F* in the von Neumann algebra generated by *B* such that $T \to \phi_1(T) = \phi(T)E$ defines a *-representation of \overline{A}_b on $K_1 = EK$ and $T \to \phi_2(T)F$ defines a *-antirepresentation of \overline{A}_b on $K_2 = FK$. Also E + F = I. Let $D(\pi_1) = ED(\pi), D(\pi_2) = FD(\pi)$.

We show that, for each $T \in A$, $\xi, \eta \in D(\pi)$, $\langle E\pi(T)\xi, \eta \rangle = \langle E\xi, \pi(T)^*\eta \rangle$. Indeed, by the density theorem, there is a sequence T_n in A_b such that $T_n \to T$ in τ . By Lemma B,

$$\langle E\pi(T)\xi,\eta\rangle = \langle \pi(T)\xi, E\eta\rangle = \lim_{n} \langle \pi(T_{n})\xi, E\eta\rangle = \lim_{n} \langle E\pi(T_{n})\xi,\eta\rangle$$

$$= \lim_{n} \langle \pi(T_{n})E\xi,\eta\rangle \quad \text{as } E \text{ is central}$$

$$= \lim_{n} \langle E\xi,\pi(T_{n})^{*}\eta\rangle$$

$$= \lim_{n} \langle E\xi,\pi(T_{n}^{*})\eta\rangle \quad \text{as } \pi(T_{n}^{*}) \subset \pi(T_{n})^{*}$$

$$= \langle E\xi,\pi(T^{*})\eta\rangle$$

again by Lemma B and the continuity of the involution

 $= \langle E\xi, \pi(T)^* \eta \rangle.$

This shows that $\eta \to \langle E\xi, \pi(T)^*\eta \rangle$ defines, for each $\xi \in D(\pi)$, a norm bounded linear functional on $D(\pi)$, and so $E\xi \in D(\pi(T)^{**}) = D(\overline{\pi(T)})$. Thus

 $E\xi \in \bigcap \{D(\pi(\overline{T})) \mid T \in A\} = D(\overline{\pi}) = D(\pi)$. Thus $ED(\pi) \subset D(\pi)$. Similarly $FD(\pi) \subset D(\pi)$ and so $D(\pi_1) + D(\pi_2) \subset D(\pi)$, $D(\pi_1) + D(\pi_2) = D(\pi)$.

Clearly $D(\pi_1)$ is dense in K_1 and $D(\pi_2)$ is dense in K_2 . Let, for each $T \in A$, $\pi_1(T) = \pi(T)E$, $\pi_2(T) = \pi(T)F$ with domains $D(\pi_1)$ and $D(\pi_2)$ respectively. We show that π_1 and π_2 are the required maps.

Let $T \in A$. For each n = 1, 2, ... let $T_n = T(1 + \frac{1}{n}T^*T)^{-1}$. (Here the sum and the product are in the strong sense.) First we show that $T_n \to T$ in τ .

$$T - T_n = \frac{1}{n}TT^*T(1 + \frac{1}{n}T^*T)^{-1}$$
$$= \frac{1}{\sqrt{n}}(TT^*)\left(\frac{T}{\sqrt{n}}\right)\left(1 + \left(\frac{T}{\sqrt{n}}\right)^*\left(\frac{T}{\sqrt{n}}\right)\right)^{-1} \in \frac{1}{\sqrt{n}}(TT^*)B_0$$
by [5, Theorem 13.13].

Now by the separate continuity of multiplication in τ , given an *o*-neighbourhood V, there exists an *o*-neighbourhood U such that $TT^*U \subset V$. Further, as B_0 is τ -bounded, $\sqrt{r} B_0 \subset U$ for sufficiently small r > 0. It follows that $T - T_n \in V$ eventually. Thus $T_n \to T$ in τ .

Next we show that $\pi(A)D(\pi_1) \subset D(\pi_1)$ and $\pi(A)D(\pi_2) \subset D(\pi_2)$. Let $\xi, \eta \in D(\pi)$. By Lemma B,

$$\langle \pi(T)E\xi, \eta \rangle = \lim_{n} \langle \pi(T_n)E\xi, \eta \rangle$$

= $\lim_{n} \langle E\pi(T_n)E\xi, \eta \rangle$ as $\pi(T_n)E\xi \in K$
= $\lim_{n} \langle \pi(T_n)E\xi, E\eta \rangle$
= $\langle \pi(T)E\xi, E\eta \rangle$ again by Lemma B
= $\langle E\pi(T)E\xi, \eta \rangle$

and so $\pi(T)E\xi = E\pi(T)E\xi \in D(\pi_1)$. Hence $\pi(A)D(\pi_1) \subset D(\pi_1)$. Similarly $\pi(A)D(\pi_2) \subset D(\pi_2)$. Thus $\pi_1(T)$ and $\pi_2(T)$ are operators in K_1 and K_2 respectively.

Now given T, S in A, again by the density theorem, there exist sequences T_n and S_n in A such that $T_n \to T$, $S_n \to S$ in τ . As (A, τ) is barrelled [2, Lemma 6.2], it is hypocontinuous by [2, Lemma 6.3]. Since the multiplication in a hypocontinuous algebra is easily see to be sequentially jointly continuous, $T_n S_n \to TS$. Then for each ξ , η in $D(\pi_1)$, repeated uses of Lemma B give

$$\langle \pi_1(T)\pi_1(S)\xi,\eta\rangle = \lim_n \lim_k \langle \pi_1(T_n)\pi_1(S_k)\xi,\eta\rangle$$

=
$$\lim_n \langle \pi_1(T_n)\pi_1(S_n)\xi,\eta\rangle$$

=
$$\lim_n \langle \pi_1(T_nS_n)\xi,\eta\rangle$$
 as ϕ_1 is a representation
= $\langle \pi_1(TS)\xi,\eta\rangle.$

Thus π_1 is a *-representation. Similarly π_2 is a *-antirepresentation.

It only remains to show that each of π_1 and π_2 is closed. Let $T \in A$ and $\xi \in D(\overline{\pi_1(T)})$, the domain of the closure in K. Then for some sequence $\{\xi_n, \pi_1(T)\xi_n\}$

in the graph of $\pi_1(T)$, $\xi_n \to \xi$ in K_1 . Then clearly $\xi \in D(\overline{\pi(T)})$ and so $\xi \in D(\overline{\pi}) = D(\pi)$. Also π_1 is closed, and similarly so is π_2 .

This completes the proof of the theorem.

Note that what is essentially required in the proof is the fact that A is a locally convex GB^* -algebra. Hence [4, Corollary 3.4] immediately gives the following.

COROLLARY. Let D be a pure unbounded Hilbert algebra over a maximal unital Hilbert algebra D_0 . Then each closed J*-representation of D is the direct sum of a closed *-representation and a closed *-antirepresentation.

References

1. S. J. Bhatt, A note on generalized B*-algebras, J. Indian Math. Soc. (to appear).

2. P. G. Dixon, Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970), 693-715.

3. A. Inoue, On a class of unbounded operator algebras. I, II, III, Pacific J. Math. 65 (1976), 38-57; 66 (1976), 411-431; 69 (1977), 105-115.

4. ____, Unbounded Hilbert algebras as locally convex *-algebras, Math. Rep. Kyushu Univ. 10 (1976), 113-129.

5. W. Rudin, Functional analysis, 2nd ed., McGraw-Hill, New York, 1973.

6. E. Størmer, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc. 120 (1965), 438-447.

DEPARTMENT OF MATHEMATICS, SARDAR PATEL UNIVERSITY, VALLABH VIDYANAGAR-388120, INDIA