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AN IRREDUCIBLE REPRESENTATION
OF A SYMMETRIC STAR ALGEBRA IS BOUNDED
BY
SUBHASH J. BHATT

ABSTRACT. A *-algebra A is called symmetric if (1 + x*x) is invertible in A4 for
each x in A. An irreducible hermitian representation of a symmetric *-algebra A4
maps A onto an algebra of bounded operators.

1. THEOREM. Let A be a symmetric *-algebra with identity 1. Let (m, D(), H) be
a closed *-representation of A on a Hilbert space H. If the only m-invariant selfadjoint
subspaces of D(w) are (0) and D(), then m is a bounded representation.

COROLLARY. Every closed (algebraically) irreducible *-representation of a symmet-
ric *-algebra is bounded.

The purpose of this paper is to prove the above theorem. A *-algebra A is a linear
associative algebra with identity 1 over the complex field C such that 4 admits an
involution @ € 4 — a* € A satisfying the usual axioms. If (1 + a*a)~! exists in 4,
for every a € A, then A is called symmetric.

A representation (m, D(w), H) of a *-algebra 4 on a Hilbert space H is a
mapping 7 of A4 into the linear operators (not necessarily bounded), all defined on a
common domain D(#), a dense linear subspace in H, such that for all a,b in
A,a,Bin Cand £ in D(7),

(i) m(aa + Bb)§ = am(a)é + Bm(b)E,
(ii) m(a)D(w) € D(w) and w(a)w(b)§ = w(ab)é,
(iii)) #(1) = 1.
It is called a *-representation if for each a € 4,

(iv) D(7) € D(w(a)*), the domain of the operator adjoint 7(a)* of w(a), and
m(a*) C w(a)*. « is called a bounded representation if m(a) is a bounded operator
for each a € A. Throughout by a representation we always mean a *-representation.

The analysis of the representations of abstract *-algebras has been motivated in
Quantum Field Theory to avoid starting with (and staying within) a specific Hilbert
space (the Fock space) scheme and rather to stress that the basic objects of the
theory are observables considered as purely algebraic quantities forming a *-alge-
bra. Realizations of these algebraic objects as Hilbert space operators naturally lead
to unbounded representations defined above. In [15], R. T. Powers developed a basic
representation theory for *-algebras admitting unbounded observables. Representa-
tions of symmetric *-algebras have been investigated in [11]. On the other hand,

Received by the editors December 27, 1984.
1980 Mathematics Subject Classification. Primary 46L.99.
Key words and phrases. Symmetric -algebra, unbounded representations.

©1985 American Mathematical Society
0002-9947 /85 $1.00 + $.25 per page

645



646 S.J. BHATT

certain symmetric algebras of unbounded operators (symmetric *-algebras, EC*-
algebras, EW*-algebras) have been studied by Dixon [9] and Inoue [12]. EC*-alge-
bras occur naturally in the unbounded generalizations of left Hilbert algebras and
standard von Neumann algebras [13]. The above theorem for EC*-algebras was
established in [6].

Given a representation (7, D(7), H) of a *-algebra A, the induced topology t, on
D() is the locally convex topology defined by the seminorms § — ||7(a)&|| (a € A).
The completion of (D(w),t,) is D(7) = N{D(n(a))|a € A}, m(a) denoting the
closure of #(a). Then #(a)= Fa)b(,-,) defines a representation (7, D(7), H),
called the closure of m; m is closed if D(w)= D(7). A representation 7 is called
selfadjoint if D(m) = D(w*), where D(w*)= N{D(w(a*)*)|a € A}. A m-invariant
subspace M of D(w) is selfadjoint if the restriction of 7 to M is selfadjoint. For
further details, we refer to [11].

The idea of the proof is borrowed from the enveloping C*-algebra of a Banach
* -algebra. Form a suitable reducing ideal I, represent the quotient algebra X = 4 /1
faithfully as an unbounded operator algebra (not an EC*-algebra, though symmet-
ric). Modify the EC*-techniques of [6] avoiding the completeness of the underlying
algebra X, of bounded operators. 7 extends to an irreducible representation o of the
completion X, of X,. By standard C*-theory, o turns out to be algebraically
irreducible which quickly leads to boundedness of #. The technicalities of some of
our steps are modifications of those that are scattered in [1,4, 6 and 8]. However, for
the sake of completeness we have briefly included all details.

Finally, connections with the work of Mathot [14] on the disintegration of
representations is discussed.

2. Peliminary constructions.

(2.1) The *-algebra X = A/I. Let A be a *-algebra. Let P(A) and R(A4) denote
respectively the sets of all positive (linear) forms on 4 and of all closed strongly
cyclic representations of 4. By the GNS construction, each f &€ P(A) yields a
7, € R(A) as follows: Let N, = {x € A|f(x*x) =0} = {x € 4|f(y*x) = 0 for all
y € A}; X, = A/N,, a pre-Hilbert space with inner product {(a + N,,b + N;) =
f(b*a); H,= the Hilbert space obtained by completing X,. Define =/ on 4 as
m/(a)(b + N;)=ab + N, D(m/) = X,. Then m/ is an ultracyclic representation of
A. Let 7, be the closure of #/ with D(m,) = D(@/). Then m, € R(A), §,=1+ N,
being a strongly cyclic vector. Also, modulo unitary equivalence, every strongly
cyclic representation of A is of this form [15, §VI].

Now let I =N{N,|f € P(A4)}. Then I =N{kerm|m € R(A)}. For, if m,(x) =10
for some f € P(A), then xy + N, =0 for all y € 4. Taking y =1, f(x*x) =0,
x € N,. On the other hand, given f € P(A4), y € 4, define f, € P(A) by f.(x) =
f(y*xy). Then for a given x € 4, f(x*x) = 0 for all f € P(A) implies that for an
arbitrary f € P(A), f,(x*x) = 0forall y € A. Hence 7 (x) = 0 giving x € kerm,.

It follows from the above that I is a *-ideal of A. Let X = A /I be the quotient
algebra. Define

B, = {x € X|f(x*x) < f(1) forall f€ P(X)},
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B; = {x € X|foreach f € R(X), n(x) is bounded and |7 (x) [ < 1}.
Then B, = B{. Indeed, let x € B,. Then for every f € P(X), y € X,

I )y + N[ = £(rmxmxp) = £,(x*x) < £,(1)

=10 =ly + NI
Hence ||m,(x)|| < 1. On the other hand, if x € Bg, then f(y*xy) < f(y*y) for all
y € X, f€ P(X). Again taking y =1, x € B,. Thus B, = B;. We verify the
following properties of B,,.
(i) B, = B}.

This is immediate in view of the fact that ||z (x)|| < 1iff ||7(x*)|| < 1.

(ii) B, is absolutely convex.

That it is balanced is obvious. For x, y in By, 0 < ¢t < 1, taking z = tx + (1 — 1)y,
the Cauchy—Schwarz inequality gives

f(z%2) < {tf () +(1 = )£ (3*9)") < £(1)
showing that B, is convex.

(ii) B € By, 1 € B,.

Let z = xy with x, y in B,. If f, = 0, then f(z*z) = f,(x*x) = 0; otherwise, for
some u € X, f,(u)# 0, and by the Cauchy-Schwarz inequality, f,(1) # 0. Then
again by the same inequality, f(z*z) < f,(1) = f(y*y) < f(1). Thus z € B,

(2.2) Topologies on X. (a) Let X* be the complex linear span of all positive forms
on X. Let 0, = o(X, X”) be the weak topology on X determined by the duality
(X, X"). By the construction of X, given x # 0 in X, there exists an f € P(X) such
that f(x*x) # 0. Hence the direct sum [15, Remark following Theorem 7.5]

T, = Z ® 7r/
feP(X)
(note that «, € R( X)) defines a faithful representation of X on the Hilbert space
feP(x)

with domain

D(=m,) = {g = (¢)|¢ € H, forall f€ P(X)and

ye ||w/(x)£f ||2 < oo forall x € X }
fepPx)

This is the universal representation of X. Let o, be the topology on X defined by the
seminorms x € X — p, .(x) = K7,(x)¢, )| for & m in D(mw,); or equivalently, by
the seminorms x € X — p,(x) = (7,(x)£, ¢)| (¢ € D(m,)) by using the polariza-
tion identity. Since all positive forms on X are taken into account to construct =, it
is easily seen that o, = o).

Also, it is easy to check that X with ¢, (or with the Mackey topology 7( X, X?)) is
a locally convex *-algebra (with separately continuous multiplication and continu-
ous involution). Also, every positive form on X is 6,-continuous and

By = (x < X|m(x) < 1).
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Now we verify the following additional property of B,,.

(iv) Let #*(op) be the collection of all op-closed, o,-bounded, absolutely convex
subsets B of X satisfying B> C B, B* = B, 1 € B. Then B, is the greatest member
of #*(op). That B, is bounded in o, follows from the definition of B,. Let
B € #*(0p). Let x € B. If |7 (x)|| > 1, then for some £ € D(w,), ||&]| =1, we
have |7 (x)§|| > 1. Forall n = 1,2,3,...

(7 (x20)"6.8) [2 |7 ()] = 0 asn > oo

On the other hand, x* € B as x € B; and so (x*x)?" € B. This contradiction shows
that ||7 (x)é|| < 1 for all { € D(m,), ||£]| = 1. Hence x € B,. Thus B C B,,. The
above argument applied to B, also shows that By, is op-closed. This gives (iv).

(b) We shall also need two other topologies on X induced from those on X via
@,; viz. the quasiweak topology defined by the seminorms x € X — [(7,(x)§,m)| =
Ps o(x), where £ € D(m,), n € H,; and the strong topology defined by the semi-
norms x € X = ||m (x)§|| for § € D(m,).

(2.3) The pre-C* algebra X(B,). From the properties (i)—(iv) of B,,, it follows that

X(B,) = {Ax|]A € C,x € B,}
is a *-subalgebra of X containing the identity and, for x € X(B,).
|| x|8, = inf{ A > 0|x € AB,}
= sup{ f(x*x)"f € P(X)} =||m.(x)]

defines a norm on X(B,) satisfying ||x*x]| 5 = ||x||§o. However, (X(B,), || - 5,)
need not be complete. Also, x € X(B,) iff 7 (x) is a bounded operator.

(2.4) We note in passing that X provides a solution of the universal problem for
selfadjoint representations. If A4 is a selfadjoint representation of a *-algebra 4 on a
Hilbert space H with domain D(w), then there exists a unique selfadjoint represen-
tation 7 of X on H such that D(#) = D(w) and 7 = # o ¢, where y: 4 — X is the
natural map. This follows from the fact [15] that # being selfadjoint is a direct sum
of closed strongly cyclic representations; and by the construction of X, every
positive form on A, and hence every closed strongly cyclic representation of A,
factors through X.

(2.5) LEMMA. Let A be a symmetric *-algebra.

(a) For each x € X, (1 + x*x)™! € X(B,).

(b) For each h = h* in X and for eachn = 1,2,..., h(1 + (1/n)h?)™" € X(B,).

(c) If 7 is any topology on X making (X, 1) a locally convex *-algebra such that B,
is T-bounded, then

-1
h = lim h(l +%h2) inT.

PROOF. (a) Obviously X is also symmetric. By [11, Lemma 3.2], applied to X and
m,, (I + m(x)*n(x))™! is bounded for each x € X, and |[(/ + 7(x)*x(x))7|| <1
where 7(x) = 7,(x)| p()- Thus |1 + x*x) 7|5, < 1.
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(b) By (a), for each h = h* in X, (1 + h*)™' & X(B,), Il + h*)™}||5, < 1. Hence
1 +r)" =1 +h) 7 =nr21 + k) € X(B,).

If necessary, by passing to the completion of X(B,) and taking a Gelfand represen-
tation, ||h2(1 + h?)"?||5, < 1. Let h, = h(1 + h?/n) . Then for all f € P(X),

£(h2) = f(n(hdm (1 + (V)Y

< n||(h2/n)(1 + hz/n)'anof(]) < nf(1).

Hence f((h,/ Vn)?) < f(1). Thus h,/ Vn € By, h, € X(B,) for all n.
(c) follows by an argument exactly as in [S, Lemma 3.3].

3. Proof of the Theorem. Since 7 is closed and A is symmetric, [11, Lemma 3.5]
implies that « is selfadjoint, and the von Neumann algebra #(A4) = C1. Let # be
the representation of X on H induced by =; viz., #(a + I) = w(a) (a € A) with
D(#) = D(m). The only #-invariant selfadjoint subspaces of D(#) are (0) and
D(#). (Note that on D(), the induced topology defined by 4 coincides with the
induced topology defined by X.) Further, every nonzero vector ¢ € D(w) = D(#) is
strongly cyclic for both 7 and #; hence D(7) = Cl, [7(A)§] = Cl, [#(X)].

ConveNTION. For typographical convenience, from now on, we denote # by =«
itself; and the context makes it clear whether it is a representation of 4 or of X.

Let p(x) = m(x) (x € X(B,)). We note that p: (X(By), |- |lz,)~ B(H) is a
continuous *-homomorphism. (Here B(H) is the C*-algebra of all bounded linear
operators on H with the operator norm.) Indeed, let x € X(B,), £ # 0 in D(7).
Then for each y € X,

Im(x)m(2)EI" = (m(p*x*xp) &, E)we(y*x*xy)

2 2 2
<[lxzowy (y*y) = I x5l () &1

Since £ is strongly cyclic, it is cyclic, i.e. [7( X)£] is norm dense in H. It follows that
D(p(x)) = H and ||p(x)|| < [|x|| g,

Now let~ X(By) be the C*-algebra obtained by completing (X(B,), || - || 5,)- Let
o: X(By) = B(H) be the *-homomorphism that is the unique extension of p
satisfying ||o(x)|| < ||x|| 5, (x € X(B,)). Then the following hold.

STATEMENT (I). p, and hence g, is topologically irreducible (in the sense of usual
C*-representation theory).

Indeed, let H; be a norm closed subspace of H such that H, # (0), H, # H,
p(X(By))H, C H,. Let

D, = {¢e D(w)p(x)é € H forall x € X(B,)}.

Then p(X(B,))D, € D,. We show that #(X)D, C Dy, and for this, it is sufficient
to show that #(sym X)D, C D, where sym X = {h € X|h = h*}.

Let ¢ € D;, h € sym X. Then #(h)§ € D, if for all y € X(B,) (or equivalently,
for all y € sym X(B,)), p(y)m(h)¢ =n(yh){ € H,. For n=1,2,3,..., taking
h,=h( + h?/n)7!, Lemma (2.5) implies that h, € X(B,) and h, — h in 7 where
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T = opor 7(X, X7). Now
-1
h—h,,=lh3(1 + th)

n n
gives

1. 1o\ o 1,5\

(h—h,,)*y*y(h—h,,)=—2h 1+ —h yh |1 4+ —h

n n n

Hence

|7 (yh)& = w(ph,)E]" = (m((h = h,)y>(h = h,))E,£)

=w((h—h,)y*(h—h,))

_1 3 15\, 1.5\
——2W$(h (l+;h) y(l+;h) h

n
1 1 -2
Ao
1 2 1., -2 6
n n 8,
1 2 6
<—2'||)’||130W§(h )>0 asn— co.
n

But #(yh,)¢ € H, and H, is norm closed. Therefore m(yh)§ € H,. Thus =(X)D,
c D,.

Further D, is a closed subspace of (D(7),ty). Let £ € D(7) be such that for
some net (£,) C Dy, &€, = £ in ty. Then for all x € X, ||m(x)(§, — £)|| = 0. But as
above, for all such x, and in particular for x € X(B,), n(x)§, € D, C H, and
hence, since H, is norm closed, 7(x)¢ € H, for all x € X(B,) showing that §{ € D;.

Now since 7 is selfadjoint, D, is a selfadjoint #-invariant subspace of of D(7) as
in [15, Theorem 4.7). Hence by the hypothesis, D, = (0) or D, = D(w). This gives
respectively H, = (0) or H, = H. Thus ¢ is topologically irreducible. This gives
Statement (I).

STATEMENT (II). o( X(B,) )D(7) C D(m).

It is enough to show that o(sym(X(B0)~))D(7r) C D(w). Let £ € D(7), he
sym X(B,) . Let a sequence (4,) in sym X(B,) be such that ||, — k|| 5, = 0. Then
in view of the facts

(a) 7(X(By))D(7w) € D(7)and

(b) = is closed (so that (D(m), ) is complete)
to conclude that =(h)& € D(m), it is sufficient to show that (w(4,)§) is Cauchy in
(D(m), ty), i.e. for each y € X (or equivalently, for each y € sym X),

(A) ()7 (h, = h,)€[ -0 asn,m— oo.
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Let y € sym X. By Lemma (2.5), y, = y(1 + y*/k)™* = y in 0p. Now as in the
previous case,

I (y(h, — )€ = 7(pe(hy — ))EI
—7((y =y )k = R))E

- we(%(h,, — o1+ %yz)_z(h,, - hm))

1 ,\7?
(1+ky) )

1
< Pfh,,'h,,,(y6)’

1
< —
k2

we((h, = h,)y*(h, —h,))

where
(B) Joyn (%) =w((h, = h,)x(h, = h,)).

Now a,,, = h,—h, — 0 as n, m - oo in the Mackey topology 7 = 7(X, X”).
Hence for each u € X, (L, f)u)= f(a,,u) >0, (R, fXu)=f(ua,,)— 0 uni-
formly over f in o(X?, X) compact convex circled subsets of X”. Also,
{La"mwgln, m=1,2,...} is contained in o(X P X) compact convex circled set B,
and (R, @)(u)— 0 uniformly over @ & B. It follows that for £ € D(7), u € X,
there is a constant M(u, §) independent of n, m such that

| fo, o ()| = (7 (B, = h)u(h, = b)) )] < M(u,§).
This, in particular in (B), gives
1
la(y)m(h, = h,)E = 7(p)m(h, = h)El" < ;M(y,ﬁ) -0

uniformly over n and m as k — oco. This permits, in view of [2, Theroem 13.2], the
interchange of limits in the following arguments.
lim |[7(y)7(h, = h,)E

(n,m)— oo

= lim lim ||#(y,)7(h, — h,)E|

(n,m)—o00 k— o0

= lim lim ||#(y)7(h, — h,)E|

k— 00 (n,m)— o0
=0 since y, € X(B,), | yu(h, — h,)|— Oasn,m - co.

This gives (A), thereby completing the proof of Statement (II).

Returning to the proof of the Theorem, a well-known result of Kadison [7,
Corollary 1.12.17] implies that a topologically irreducible representation of a C*-
algebra is algebraically irreducible. Thus in view of Statements (I) and (II), for each
nonzero ¢ € D(w), H = o(X(B,) )¢ C D(m), D(w) = H. The closed graph theo-
rem implies that 7(x) is a bounded operator for each x € X; and hence so is 7(a)
for each a € A.

This completes the proof of the Theorem.
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4. A concluding remark. Let 1 — H(¢) be a measurable field of Hilbert spaces over
a compact space Z with a positive measure p. Let H = (2 H(t)dp(t). Given a
measurable field of operators t — T(¢), not necessarily bounded, over Z, let

D(t) = set of all square integrable vector fields t — x(¢) € H(t) such that
x(t) € D(T(t)) for all t and ¢t - T(¢)x(t) is square integrable.

Then the operator T, defined on D(T') by the field 1 — T(z), is called decomposable,
written T = [ T(t)dp(t). It is called boundedly decomposable if each T(t) is
bounded. It is easily seen that the set b4 of all boundedly decomposable operators
forms a *-subalgebra of the *-algebra (with strong operations) A4 of all decompos-
able operators containing the *-algebra A4, of all bounded decomposable operators.

Mathot [14, Theorem 3.2 and §3.3] has proved that if 4 is a separable locally
convex *-algebra dominated in a given selfadjoint strongly continuous representa-
tion (7, D(7), H) by a countable subset B (in the sense that given an a € A, there
are b € B and k < oo such that ||7(a)x| < k||7(b)x| for all x), then over a

compact space Z with a positive measure p, (7, D(7), H) can be disintegrated as

H=/Z“’ H(t) dp(1), D(w>=fz“’ D(t) du(1), w=/j m,du(t)

strongly, where each 7, is irreducible with D(w,) = D(¢). If 4 is symmetric, then
every closed = is selfadjoint and, by our theorem, each =, is a bounded representa-
tion. In particular, if 4 is a countably dominated symmetric *-algebra [12] of
operators in a separable Hilbert space H admitting a separable locally convex
=-algebra topology finer than the strong topology, then A is isomorphic to a
*-subalgebra of the algebra of boundedly decomposable operators in some

/7 H(1)dp(1).
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