AN IRREDUCIBLE REPRESENTATION OF A SYMMETRIC STAR ALGEBRA IS BOUNDED

BY

SUBHASH J. BHATT

ABSTRACT. A *-algebra A is called symmetric if $(1 + x^*x)$ is invertible in A for each x in A. An irreducible hermitian representation of a symmetric *-algebra A maps A onto an algebra of bounded operators.

1. THEOREM. Let A be a symmetric *-algebra with identity 1. Let $(\pi, D(\pi), H)$ be a closed *-representation of A on a Hilbert space H. If the only π -invariant selfadjoint subspaces of $D(\pi)$ are (0) and $D(\pi)$, then π is a bounded representation.

COROLLARY. Every closed (algebraically) irreducible *-representation of a symmetric *-algebra is bounded.

The purpose of this paper is to prove the above theorem. A *-algebra A is a linear associative algebra with identity 1 over the complex field C such that A admits an involution $a \in A \rightarrow a^* \in A$ satisfying the usual axioms. If $(1 + a^*a)^{-1}$ exists in A, for every $a \in A$, then A is called symmetric.

A representation $(\pi, D(\pi), H)$ of a *-algebra A on a Hilbert space H is a mapping π of A into the linear operators (not necessarily bounded), all defined on a common domain $D(\pi)$, a dense linear subspace in H, such that for all a, b in A, α, β in C and ξ in $D(\pi)$,

(i) $\pi(\alpha a + \beta b)\xi = \alpha \pi(a)\xi + \beta \pi(b)\xi$,

(ii) $\pi(a)D(\pi) \subset D(\pi)$ and $\pi(a)\pi(b)\xi = \pi(ab)\xi$,

(iii) $\pi(1) = I$.

It is called a *-representation if for each $a \in A$,

(iv) $D(\pi) \subset D(\pi(a)^*)$, the domain of the operator adjoint $\pi(a)^*$ of $\pi(a)$, and $\pi(a^*) \subset \pi(a)^*$. π is called a *bounded representation* if $\pi(a)$ is a bounded operator for each $a \in A$. Throughout by a representation we always mean a *-representation.

The analysis of the representations of abstract *-algebras has been motivated in Quantum Field Theory to avoid starting with (and staying within) a specific Hilbert space (the Fock space) scheme and rather to stress that the basic objects of the theory are observables considered as purely algebraic quantities forming a *-algebra. Realizations of these algebraic objects as Hilbert space operators naturally lead to unbounded representations defined above. In [15], R. T. Powers developed a basic representation theory for *-algebras admitting unbounded observables. Representations of symmetric *-algebras have been investigated in [11]. On the other hand,

Received by the editors December 27, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L99.

Key words and phrases. Symmetric *-algebra, unbounded representations.

certain symmetric algebras of unbounded operators (symmetric *-algebras, EC^* algebras, EW^* -algebras) have been studied by Dixon [9] and Inoue [12]. EC^* -algebras occur naturally in the unbounded generalizations of left Hilbert algebras and standard von Neumann algebras [13]. The above theorem for EC^* -algebras was established in [6].

Given a representation $(\pi, D(\pi), H)$ of a *-algebra A, the induced topology t_A on $D(\pi)$ is the locally convex topology defined by the seminorms $\xi \to ||\pi(a)\xi|| (a \in A)$. The completion of $(D(\pi), t_A)$ is $D(\overline{\pi}) = \bigcap \{D(\overline{\pi(a)}) | a \in A\}, \overline{\pi(a)}$ denoting the closure of $\pi(a)$. Then $\overline{\pi(a)} = \overline{\pi(a)}|_{D(\overline{\pi})}$ defines a representation $(\overline{\pi}, D(\overline{\pi}), H)$, called the closure of π ; π is closed if $D(\pi) = D(\overline{\pi})$. A representation π is called selfadjoint if $D(\pi) = D(\pi^*)$, where $D(\pi^*) = \bigcap \{D(\pi(a^*)^*) | a \in A\}$. A π -invariant subspace M of $D(\pi)$ is selfadjoint if the restriction of π to M is selfadjoint. For further details, we refer to [11].

The idea of the proof is borrowed from the enveloping C^* -algebra of a Banach *-algebra. Form a suitable reducing ideal I, represent the quotient algebra X = A/I faithfully as an unbounded operator algebra (not an EC^* -algebra, though symmetric). Modify the EC^* -techniques of [6] avoiding the completeness of the underlying algebra X_b of bounded operators. π extends to an irreducible representation σ of the completion \tilde{X}_b of X_b . By standard C^* -theory, σ turns out to be algebraically irreducible which quickly leads to boundedness of π . The technicalities of some of our steps are modifications of those that are scattered in [1, 4, 6 and 8]. However, for the sake of completeness we have briefly included all details.

Finally, connections with the work of Mathot [14] on the disintegration of representations is discussed.

2. Peliminary constructions.

(2.1) The *-algebra X = A/I. Let A be a *-algebra. Let P(A) and R(A) denote respectively the sets of all positive (linear) forms on A and of all closed strongly cyclic representations of A. By the GNS construction, each $f \in P(A)$ yields a $\pi_f \in R(A)$ as follows: Let $N_f = \{x \in A | f(x^*x) = 0\} = \{x \in A | f(y^*x) = 0 \text{ for all} y \in A\}$; $X_f = A/N_f$, a pre-Hilbert space with inner product $\langle a + N_f, b + N_f \rangle = f(b^*a)$; H_f = the Hilbert space obtained by completing X_f . Define π'_f on A as $\pi'_f(a)(b + N_f) = ab + N_f$, $D(\pi'_f) = X_f$. Then π'_f is an ultracyclic representation of A. Let π_f be the closure of π'_f with $D(\pi_f) = D(\overline{\pi}'_f)$. Then $\pi_f \in R(A)$, $\xi_f = 1 + N_f$ being a strongly cyclic vector. Also, modulo unitary equivalence, every strongly cyclic representation of A is of this form [15, §VI].

Now let $I = \bigcap\{N_f | f \in P(A)\}$. Then $I = \bigcap\{\ker \pi | \pi \in R(A)\}$. For, if $\pi_f(x) = 0$ for some $f \in P(A)$, then $xy + N_f = 0$ for all $y \in A$. Taking y = 1, $f(x^*x) = 0$, $x \in N_f$. On the other hand, given $f \in P(A)$, $y \in A$, define $f_y \in P(A)$ by $f_y(x) = f(y^*xy)$. Then for a given $x \in A$, $f(x^*x) = 0$ for all $f \in P(A)$ implies that for an arbitrary $f \in P(A)$, $f_y(x^*x) = 0$ for all $y \in A$. Hence $\pi_f(x) = 0$ giving $x \in \ker \pi_f$.

It follows from the above that I is a *-ideal of A. Let X = A/I be the quotient algebra. Define

$$B_0 = \{ x \in X | f(x^*x) \leq f(1) \text{ for all } f \in P(X) \},\$$

 $B'_0 = \left\{ x \in X | \text{ for each } f \in R(X), \, \pi(x) \text{ is bounded and } \| \pi(x) \| \leq 1 \right\}.$

Then $B_0 = B'_0$. Indeed, let $x \in B_0$. Then for every $f \in P(X)$, $y \in X$,

$$\|\pi_f(x)(y+N_f)\|^2 = f(y^*x^*xy) = f_y(x^*x) \le f_y(1)$$
$$= f(y^*y) = \|y+N_f\|^2.$$

Hence $\|\pi_f(x)\| \leq 1$. On the other hand, if $x \in B'_0$, then $f(y^*xy) \leq f(y^*y)$ for all $y \in X$, $f \in P(X)$. Again taking y = 1, $x \in B_0$. Thus $B_0 = B'_0$. We verify the following properties of B_0 .

(i) $B_0 = B_0^*$.

This is immediate in view of the fact that $\|\pi_f(x)\| \leq 1$ iff $\|\pi_f(x^*)\| \leq 1$.

(ii) B_0 is absolutely convex.

That it is balanced is obvious. For x, y in B_0 , $0 \le t \le 1$, taking z = tx + (1 - t)y, the Cauchy-Schwarz inequality gives

$$f(z^*z) \leq \left\{ tf(x^*x)^{1/2} + (1-t)f(y^*y)^{1/2} \right\}^2 \leq f(1)$$

showing that B_0 is convex.

(iii) $B_0^2 \subset B_0, 1 \in B_0$.

Let z = xy with x, y in B_0 . If $f_y = 0$, then $f(z^*z) = f_y(x^*x) = 0$; otherwise, for some $u \in X$, $f_y(u) \neq 0$, and by the Cauchy-Schwarz inequality, $f_y(1) \neq 0$. Then again by the same inequality, $f(z^*z) \leq f_y(1) = f(y^*y) \leq f(1)$. Thus $z \in B_0$.

(2.2) Topologies on X. (a) Let X^P be the complex linear span of all positive forms on X. Let $\sigma_P = \sigma(X, X^P)$ be the weak topology on X determined by the duality $\langle X, X^P \rangle$. By the construction of X, given $x \neq 0$ in X, there exists an $f \in P(X)$ such that $f(x^*x) \neq 0$. Hence the direct sum [15, Remark following Theorem 7.5]

$$\pi_u = \sum_{f \in P(X)} \oplus \pi_f$$

(note that $\pi_f \in R(X)$) defines a faithful representation of X on the Hilbert space

$$H_u = \sum_{f \in P(X)} \bigoplus H_f$$

with domain

$$D(\pi_u) = \left\{ \xi = (\xi_f) \middle| \xi_f \in H_f \text{ for all } f \in P(X) \text{ and} \right.$$
$$\sum_{f \in P(X)} \bigoplus \left\| \pi_f(x) \xi_f \right\|^2 < \infty \text{ for all } x \in X \left. \right\}.$$

This is the universal representation of X. Let σ_{π_u} be the topology on X defined by the seminorms $x \in X \to p_{\xi,\eta}(x) = |\langle \pi_u(x)\xi, \eta \rangle|$ for ξ, η in $D(\pi_u)$; or equivalently, by the seminorms $x \in X \to p_{\xi}(x) = |\langle \pi_u(x)\xi, \xi \rangle|$ ($\xi \in D(\pi_u)$) by using the polarization identity. Since all positive forms on X are taken into account to construct π_u , it is easily seen that $\sigma_{\pi_u} = \sigma_P$.

Also, it is easy to check that X with σ_p (or with the Mackey topology $\tau(X, X^p)$) is a locally convex *-algebra (with separately continuous multiplication and continuous involution). Also, every positive form on X is σ_p -continuous and

$$B_0 = \left\{ x \in X | \left\| \pi_u(x) \right\| \leq 1 \right\}.$$

Now we verify the following additional property of B_0 .

(iv) Let $\mathscr{B}^*(\sigma_P)$ be the collection of all σ_P -closed, σ_P -bounded, absolutely convex subsets B of X satisfying $B^2 \subset B$, $B^* = B$, $1 \in B$. Then B_0 is the greatest member of $\mathscr{B}^*(\sigma_P)$. That B_0 is bounded in σ_P follows from the definition of B_0 . Let $B \in \mathscr{B}^*(\sigma_P)$. Let $x \in B$. If $||\pi_u(x)|| > 1$, then for some $\xi \in D(\pi_u)$, $||\xi|| = 1$, we have $||\pi_u(x)\xi|| > 1$. For all n = 1, 2, 3, ...

$$\left|\left\langle \left.\pi_{u}(x^{*}x)^{2^{n}}\xi,\xi\right\rangle\right|\geqslant\left|\left.\pi_{u}(x)\xi\right|\right|^{2^{n+1}}\rightarrow\infty\quad\text{as }n\rightarrow\infty.$$

On the other hand, $x^* \in B$ as $x \in B$; and so $(x^*x)^{2^n} \in B$. This contradiction shows that $||\pi_u(x)\xi|| \leq 1$ for all $\xi \in D(\pi_u)$, $||\xi|| = 1$. Hence $x \in B_0$. Thus $B \subset B_0$. The above argument applied to B_0 also shows that B_0 is σ_P -closed. This gives (iv).

(b) We shall also need two other topologies on X induced from those on X via π_u ; viz. the quasiweak topology defined by the seminorms $x \in X \to |\langle \pi_u(x)\xi, \eta \rangle| = p_{\xi,\eta}(x)$, where $\xi \in D(\pi_u)$, $\eta \in H_u$; and the strong topology defined by the seminorms $x \in X \to ||\pi_u(x)\xi||$ for $\xi \in D(\pi_u)$.

(2.3) The pre-C* algebra $X(B_0)$. From the properties (i)–(iv) of B_0 , it follows that

$$X(B_0) = \{ \lambda x | \lambda \in \mathbf{C}, x \in B_0 \}$$

is a *-subalgebra of X containing the identity and, for $x \in X(B_0)$.

$$\|x\|_{B_0} = \inf\{\lambda > 0 | x \in \lambda B_0\}$$

= $\sup\{f(x^*x)^{1/2} | f \in P(X)\} = \|\pi_u(x)\|$

defines a norm on $X(B_0)$ satisfying $||x^*x||_{B_0} = ||x||_{B_0}^2$. However, $(X(B_0), ||\cdot||_{B_0})$ need not be complete. Also, $x \in X(B_0)$ iff $\pi_u(x)$ is a bounded operator.

(2.4) We note in passing that X provides a solution of the universal problem for selfadjoint representations. If A is a selfadjoint representation of a *-algebra A on a Hilbert space H with domain $D(\pi)$, then there exists a unique selfadjoint representation $\tilde{\pi}$ of X on H such that $D(\tilde{\pi}) = D(\pi)$ and $\pi = \tilde{\pi} \circ \psi$, where $\psi: A \to X$ is the natural map. This follows from the fact [15] that π being selfadjoint is a direct sum of closed strongly cyclic representations; and by the construction of X, every positive form on A, and hence every closed strongly cyclic representation of A, factors through X.

(2.5) LEMMA. Let A be a symmetric *-algebra.

(a) For each $x \in X$, $(1 + x^*x)^{-1} \in X(B_0)$.

(b) For each $h = h^*$ in X and for each $n = 1, 2, ..., h(1 + (1/n)h^2)^{-1} \in X(B_0)$.

(c) If τ is any topology on X making (X, τ) a locally convex *-algebra such that B_0 is τ -bounded, then

$$h = \lim_{n \to \infty} h \left(1 + \frac{1}{n} h^2 \right)^{-1} \quad in \ \tau.$$

PROOF. (a) Obviously X is also symmetric. By [11, Lemma 3.2], applied to X and π_u , $(I + \pi(x)^{\sharp}\pi(x))^{-1}$ is bounded for each $x \in X$, and $||(I + \pi(x)^{\sharp}\pi(x))^{-1}|| \leq 1$ where $\pi(x) = \pi_u(x)|_{D(\pi_u)}$. Thus $||(1 + x^*x)^{-1}||_{B_0} \leq 1$.

(b) By (a), for each $h = h^*$ in X, $(1 + h^2)^{-1} \in X(B_0)$, $||(1 + h^2)^{-1}||_{B_0} \le 1$. Hence $(1 + h^2)^{-1} - (1 + h^2)^{-2} = h^2(1 + h^2)^{-2} \in X(B_0)$.

If necessary, by passing to the completion of $X(B_0)$ and taking a Gelfand representation, $\|h^2(1+h^2)^{-2}\|_{B_0} \leq 1$. Let $h_n = h(1+h^2/n)^{-1}$. Then for all $f \in P(X)$,

$$f(h_n^2) = f(n(h/\sqrt{n})^2 (1 + (h/\sqrt{n})^2)^{-2}$$

$$\leq n \| (h^2/n) (1 + h^2/n)^{-2} \|_{B_0} f(1) \leq nf(1).$$

Hence $f((h_n/\sqrt{n})^2) \leq f(1)$. Thus $h_n/\sqrt{n} \in B_0$, $h_n \in X(B_0)$ for all n.

(c) follows by an argument exactly as in [5, Lemma 3.3].

3. Proof of the Theorem. Since π is closed and A is symmetric, [11, Lemma 3.5] implies that π is selfadjoint, and the von Neumann algebra $\pi(A)' = \mathbb{C}1$. Let $\tilde{\pi}$ be the representation of X on H induced by π ; viz., $\tilde{\pi}(a + I) = \pi(a)$ $(a \in A)$ with $D(\tilde{\pi}) = D(\pi)$. The only $\tilde{\pi}$ -invariant selfadjoint subspaces of $D(\tilde{\pi})$ are (0) and $D(\tilde{\pi})$. (Note that on $D(\pi)$, the induced topology defined by A coincides with the induced topology defined by X.) Further, every nonzero vector $\xi \in D(\pi) = D(\tilde{\pi})$ is strongly cyclic for both π and $\tilde{\pi}$; hence $D(\pi) = \mathbb{Cl}_{t_A}[\pi(A)\xi] = \mathbb{Cl}_{t_A}[\tilde{\pi}(X)\xi]$.

CONVENTION. For typographical convenience, from now on, we denote $\tilde{\pi}$ by π itself; and the context makes it clear whether it is a representation of A or of X.

Let $\rho(x) = \pi(x)$ $(x \in X(B_0))$. We note that $\rho: (X(B_0), \|\cdot\|_{B_0}) \to B(H)$ is a continuous *-homomorphism. (Here B(H) is the C*-algebra of all bounded linear operators on H with the operator norm.) Indeed, let $x \in X(B_0)$, $\xi \neq 0$ in $D(\pi)$. Then for each $y \in X$,

$$\|\pi(x)\pi(y)\xi\|^{2} = \langle \pi(y^{*}x^{*}xy)\xi,\xi\rangle w_{\xi}(y^{*}x^{*}xy) \\ \leq \|x\|_{B_{0}}^{2}w_{\xi}(y^{*}y) = \|x\|_{B_{0}}^{2}\|\pi(y)\xi\|^{2}.$$

Since ξ is strongly cyclic, it is cyclic, i.e. $[\pi(X)\xi]$ is norm dense in *H*. It follows that $D(\rho(x)) = H$ and $\|\rho(x)\| \leq \|x\|_{B_0}$.

Now let $X(B_0)$ be the C*-algebra obtained by completing $(X(B_0), \|\cdot\|_{B_0})$. Let $\sigma: X(B_0) \to B(H)$ be the *-homomorphism that is the unique extension of ρ satisfying $\|\sigma(x)\| \leq \|x\|_{B_0}$ ($x \in X(B_0)$). Then the following hold.

STATEMENT (I). ρ , and hence σ , is topologically irreducible (in the sense of usual C*-representation theory).

Indeed, let H_1 be a norm closed subspace of H such that $H_1 \neq (0)$, $H_1 \neq H$, $\rho(X(B_0))H_1 \subset H_1$. Let

$$D_1 = \left\{ \xi \in D(\pi) | \rho(x) \xi \in H_1 \text{ for all } x \in X(B_0) \right\}.$$

Then $\rho(X(B_0))D_1 \subset D_1$. We show that $\pi(X)D_1 \subset D_1$, and for this, it is sufficient to show that $\pi(\operatorname{sym} X)D_1 \subset D_1$ where $\operatorname{sym} X = \{h \in X | h = h^*\}$.

Let $\xi \in D_1$, $h \in \text{sym } X$. Then $\pi(h)\xi \in D_1$ if for all $y \in X(B_0)$ (or equivalently, for all $y \in \text{sym } X(B_0)$), $\rho(y)\pi(h)\xi = \pi(yh)\xi \in H_1$. For n = 1, 2, 3, ..., taking $h_n = h(1 + h^2/n)^{-1}$, Lemma (2.5) implies that $h_n \in X(B_0)$ and $h_n \to h$ in τ where

 $\tau = \sigma_P$ or $\tau(X, X^P)$. Now

$$h - h_n = \frac{1}{n}h^3 \left(1 + \frac{1}{n}h^2\right)^{-1}$$

gives

$$(h - h_n)^* y^* y(h - h_n) = \frac{1}{n^2} h^3 \left(1 + \frac{1}{n} h^2 \right)^{-1} y^2 h^3 \left(1 + \frac{1}{n} h^2 \right)^{-1}.$$

Hence

$$\begin{aligned} \left\| \pi(yh)\xi - \pi(yh_n)\xi \right\|^2 &= \left\langle \pi((h-h_n)y^2(h-h_n))\xi,\xi \right\rangle \\ &= w_{\xi}((h-h_n)y^2(h-h_n)) \\ &= \frac{1}{n^2}w_{\xi} \left(h^3 \left(1 + \frac{1}{n}h^2 \right)^{-1} y^2 \left(1 + \frac{1}{n}h^2 \right)^{-1} h^3 \right) \\ &\leq \frac{1}{n^2} \| y^2 \|_{B_0} w_{\xi} \left(h^6 \left(1 + \frac{1}{n}h^2 \right)^{-2} \right) \\ &\leq \frac{1}{n^2} \| y \|_{B_0}^2 \| \left(1 + \frac{1}{n}h^2 \right)^{-2} \|_{B_0} w_{\xi}(h^6) \\ &\leq \frac{1}{n^2} \| y \|_{B_0}^2 w_{\xi}(h^6) \to 0 \quad \text{as } n \to \infty. \end{aligned}$$

But $\pi(yh_n)\xi \in H_1$ and H_1 is norm closed. Therefore $\pi(yh)\xi \in H_1$. Thus $\pi(X)D_1 \subset D_1$.

Further D_1 is a closed subspace of $(D(\pi), t_X)$. Let $\xi \in D(\pi)$ be such that for some net $(\xi_{\alpha}) \subset D_1$, $\xi_{\alpha} \to \xi$ in t_X . Then for all $x \in X$, $||\pi(x)(\xi_{\alpha} - \xi)|| \to 0$. But as above, for all such x, and in particular for $x \in X(B_0)$, $\pi(x)\xi_{\alpha} \in D_1 \subset H_1$ and hence, since H_1 is norm closed, $\pi(x)\xi \in H_1$ for all $x \in X(B_0)$ showing that $\xi \in D_1$.

Now since π is selfadjoint, D_1 is a selfadjoint π -invariant subspace of $D(\pi)$ as in [15, Theorem 4.7]. Hence by the hypothesis, $D_1 = (0)$ or $D_1 = D(\pi)$. This gives respectively $H_1 = (0)$ or $H_1 = H$. Thus σ is topologically irreducible. This gives Statement (I).

STATEMENT (II). $\sigma(X(B_0))D(\pi) \subset D(\pi)$.

It is enough to show that $\sigma(\text{sym}(X(B_0)))D(\pi) \subset D(\pi)$. Let $\xi \in D(\pi)$, $h \in \text{sym } X(B_0)$. Let a sequence (h_n) in sym $X(B_0)$ be such that $||h_n - h||_{B_0} \to 0$. Then in view of the facts

(a) $\pi(X(B_0))D(\pi) \subset D(\pi)$ and

(b) π is closed (so that $(D(\pi), t_{\chi})$ is complete)

to conclude that $\pi(h)\xi \in D(\pi)$, it is sufficient to show that $(\pi(h_n)\xi)$ is Cauchy in $(D(\pi), t_X)$, i.e. for each $y \in X$ (or equivalently, for each $y \in \text{sym } X$),

(A)
$$\|\pi(y)\pi(h_n-h_m)\xi\| \to 0 \text{ as } n, m \to \infty.$$

Let $y \in \text{sym } X$. By Lemma (2.5), $y_k = y(1 + y^2/k)^{-1} \rightarrow y$ in σ_p . Now as in the previous case,

$$\begin{split} \left\| \pi (y(h_n - h_m)) \xi - \pi (y_k(h_n - h_m)) \xi \right\|^2 \\ &= \left\| \pi ((y - y_k)(h_n - h_m)) \xi \right\|^2 \\ &= w_{\xi} \left(\frac{1}{k^2} (h_n - h_m) y^6 \left(1 + \frac{1}{k} y^2 \right)^{-2} (h_n - h_m) \right) \\ &\leq \frac{1}{k^2} \left\| \left(1 + \frac{1}{k} y^2 \right)^{-2} \right\|_{B_0} w_{\xi} ((h_n - h_m) y^6 (h_n - h_m)) \\ &\leq \frac{1}{k^2} f_{h_n - h_m} (y^6), \end{split}$$

where

(B)
$$f_{h_n-h_m}(x) = w_{\xi}((h_n-h_m)x(h_n-h_m)).$$

Now $a_{nm} = h_n - h_m \to 0$ as $n, m \to \infty$ in the Mackey topology $\tau = \tau(X, X^P)$. Hence for each $u \in X$, $(L_{a_{nm}}f)(u) = f(a_{nm}u) \to 0$, $(R_{a_{nm}}f)(u) = f(ua_{nm}) \to 0$ uniformly over f in $\sigma(X^P, X)$ compact convex circled subsets of X^P . Also, $\{L_{a_{nm}}w_{\xi}|n, m = 1, 2, ...\}$ is contained in $\sigma(X^P, X)$ compact convex circled set B, and $(R_{a_{nm}}\emptyset)(u) \to 0$ uniformly over $\emptyset \in B$. It follows that for $\xi \in D(\pi)$, $u \in X$, there is a constant $M(u, \xi)$ independent of n, m such that

$$\left|f_{h_n-h_m}(u)\right| = \left|\left\langle \pi((h_n-h_m)u(h_n-h_m))\xi,\xi\right\rangle\right| \leq M(u,\xi).$$

This, in particular in (B), gives

$$\|\pi(y)\pi(h_n - h_m)\xi - \pi(y_k)\pi(h_n - h_m)\xi\|^2 \leq \frac{1}{k^2}M(y,\xi) \to 0$$

uniformly over n and m as $k \to \infty$. This permits, in view of [2, Theroem 13.2], the interchange of limits in the following arguments.

$$\lim_{(n,m)\to\infty} \|\pi(y)\pi(h_n - h_m)\xi\|$$

=
$$\lim_{(n,m)\to\infty} \lim_{k\to\infty} \|\pi(y_k)\pi(h_n - h_m)\xi\|$$

=
$$\lim_{k\to\infty} \lim_{(n,m)\to\infty} \|\pi(y_k)\pi(h_n - h_m)\xi\|$$

=
$$0 \quad \text{since } y_k \in X(B_0), \|y_k(h_n - h_m)\| \to 0 \text{ as } n, m \to \infty.$$

This gives (A), thereby completing the proof of Statement (II).

Returning to the proof of the Theorem, a well-known result of Kadison [7, Corollary 1.12.17] implies that a topologically irreducible representation of a C^* -algebra is algebraically irreducible. Thus in view of Statements (I) and (II), for each nonzero $\xi \in D(\pi)$, $H = \sigma(X(B_0)) \xi \subset D(\pi)$, $D(\pi) = H$. The closed graph theorem implies that $\pi(x)$ is a bounded operator for each $x \in X$; and hence so is $\pi(a)$ for each $a \in A$.

This completes the proof of the Theorem.

4. A concluding remark. Let $t \to H(t)$ be a measurable field of Hilbert spaces over a compact space Z with a positive measure μ . Let $H = \int_{Z}^{\oplus} H(t) d\mu(t)$. Given a measurable field of operators $t \to T(t)$, not necessarily bounded, over Z, let

$$D(t) =$$
 set of all square integrable vector fields $t \to x(t) \in H(t)$ such that $x(t) \in D(T(t))$ for all t and $t \to T(t)x(t)$ is square integrable.

Then the operator T, defined on D(T) by the field $t \to T(t)$, is called *decomposable*, written $T = \int_{Z}^{\oplus} T(t) d\mu(t)$. It is called *boundedly decomposable* if each T(t) is bounded. It is easily seen that the set bA of all boundedly decomposable operators forms a *-subalgebra of the *-algebra (with strong operations) A of all decomposable operators.

Mathot [14, Theorem 3.2 and §3.3] has proved that if A is a separable locally convex *-algebra dominated in a given selfadjoint strongly continuous representation $(\pi, D(\pi), H)$ by a countable subset B (in the sense that given an $a \in A$, there are $b \in B$ and $k < \infty$ such that $||\pi(a)x|| \le k ||\pi(b)x||$ for all x), then over a compact space Z with a positive measure μ , $(\pi, D(\pi), H)$ can be disintegrated as

$$H = \int_{Z}^{\oplus} H(t) d\mu(t), \quad D(\pi) = \int_{Z}^{\oplus} D(t) d\mu(t), \quad \pi = \int_{Z}^{\oplus} \pi_{t} d\mu(t)$$

strongly, where each π_t is irreducible with $D(\pi_t) = D(t)$. If A is symmetric, then every closed π is selfadjoint and, by our theorem, each π_t is a bounded representation. In particular, if A is a countably dominated symmetric *-algebra [12] of operators in a separable Hilbert space H admitting a separable locally convex *-algebra topology finer than the strong topology, then A is isomorphic to a *-subalgebra of the algebra of boundedly decomposable operators in some $\int_{Z}^{\Phi} H(t) d\mu(t)$.

References

1. G. R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17 (1967), 91-114.

2. T. M. Apostol, Mathematical analysis, Addision-Wesley, Reading, Mass., 1971.

3. D. Arnel and J. P. Jurzak, Topological aspects of algebras of unbounded operators, J. Funct. Anal. 24 (1977), 397-424.

4. S. J. Bhatt, A note on generalized B*-algebra. I; II, J. Indian Math. Soc. 43 (1979), 253-257; ibid. 44 (1980), 285-290.

5. _____, Quotient bounded elements in locally convex algebras, J. Austral. Math Soc. Ser. A 33 (1982), 102–113.

6. _____, Irreducible representations of a class of unbounded operator algebras, Sardar Patel Univ. Math. Tech. Rep. 9, 1983; Japanese J. Math. (to appear).

7. J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1977.

8. P. G. Dixon, Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970), 693-715.

9. _____, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53-69.

10. S. Gudder and W. Scrugg, Unbounded representations of * algebras, Pacific J. Math. 70 (1977), 369-382.

11. A. Inoue, Unbounded representations of symmetric * algebras, J. Math. Soc. Japan 29 (1977), 219-232.

12. ____, On a class of unbounded operator algebras. I; II; III, Pacific J. Math. 65 (1976), 77-96; ibid. 66 (1976), 411-431; ibid. 69 (1977), 105-115.

13. _____, Unbounded generalizations of left Hilbert algebras. I; II, J. Funct. Anal. 34 (1979), 339-362; ibid. 35 (1980), 230-250.

14. F. Mathot, On the decomposition of states of some * algebras, Pacific J. Math. 90 (1980), 411-424.

15. R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124.

DEPARMENT OF MATHEMATICS, SARDAR PATEL UNIVERSITY, VALLABH VIDYANAGAR-388 120, INDIA