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AN IRREDUCIBLE REPRESENTATION

OF A SYMMETRIC STAR ALGEBRA IS BOUNDED

BY

SUBHASH J. BHATT

Abstract. A »-algebra A is called symmetric if (1 + x*x) is invertible in A for

each x in A. An irreducible hermitian representation of a symmetric »-algebra A

maps A onto an algebra of bounded operators.

1. Theorem. Let A be a symmetric * -algebra with identity 1. Let (it, D(ir), H) be

a closed *-representation of A on a Hubert space H. If the only tr-invariant self adjoint

subspaces of D(tt) are (0) and D(w), then m is a bounded representation.

Corollary. Every closed (algebraically) irreducible *-representation of a symmet-

ric * -algebra is bounded.

The purpose of this paper is to prove the above theorem. A * -algebra A is a linear

associative algebra with identity 1 over the complex field C such that A admits an

involution a & A -» a* e A satisfying the usual axioms. If (1 + a*a)~x exists in A,

for every a e A, then A is called symmetric.

A representation (it, D(tt), H) of a »-algebra A on a Hubert space H is a

mapping m of A into the linear operators (not necessarily bounded), all defined on a

common domain D(vr), a dense linear subspace in H, such that for all a,b in

A, a, ß in C and £ in D(it),

(i) rr(aa + ßb)t = aw(fl)Í + ß«(b)&

(ii) iT(a)D(-n) c D(tt) and -n(a)-n(b)£ = ir(ab)£,

(iii) »(1) = /.

It is called a * -representation if for each a ^ A,

(iv) D(tt) c Z)(w(a)*), the domain of the operator adjoint Tr(a)* of Tr(a), and

w(fl*) c 77(a)*. it is called a bounded representation if w(a) is a bounded operator

for each a g A. Throughout by a representation we always mean a »-representation.

The analysis of the representations of abstract »-algebras has been motivated in

Quantum Field Theory to avoid starting with (and staying within) a specific Hilbert

space (the Fock space) scheme and rather to stress that the basic objects of the

theory are observables considered as purely algebraic quantities forming a * -alge-

bra. Realizations of these algebraic objects as Hilbert space operators naturally lead

to unbounded representations defined above. In [15], R. T. Powers developed a basic

representation theory for * -algebras admitting unbounded observables. Representa-

tions of symmetric »-algebras have been investigated in [11]. On the other hand,
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certain symmetric algebras of unbounded operators (symmetric »-algebras, EC*-

algebras, £W/*-algebras) have been studied by Dixon [9] and Inoue [12]. £C*-alge-

bras occur naturally in the unbounded generalizations of left Hilbert algebras and

standard von Neumann algebras [13]. The above theorem for £C*-algebras was

established in [6].

Given a representation (it, D(tt), H) of a »-algebra A, the induced topology tA on

D(ir) is the locally convex topology defined by the seminorms £ -» ||7r(a)||| (a g A).

The completion of (D(<n),tA) is D(¥) = C\{D(iT(a))\a g A), 77(a) denoting the

closure of 77(a). Then 77(a) = 77(a) |D(S) defines a representation (77,0(77),//),

called the closure of it; it is closed if D(tt) = D(tt). A representation 77 is called

selfadjoint if ¿»(77) = D(t7*), where £>(t7*) = n{Z>(77(a*)*)|a G A). A 77-invariant

subspace M of D(77) is selfadjoint if the restriction of 77 to M is selfadjoint. For

further details, we refer to [11].

The idea of the proof is borrowed from the enveloping C*-algebra of a Banach

* -algebra. Form a suitable reducing ideal /, represent the quotient algebra X = A/I

faithfully as an unbounded operator algebra (not an £C*-algebra, though symmet-

ric). Modify the £C*-techniques of [6] avoiding the completeness of the underlying

algebra Xh of bounded operators. 77 extends to an irreducible representation a of the

completion Xh of Xh. By standard C*-theory, a turns out to be algebraically

irreducible which quickly leads to boundedness of 77. The technicalities of some of

our steps are modifications of those that are scattered in [1,4,6 and 8]. However, for

the sake of completeness we have briefly included all details.

Finally, connections with the work of Mathot [14] on the disintegration of

representations is discussed.

2. Peliminary constructions.

(2.1) The * -algebra X = A/I. Let A be a »-algebra. Let P(A) and R(A) denote

respectively the sets of all positive (linear) forms on A and of all closed strongly

cyclic representations of A. By the GNS construction, each /g P(A) yields a

irf g R(A) as follows: Let Nf = {x g A \f(x*x) = 0} = {x g A \f(y*x) = 0 for all

y g A); X, = A/Nf, a pre-Hilbert space with inner product (a + Nf, b + Nf) =

f(b*a); Hf = the Hilbert space obtained by completing Xf. Define irf on A as

irf(a)(b + Nf) = ab + Nf, D(iTf') = Xf. Then m'f is an ultracyclic representation of

A. Let TTf be the closure of m'f with D(-nf) = D(m'f). Then m} G R(A), £f = 1 + A^

being a strongly cyclic vector. Also, modulo unitary equivalence, every strongly

cyclic representation of A is of this form [15, §VI].

Now let / = rKfyl/e P(A)}. Then / = n{ker77|77 g R(A)}. For, if Ttf(x) = 0

for some / g P(A), then xy + Nf = 0 for all y g A. Taking y = 1, f(x*x) = 0,

x g Nf. On the other hand, given / G P(A), y g A, define fy g P(A) by fy(x) =

f(y*xy). Then for a given x g A, f(x*x) = 0 for all / g P(A) implies that for an

arbitrary / g P(A), fv(x*x) = 0 for all y G A. Hence irf(x) = 0 giving x g ke^.

It follows from the above that / is a »-ideal of A. Let X = A/I be the quotient

algebra. Define

50= {x g X|/(x*x)</(l)forall/G P{X)},
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B'0 = [x G A'lforeach /g R(X), tt(x) is bounded and \\ir(x) || < l}.

Then B0 = B'Q. Indeed, let x g B0. Then for every f(=P(X),y(E X,

\\tTf{x){y + Nf)( =f(y*x*xy)=fy(x*x)^fy(\)

= f(y*y)=\\y + Nf\\2.

Hence ||w/(.x:)|| < 1. On the other hand, if x g B'q, then f(y*xy) <f(y*y) for all

y g X,  /g P(X). Again taking >> = 1,  x g 50. Thus  J50 = £¿. We verify the

following properties of B0.

(i) B0 = B*.

This is immediate in view of the fact that ||iry(jc)|| < 1 iff ||^iy(jc*)|| < 1.

(ii) B0 is absolutely convex.

That it is balanced is obvious. For jc, y in B0, 0 < / < 1, taking z = tx + (1 - t)y,

the Cauchy-Schwarz inequality gives

f(z*z) < {tf(x*x)1/2+(l - t)f(y*y)1/2}\f(l)

showing that B0 is convex.

(iii) B¡ c ß0, 1 g B0.

Let z = xy with x, y in B0. If f = 0, then f(z*z) = /v(x*x) = 0; otherwise, for

some m g A', /v(w) # 0, and by the Cauchy-Schwarz inequality, fY(\) # 0. Then

again by the same inequality, f(z*z) < fy(l) = f(y*y) < /(l). Thus z g B0.

(2.2) Topologies on X. (a) Let A'/> be the complex linear span of all positive forms

on X. Let ap = a(X, Xp) be the weak topology on X determined by the duality

(A', A'''). By the construction of X, given x + 0 in X, there exists an / G P(X) such

that f(x*x) # 0. Hence the direct sum [15, Remark following Theorem 7.5]

■*u =   £ ® *f
feP(X)

(note that ny e R(X)) defines a faithful representation of X on the Hilbert space

feP(X)

with domain

£>K) = {« = U/)|£/G #/ for all /g P(X) and

2

X!®   ¡"/(-Oé/ll   <ooforallxGA
feP(X)

This is the universal representation of A". Let ov be the topology on X defined by the

seminorms x g X -» />|>T|(x) = Kw„(;c)£, r/)| for |, 17 in D(ttu); or equivalently, by

the seminorms * g A ->/>£(.x) = \(iru(x)(-, £}| (£ G D(ttu)) by using the polariza-

tion identity. Since all positive forms on A" are taken into account to construct 77u, it

is easily seen that a^ = aP.

Also, it is easy to check that X with aP (or with the Mackey topology t(X, Xp)) is

a locally convex * -algebra (with separately continuous multiplication and continu-

ous involution). Also, every positive form on X is a^-continuous and

B0= {xeX\\\iru(x)\\*z\}.
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Now we verify the following additional property of B0.

(iv) Let 3S*(oP) be the collection of all a^-closed, aP-bounded, absolutely convex

subsets B of X satisfying B2 c B, B* = B, 1 g B. Then B0 is the greatest member

of 38*(oP). That B0 is bounded in aP follows from the definition of B0. Let

B g 38*(op). Let x G B. If \\ttu(x)\\ > 1, then for some £ g D(ttu), ||£|| = 1, we

have K(jc)||| > 1. For all n = 1,2,3,...

I / ">n \   I 2"+1

|(t7u(.x*x)   £,£^|^||t7w(.x)£||       -> oo    asrt^oo.

On the other hand, x* g B as * g 5; and so (x*x)2" g 5. This contradiction shows

that ||77„(x)||| < 1 for all £ g D(ttu), ||£|| = 1. Hence x g B0. Thus B c j50. The

above argument applied to B0 also shows that B0 is o-p-closed. This gives (iv).

(b) We shall also need two other topologies on X induced from those on X via

77u; viz. the quasiweak topology defined by the seminorms x G X -> \(iru(x)%, r})\ =

Pç^(x), where £ g D(ttu), tj g Hu; and the strong topology defined by the semi-

norms X G X -* ||77„(X)£|| for £ G Z>(77„).

(2.3) Thepre-C* algebra X(BQ). From the properties (i)-(iv) of B0, it follows that

X(B0)= {Ax|Ag C,xg B0}

is a * -subalgebra of A containing the identity and, for x G X(B0).

\\x\\b0 = inf{A > 0|x G \B0)

= sup{f(x*x)1/2\f^P(X)}=\\TTu(x)\\

defines a norm on X(B0) satisfying ||x*x||ß = ||jc||| . However, (X(B0), \\ ■ \\B )

need not be complete. Also, x g X(B0) iff ttu(x) is a bounded operator.

(2.4) We note in passing that X provides a solution of the universal problem for

selfadjoint representations. If A is a selfadjoint representation of a * -algebra A on a

Hilbert space H with domain D(tt), then there exists a unique selfadjoint represen-

tation 77 of X on H such that D(tt) = D(tt) and 77 = 77 ° ip, where \p: A -» A' is the

natural map. This follows from the fact [15] that 77 being selfadjoint is a direct sum

of closed strongly cyclic representations; and by the construction of X, every

positive form on A, and hence every closed strongly cyclic representation of A,

factors through X.

(2.5) Lemma. Let A be a symmetric * -algebra.

(a) For each x e X, (1 + x*x)~l g X(B0).

(b) Foreachh = h* in X and for each n = 1,2,..., /i(l + (l/n)h2)~l g X(B0).

(c) // T « a«^ topology on X making (X,t) a locally convex * -algebra such that B0

is T-bounded, then

h =   lim /ill + -h2\       in t.
n-00   \        «     /

Proof, (a) Obviously Ar is also symmetric. By [11, Lemma 3.2], applied to X and

77„, (/ + 77(x)*77(x))"1 is bounded for each x g X, and ||(/ + 7r(jc)*7r(jc))-1|| < 1

where n(x) = nu(x)\Di.y Thus ||(1 + x*xy1\\Ba < 1.
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(b) By (a), for each h = h* in X, (1 + h2)~l G X(B0), ||(1 + h2yl\\Bo < 1. Hence

(1 + h2)'1 -(1 + h2Y2 = /i2(l + h2y2 G A-(Ä0).

If necessary, by passing to the completion of X(B0) and taking a Gelfand represen-

tation, \\h2(l + A2)-2||flo< l.LetÄ„ = A(l + h2/n)-\ Then for all /g /»(A"),

/(A2)=/(«(Vv^)2(l+(V^)2)"2

< h||(«»(1 + Ä2/«)"2|So/(l) < «/(l).

Hence/((/,„/ v^)2) </(l).Thus «„/v^ g B0, h„ g A(50)forall «.

(c) follows by an argument exactly as in [5, Lemma 3.3].

3. Proof of the Theorem. Since 77 is closed and A is symmetric, [11, Lemma 3.5]

implies that 77 is selfadjoint, and the von Neumann algebra 77(/I)' = Cl. Let 77 be

the representation of X on H induced by 77; viz., #(a + J) = 77(a) (a g A) with

0(77) = D(tt). The only 77-invariant selfadjoint subspaces of /)(#) are (0) and

/)(#). (Note that on 0(77), the induced topology defined by A coincides with the

induced topology defined by X.) Further, every nonzero vector £ g D(it) = D(ñ) is

strongly cyclic for both 77 and #; hence D(tt) = CI¡a[tt(A)£] = CI!x[tt( A")£].

Convention. For typographical convenience, from now on, we denote 77 by 77

itself; and the context makes it clear whether it is a representation of A or of X.

Let p(x) = n(x) (x G X(B0)). We note that p: (X(B0), || • ||Bo) -+ B(H) is a

continuous *-homomorphism. (Here B(H) is the C*-algebra of all bounded linear

operators on H with the operator norm.) Indeed, let x g X(B0), £ ^ 0 in D(tr).

Then for each y g X,

\\TT(x)ir(y)t\\   = (■n(y*x*xy)Í,^)wí{y*x*xy)

2 2 2
<\\x\\B0wi(y*y) =||x||b0||t7(>')£|| .

Since £ is strongly cyclic, it is cyclic, i.e. [77(A')£] is norm dense in H. It follows that

D(P(x))= H andJ\p(x)\\^\\x\\Bo.

Now let X(B0) be the C*-algebra obtained by completing (X(B0), \\ ■ \\Bo). Let

a: X(B0) -> B(H) be the »-homomorphism that is the unique extension of p

satisfying ||a(x)|| < ||x||B  (x g X(B0)). Then the following hold.

Statement (I), p, and hence a, is topologically irreducible (in the sense of usual

C*-representation theory).

Indeed, let H1 be a norm closed subspace of H such that Hx + (0), //, # H,

P(X(B0))HxczHv Let

D, = {£g £>(77)|p(x)£g//j for all x G X(B0)}.

Then p(X(B0))D1 c Dv We show that tt(X)D1 c Dx, and for this, it is sufficient

to show that 77(sym X)DX c Dx where sym X = {h € X\h = h*}.

Let £ G £>!, h g sym X. Then t7(ä)£ g Dy if for all y g A"(fi0) (or equivalently,

for all y g sym X(B0)), p(y)-n(h)£ = ir(yh)t g Hx. For « = 1,2,3,..., taking

h„ = h(l + h2/n)~l, Lemma (2.5) implies that hn g X(B0) and hn -> h in t where
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t = opott(X, Xp). Now

h- h=-h3ll +-h2
n     \        n

-i

gives

(h - hn)*y*y(h - h„) = —,hAl + -h2)   y2h^[l + -h2
n      \        n     ' \        n

Hence

||t7(^)£ - 77(j/iJ£||2 = (*((A - hn)y2(h - «„))£,£)

= w(((h-h„)y2(h-h„))

n

„2

2<^HJ'l|fi„
Ba

1 2
< —T II-V II s0w¿(/í6) -» 0    as «^oo.

«2

But Tr(yhn)£, G //j and //, is norm closed. Therefore iT(yh)i g Hv Thus 77(A)/)j

Further Dx is a closed subspace of (D(tt), tx). Let £ g D(77) be such that for

some net (£a) c £>,, £a -» £ in tx. Then for all x G A", ||ir(jc)(£„ - £)|| -» 0. But as

above, for all such x, and in particular for jc g X(B0), 77(x)£a g D1 c //j and

hence, since //, is norm closed, 77(x)£ g Hl for all x g X(B0) showing that £ g Z)j.

Now since 77 is selfadjoint, Z^ is a selfadjoint 77-invariant subspace of of £(77) as

in [15, Theorem 4.7]. Hence by the hypothesis, />, = (0) or D1 = D(m). This gives

respectively Hl = (0) or //, = H. Thus a is topologically irreducible. This gives

Statement (I).

Statement (II). a(X(BQ)~)D(ir) c D(tt).

It is enough to show that a(sym(X(B0)~))D(77) c Z)(77). Let £ g £(77), « g

sym X(B0) . Let a sequence (hn) in sym A(B0) be such that \\hn - h\\B(¡ -> 0. Then

in view of the facts

(a) 77(X(B0))D(tt) c D(t7) and

(b) 77 is closed (so that (D(tt), tx) is complete)

to conclude that 77(«)£ g D(v), it is sufficient to show that (77(«„)£) is Cauchy in

(D(tt), tx), i.e. for each y g X (or equivalently, for each y g sym X),

(A) \W(y)ir(h„ - O^ll-* 0    asn,m->co.
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Let y G sym X. By Lemma (2.5), yk = y (I + y2/k) x -» y in aP. Now as in the

previous case,

h(y(K-hm))è-n(yk(hn-hm))è\\2

= \\H(y-yk)(K-hm))è\\2

±-2{h„-hm)y6(l + ly2)~\h„-hm)

1

A:2
1+I,2 w({(h„-hm)y6(hn-hm))

< 7if»„-hSy6)>
k

where

(B) /*.-*.(*) = »"«((*- - Äm)*(A„ - O)-

Now a„„, = «„ - Am -» 0 as n, m -* oo in the Mackey topology t = t(X, A^)-

Hence for each « g A, (La J)(u) = f(anmu) -> 0, (Ra J)(u) = f(ua„m) -* 0 uni-

formly over / in aiA"7", A) compact convex circled subsets of Xp. Also,

{La wt|«,»i = 1,2,...} is contained in a(Xp, X) compact convex circled set B,

and (Ra¡m0)(u) -> 0 uniformly over 0 G B. It follows that for £ g D(tt), m g A,

there is a constant M(u, £) independent oi n,m such that

|/*.-*.(«')|-K»((*--O«(*--Am))€.í>l<^(«'»0-

This, in particular in (B), gives

M^MA, - Ol - «{yk)«(hn - Oilf < ̂ M(y,t) - 0

uniformly over n and m as k -» oo. This permits, in view of [2, Theroem 13.2], the

interchange of limits in the following arguments.

lim     My)v(hm-hm)i¡
( n , m ) —* oo

=      lim       lim \\n(yk)v(h„- «m)£||
(n, m)—* oo k —» oo

=  lim       lim     ||77(jj77(/i„- /ij£||
k—>oo {n , m)—* oo

= 0    since ̂  g A(50), IIJ*(«„ - "J ||-» 0 as n, m -> oo.

This gives (A), thereby completing the proof of Statement (II).

Returning to the proof of the Theorem, a well-known result of Kadison [7,

Corollary 1.12.17] implies that a topologically irreducible representation of a C*-

algebra is algebraically irreducible. Thus in view of Statements (I) and (II), for each

nonzero £ G D(tt\ H = a(A(50)")£ c D(m), £>(tt) = //. The closed graph theo-

rem implies that 77(jc) is a bounded operator for each x g X; and hence so is 77(a)

for each a g A.

This completes the proof of the Theorem.
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4. A concluding remark. Let t -» H(t) be a measurable field of Hilbert spaces over

a compact space Z with a positive measure ft. Let H = j® H(t)dp,(t). Given a

measurable field of operators t -» r(r), not necessarily bounded, over Z, let

/)(/) = set of all square integrable vector fields t -* x(t) G H(t) such that

x(/) g D(T(t)) for all í and t -> r(?)x(i) is square integrable.

Then the operator 7, defined on D(T) by the field í -» 7(í), is called decomposable,

written 7= // T(t)dn(t). It is called boundedly decomposable if each T(i) is

bounded. It is easily seen that the set bA of all boundedly decomposable operators

forms a * -subalgebra of the * -algebra (with strong operations) A of all decompos-

able operators containing the »-algebra Ab of all bounded decomposable operators.

Mathot [14, Theorem 3.2 and §3.3] has proved that if A is a separable locally

convex »-algebra dominated in a given selfadjoint strongly continuous representa-

tion (77, D(tt), H) by a countable subset B (in the sense that given an a g A, there

are b G B and k < 00 such that ||ir(a)x|| < /c||77(¿>)x|¡ for all x), then over a

compact space Z with a positive measure ¡u, (77, D(tt), H) can be disintegrated as

H =  (9 H(t)dn{t),     Z>(77) = P D(t)dfi(t),    77= P 77,a>(0
•'z •'z •'z

strongly, where each 77, is irreducible with D(t7,) = D(t). If .4 is symmetric, then

every closed 77 is selfadjoint and, by our theorem, each 77, is a bounded representa-

tion. In particular, if A is a countably dominated symmetric »-algebra [12] of

operators in a separable Hilbert space H admitting a separable locally convex

»-algebra topology finer than the strong topology, then A is isomorphic to a

»-subalgebra of the algebra of boundedly decomposable operators in some

/• H(t)dii(t).
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