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Abstract. A homomorphism from a locally convex Q-algebra to a uniform

topological algebra is continuous. A one-to-one homomorphism from a regu-

lar complete spectrally bounded uniform topological algebra onto a dense sub-

algebra of a semisimple locally m-convex Q-algebra is open. Examples are

discussed to show that none of the assumptions in these results can be omitted.

1. Preliminaries and notation

A uniform seminorm on a linear associative algebra A (over complex scalars)

is a seminorm p satisfying (i) p(xy) < p(x)p(y) forall x, y, and (ii) p(x2) =

p(x)2 for all x . A (locally convex) topological algebra [8] is an algebra A with

a Hausdorff topology / on it so that (A, t) is a (locally convex) topological

vector space in which the multiplication is separately continuous. It is a Q-

algebra [9, Appendix E] if the set of all quasi-regular elements is an open set. A

locally m-convex algebra (lmc algebra) [9] is a locally convex topological algebra

whose topology is determined by a separating family P = (pa) of seminorms

each satisfying (i). For each a, let Na = {x e ,4|pa(x) = 0} and Aa be the

Banach algebra obtained by completing A/Na in the norm ||xa||a = pa(x),

xa = x + Na . lf A is complete, then A is an inverse limit of Banach algebras

A = lim Aa [9, Theorem 5.1]. A uniform topological algebra (uT-algebra) [3]

is an lmc algebra A in which each pa additionally satisfies (ii) so each Aa is

a uniform Banach algebra. A uniform Banach algebra (uB-algebra) is a Banach

algebra (A, ||-||) such that ||x2|| = ||x||2 forall x. By [4, Theorem 3.10, p. 32],
a uB-algebra is commutative; via Gelfand theory, it is a closed point separating

subalgebra of the supnorm Banach algebra C(X) of all continuous complex-

valued functions on a compact Hausdorff space X . Thus, a uT-algebra A is

commutative, and if complete, A is an inverse limit of uB-algebras. An algebra

A is spectrally bounded (sb) if for each x e A its spectrum sp/4(x)in A is a

bounded subset of the complex plane. Throughout, r(x) (= rA(x)) denotes

the spectral radius of x in A.   The bounded part of a uT-algebra A  is the
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subalgebra b(A) = {x e ^4|supQpQ(x) < oc}. If A is complete, then b(A) is

a uB-algebra with norm ||x||oo = sxxoapa(x) continuously embedded in A [3].

For a commutative lmc algebra A, let o(A) denote the Gelfand space of A

consisting of all nonzero continuous multiplicative linear functionals with the

relative weak* topology. A is semisimple if, for any x e A, fi(x) — 0 for

all fi e o(A) implies that x = 0. As in Banach algebras [8, Chapter 7], A is

regular if given a closed subset F c o(A) and / e a (A), fi fi F , there exists

an x e A such that x\f = 0 and x(fi) ^ 0, x: a(A) —► C, x(g) = g(x), is
the Gelfand transform of x .

2. Main results

Theorem 2.1. Let A be an sb algebra, B a uT-algebra, and </>: A —> B a ho-

momorphism. Then <f>(A) c b(B), and, for each continuous uniform seminorm

q on B, q(4>(x)) < r(x) fior all x in A . In particular, if A is a locally convex

Q-algebra, then </> is continuous.

Theorem 2.2. Let A be an sb, regular, complete, uT-algebra and B be an lmc

algebra. Let tp: A -* B be a one-to-one homomorphism such that Im(<z>) is a

semisimple Q-algebra. Then <z>-1|im(<£) is continuous.

Note that, in the theorems, in the absence of metrizability and completeness,

automatic continuity is guaranteed by a ring theoretic condition of topological

nature. In §3 we discuss several examples exhibiting that various assumptions

in the theorems cannot be omitted.

Proof of Theorem 2.1. We can assume B to be complete since it is easy to verify

that the completion of a uT-algebra is a uT-algebra. Also, the topology of B

is determined by the collection S(B) of all continuous uniform seminorms on

B; thus, B = limq€S(B) Bq , where Bq is the uB-algebra obtained by completing

B/Nq (Nq = {x e B\q(x) = 0}) in the norm ||y,||, = q(y), yq = y + Nq .
Then b(B) — {ye B\spB(y) is bounded}. Indeed, B being complete and
lmc, [9, Corollary 5.3] implies that, for each y e B, spB(y) = U(sPb CMI? e

S(B)} and rB(y) = supg6s(B)limsup„^00tf(;O1/" = supqeS{B)q(y) in view of

q(y2) = q(y)2. Now let x € A, q e S(B). Since sp^(x) D spB(<j)(x)), it

follows that q((f>(x)) = \\(<p(x))q\\q = rBq(<p(x)q) < rB((p(x)) < rA(x) < oc;

moreover, <f>(A) c b(B). Further, assume A to be a Q-algebra (so that it is

sb by [9, Lemma E3]) which is also locally convex. By [9, Proposition 13.5]

s(A) = {x e A\r(x) < 1} is a neighbourhood of 0; hence there exists a convex,

balanced, open set U c A such that 0 e U c s(A). Let p = pu be the
Minkowski functional of U in A; it is a continuous seminorm. As in the

proof of [10, Theorem 1.36], U = {x e A\p(x) < 1}. For x e A, 8 > 0,
p(y) < 1, where y = x/(p(x) + S). Thus y e s(A); hence, rA(x) < p(x) + S .

This gives q((j>(x)) < rA(x) = supq(zS{B) q(cp(x)) < p(x), showing that cb is

continuous.

Remark. Since q e S(B) is arbitrary, it follows that

!l0(^c)||oc =  sup q(<p(x)) < p(x)       (xeA),
qeS(B)

giving the stronger assertion that 0: A —> (b(B), || • H^) is continuous.
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Proof of Theorem 2.2. It follows by the description of the bounded part of a

uT-algebra in the first proof that A = b(A) as sets. We can assume, without loss

of generality, that A possesses an identity 1; thus, o(A) is a compact Hausdorff

space. As Im(er) is a (commutative) lmc Q-algebra, the inversion is continuous;

hence, [7, Proposition 1.6, p. 168] implies that rr(Im(<z>)) = c-(Im(cT)) is also a

compact Hausdorff space. Let C = Im(<z>). Now the adjoint map tj)*: a(C) -»

a (A), 4>*(f) = f ° <f> is continuous; hence, F = tj>*(a(C)) is closed in a (A).

In fact, <p* is surjective because if not, regularity of A implies that there exists

an x e A, x/0, such that x\F = 0; thus, tj>*(f)(x) = f(tf>(x)) = 0 for all
/ e o(C). Since C is semisimple, 4>(x) = 0, contradicting that <f> is one-to-

one. Thus F = a (A). Then by [9, Corollary 5.6], for any x e A, sp/4(x) =

{f(x)\f e o(A)} = {f((f>(x))\f e o(C)} = spcO(x)). Now C being an lmc
Q-algebra, there exists a continuous seminorm q on C such that rc(cp(x)) <

q(tp(x)) (x e A) [9, Proposition 13.5]. Then for any p e S(A), x e A,

p(x) = ||xp||p = rAp(x) < rA(x) = rc(<t>(x)) < q(<p(x)), showing that 0_1|(imW)

is Continuous.

Corollary 2.3. Let A be a unital locally convex Q-algebra. Then every uniform

seminorm p on A is continuous. Further, if the inversion in A is continuous,

then p(x) < r(x) for all x.

Proof. The quotient map <p: A —► (Ap, \\ • \\p), tf)(x) = xp , is continuous by
Theorem 2.1, and there exists a continuous seminorm q on A such that,

for all x e A, p(x) = \\<j>(x)\\p < a(x). In fact, p(x) = lim„/?(x2")1/2" <

suplimsup„^00a(x2")1^2" = B(x) [1, Theorem 3.12], where P(x) is the radius

of boundedness in the sense of [1], but fi(x) < r(x) again by [1, Theorem

3.12]. (The assumption that the inversion map on A is continuous is required

[1, Theorem 4.1] for the equality of the spectral radii for the usual spectrum

considered here and the spectrum considered in [1].)

Corollary 2.4. For a compact Hausdorff space X, let C(X) denote the Banach

algebra with supnorm \\f\\oo = sup{|/(x)| |x € X} ofi all continuous complex-

valued functions on X. Let \ • \ be any norm on C(X) such that (C(X), \ • \)

is a normed linear space (not necessarily complete) satisfying \f2\ = |/|2 for all

fi in C(X). Then | • | = || • IU .

Proof. By [3], |-| satisfies \fg\ < \f\\g\ forall /, g; hence, (C(X),\-\) is a
normed algebra with the result || • ||oo < I • I [11, Theorem 1.2.4]. By Corollary

2.3, H < r(«) = || • Hoc •

Corollary 2.5. Let A be an sb algebra, B be a complete barreled uT-algebra, and

tj>: A —> B be a surjective homomorphism. Then the topology of B is normable.

Proof. By Theorem 2.1, B = cb(A) - b(B), and the conclusion follows by
applying the open mapping theorem to the identity map /': (b(B), \\ • W^) -» B .

3. Remarks

(3.1) In Theorem 2.1 the assumption that A is a Q-algebra cannot be omit-

ted, even if A is a complete uT-algebra and B is a uB-algebra. Consider

the complete uT-algebra (C[0, 1], t) with the topology t of uniform con-

vergence on all countable compact subsets of [0, 1 ]. It is not a Q-algebra,

because the topology of a complete uT-algebra, which is a Q-algebra, has to
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be normable [3, Theorem 2], and t fails to be normable. The identity map

i: (C[0, 1], t) —► (C[0, 1], || • ||oo) is not continuous.

(3.2) In Corollary 2.5 the assumption that B he barreled cannot be omitted.

This is seen by considering the identity map i: (C[0, 1], ||-||oo) -* (C[0, 1], t) ,

where t is as in (3.1).

(3.3) In Theorem 2.1 the hypothesis that B is a uT-algebra cannot be omitted,

even if A is a Q-normed algebra and B is a complete metrizable lmc Q-

algebra. Take A = (C°°[0, 1], || • ||oo), the algebra of all C°°-functions on

[0, 1] with the supnorm || • ||oo. For any fi e A, spA(f) = range of /;

hence, rA(f) = WfW^ = limsup^^ ||x2"||^2" = limsup^o,, \\fn\\U>n , so by [2,
Proposition 15], the normed algebra A is a Q-algebra. Let B = (C°°[0, 1], t),

a complete lmc algebra with topology t defined by submultiplicative norms

Pn(f)= ̂\±\£/mY,
0<A<1  [  o k-

it is a Q-algebra [9, Appendix E]. The identity map i: A —> B is not continuous.

(3.4) The topological algebra B in (3.3) is not a uT-algebra, for otherwise, B

being a Q-algebra, the topology t has to be normable [3, Theorem 2], with the

result that B has to be a Banach algebra. On the other hand, the algebra B fails

to be a Banach algebra under any norm, as a semisimple commutative Banach

algebra is known not to admit a nonzero derivation. Thus, the discontinuity

of the identity map i: A -> B in (3.3) also shows that in Corollary 2.5 the

assumption that B is a uT-algebra cannot be omitted.

(3.5) In Corollary 2.4 the square property |/2| = |/|2 (/ e C(X)) of the
norm | • | cannot be omitted (or weakened to square inequality). By [5], for

an infinite compact Hausdorff space X, there exists a norm on C(X), distinct
from || • ||oo and not equivalent to it, making C(X) an incomplete normed

algebra. Also,

w.m{im+W + WqW\,,timX}
defines a norm on C(X), equivalent to || • ||oo but distinct from || • ||oo , making

C(X) a Banach algebra satisfying || • H^ < | • | < 2|| • ||oo [4, Example 7.5,

p. 70] and hence satisfying the square inequality \\f\2 < \f2\ < \fi\2 for all

fieC(X).

(3.6) Corollary 2.4 does not hold for uniformly closed nonselfadjoint subal-

gebras of C(X). On the supnorm disc algebra A(D) of all those continuous

functions on the closed unit disc D in the complex plane that are analytic in

the interior of D, \f\r = sup{|/(z)||0 < \z\ < r}, 0 < r < 1, define uniform

norms distinct from the supnorm || • ||oo , satisfying (- |r < || - ||oo - However, it

follows [3] that if | • | is a uniform norm on a uB-algebra (A, || • ||) such that

either (A, || • ||) is regular or (A, | • |) is a Q-algebra, then | • | - II * lloo •

(3.7) In Theorem 2.2 the hypothesis that A is regular cannot be omitted, even

if A and B are uB-algebras. Take A to be the supnorm disc algebra A(D)

as in (3.6). Let 0 < r < 1, T = {z e D\ \z\ = r}, B = (C(T), || • IU), and
<z>: A —> B be tj>(f) = f\r. The algebra A is not regular [8, §7.2, p. 167], and
4>~x fails to be continuous.
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(3.8) Let us note that Theorems 2.1 and 2.2 are uT-algebra analogues of a

couple of automatic continuity results for *-homomorphisms between LMC*-

algebras proved in [6].
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