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ON A BANACH ALGEBRA IS SUBMULTIPLICATIVE
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(Communicated by Palle E. T. Jorgensen)

Abstract. The result stated in the title is proved in a Banach algebra and is

used to discuss (i) commutativity criteria in normed algebras, (ii) uniqueness of

the uniform norm in uniform Banach algebras, and (iii) existence of continuous

multiplicative linear functionals on topological algebras together with a simple

reduction of the Michael problem in Frechet algebras. Submultiplicativity does

not imply subadditivity in the presence of the square property.

Theorem. Let p be a seminorm with the square property on a Banach algebra

A. Then the following hold.

(1) p is continuous on A.

(2) Np = {x £ A\p(x) = 0} is a closed two-sided ideal in A .
(3) p(xy) < p(x)p(y) for all x, y in A .
(4) The quotient algebra A/Np is commutative.

The above theorem answers, in the particular case of Banach algebras, a

problem posed in [3]. A seminorm on A is a function p: A —> [0, oo) satisfying

(i) p(x + y) <p(x) +p(y) for all x,y and (ii) p(Xx) = \X\p(x) for all x,for

all scalars X. It satisfies the square property [3] if (iii) p(x2) = p(x)2 for all

x . It is submultiplicative if (iv) p(xy) < p(x)p(y) for all x, y. We shall use

[3, Theorem 1], viz. a seminorm with the square property on a commutative
linear associative algebra is automatically submultiplicative.

Proof of the theorem. For x, y in A , (x + y)2 = x2 + y2 + xy + yx implies

that

p(xy + yx) < p((x + y)2) + p(x2) + p(y2)

= (p(x + y))2 + p(x)2 + p(y)2

< (P(x) + P(y))2 + P(x)2 + p(y)2

= 2[p(x)2+p(y)2 + p(x)p(y)].

Let x £ Np , y £ A . Then p(xy +yx) < 2p(y)2. But Np being a subspace of
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A, nx £ Np for all «eN, with the result

2       ,
p(xy +yx) < —p(y)  -* 0   as«->oo.

Thus x £ Np , y £ A implies xy + yx £ Np .

Again for arbitrary x, y in A , consider the identity (xy-yx)2+(xy+yx)2 =

2[x(yxy) + (yxy)x].
Then

p(xy - yx)2 = p((xy - yx)2)

< P{(xy - yx)2 + (xy + yx)2} + p((xy + yx)2)

= 2p[x(yxy) + (yxy)x] +p(xy + yx)2.

By the above, if x £ Np , y £ A, then x(yxy) + (yxy)x £ Np , xy + yx £ Np ;
hence xy - yx £ Np by this inequality. Thus xy £ Np , yx £ Np , and Np is

an ideal.

Now \xp\ - p(x) (xp = x + Np) defines a norm on the quotient algebra Ap =

A/Np . Let x £ A , u = xp , and let Af be a maximal commutative subalgebra

of A/Np containing u. Then by [3, Theorem 1], | • | is submultiplicative on

M and (A7, | • |) is a normed algebra with | • | satisfying the square property.

Let spjt(-) and rjf (•) denote, respectively, the spectrum and the spectral radius

in an algebra K. Then \u\ - limsup„ \ur\xl2" = limsup„ \un\xl" < rM(u) [4,

Theorem 5.7, p. 22]. By the maximality of M, [4, Theorem 16.4, p. 76] gives
spM(u) — soA (u), hence rM(u) = rAp(u). Also, in view of the homomorphism

n: A -> Ap , %(z) = zp , sr>Ap(u) c snA(x). It follows that p(x) = \u\ < rA(x) <

||a:|| for any x £ A , || • || denoting the Banach algebra norm on A . Thus p

is continuous and Np is closed. Also by [2, Lemma 2, p. 46], p(xy - yx) = 0

for all x, v in A, with the result that Ap is commutative. Hence, again by
[3, Theorem 1], | • | is submultiplicative on Ap , which implies that p(xy) <

p(x)p(y) for all x,y in A. This completes the proof.

By passing to the completion, the following can be verified.

Corollary. Let p be a continuous seminorm with the square property on a normed

algebra A. Then Np is a two-sided ideal in A; p(xy) <p(x)p(y) for all x, y

in A;  and A/Np is commutative.

Remarks. (1) The above result is a uniform seminorm analogue of a result

of Sebestyen [10] that a seminorm p on any *-algebra A (not necessarily a

Banach algebra) satisfying p(x*x) = p(x)2 for all x is submultiplicative and

p(x*) = p(x) holds for all x. Does the above theorem hold for any linear

associative algebra A ?

(2) The property (iv) does not imply (i) in the presence of (ii) and (iii).

Take A — A(D), the disc algebra with pointwise operations consisting of all

continuous functions on the closed unit disc D that are holomorphic in the

interior of D. A is a Banach "-algebra with supnorm

||/||oo = «Up{|/(2)||z€Z)},

and the involution /—►/*, f*(z) = f(z). The involution is not hermitian

[2, p. 114]. Let s(f) = r(f*f)xl2. Then s(-) satisfies (ii), (iii), (iv) and the
C*-property s(f*f)-s(f)2 for all /. However, s(-) does not satisfy (i); for
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otherwise, s(-) would become a C*-seminorm, with the result, by [4, Lemma

39.2, p. 214], that s(-) = m(-), the greatest C*-seminorm, forcing A to be

hermitian [4, Theorem 41.11, p. 227].
(3) It follows from the above theorem that if A is a Banach algebra in which

the numerical radius v(-) satisfies (iii), then A is commutative and r(-) - v(-).

(4) Let (A, || • ||) be a normed algebra. Then for all x, r'(x) = Urn \\xn\\x^n <

inf Hjc"!!1/" < ||x|| [4, Proposition 2.8, p. 11] and r'(x2) = r'(x)2. If r'(-)
satisfies (i) then r'(-) satisfies (iv) and A/Nr< is commutative. This is a normed

algebra version of a part of [2, Theorem 2, p. 48].

(5) Let A = C(X), the Banach algebra with supnorm || • H^ of all continuous

functions on a compact Hausdorff space X. Let | ■ | be a norm on C(X) with

square property. Then | • | is submultiplicative and | • | < || • ||oo • But by [8,

Theorem 1.2.4, p. 5], || • |l°o < I • I • Thus || • ||oo is the only norm with square

property on C(X) making it a normed linear space; and by [3], this does not

hold for a proper uniformly closed nonselfadjoint subalgebra of C(X). Note

that

lfl.^{m+M + lMzM|,,,l.x}

defines a norm on C(X), distinct from H-Hoo , such that (C(X), |-|) is a Banach

algebra and |-| satisfies i|/|2 < \f\ < \f\2 for all / (since, ||-||oo < H < 2||-||oo

[5, p. 71]). This suggests: Let ||-|| be a norm on C(X) such that (a) (C(X), ||-||)

is a normed linear space (not necessarily complete 'a priori'), and (b) there exist

kx > 0, k2 > 0 such that kx\\f\\2 < \\f2\\ < k2\\f\\2 (f £ C(X)). Is || • ||
equivalent to || • ||oo ?

(6) A uniform seminorm on an algebra A is a seminorm satisfying all the

properties (i)-(iv). Assume A to be a Frechet commutative locally w-convex

algebra [7]. Continuity of uniform seminorms on A is tied up with the Michael

problem [7, p. 53], viz. is every multiplicative linear functional on A continu-

ous? A simple argument with closed graph theorem shows that there exists a dis-

continuous multiplicative linear functional on A iff there exists a discontinuous

uniform seminorm on A . Further, by [9], the topology on A can be assumed

to be determined by the collection of all continuous uniform seminorms on A .

Note that the uniform algebra (C(X), || • ||oo) is known to admit a discontin-

uous submultiplicative norm [6]. Thus in this version of the Michael problem,

'discontinuous uniform seminorm' cannot be replaced by 'discontinuous sub-

multiplicative seminorm.' On the other hand, a unital commutative topological

algebra B may not admit a nonzero multiplicative linear functional, even if B

is complete, metrizable, and locally convex [1]. For topological algebra B, it

is easily seen that B admits a nonzero continuous multiplicative linear func-

tional iff B admits a nonzero continuous uniform seminorm. Further, if B

is unital and commutative, this happens iff B admits a nonzero continuous

submultiplicative seminorm.

Acknowledgment

In the first draft of the paper, the main theorem was claimed to hold for any

linear associative algebra. There was a gap in the proof. This was pointed out

by the referee. The author expresses his sincere thanks to the referee for this

contribution, and for several other suggestions.



438 S. J. BHATT

References

1. R. Arens, The space Lw and convex topological rings, Bull. Amer. Math. Soc. 52 (1946),

931-935.

2. B. Aupetit, Properetes spectrales des algebres de Banach, Lecture Notes in Math. vol. 735,

Springer-Verlag, Berlin, Heidelberg, and New York, 1979.

3. S. J. Bhatt and D. J. Karia, Uniqueness of the uniform norm with an application to topological

algebras, Proc. Amer. Math Soc. 116 (1992), 499-504.

4. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, Heidel-

berg, and New York, 1973.

5. _, Numerical ranges of operators on normed spaces and of elements of normed algebras,

London Math. Soc. Lecture Note Ser., vol. 2, London Math. Soc, Cambridge, 1971.

6. H. G. Dales, A discontinuous homomorphism from  C(X), Amer. J. Math. 101 (1979),

647-734.

7. E. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc,

vol. 11, Amer. Math. Soc, Providence, RI, 1952.

8. S. Sakai, C-and W*-algebras, Springer-Verlag, Berlin, Heidelberg, and New York, 1971.

9. M. Schottenloher, Michael problem and algebras of holomorphic functions, Ark. Math. 37

(1981), 241-247.

10. Z. Sebestyen, Every C -seminorm is automatically submultiplicative, Period. Math Hunger.

10(1979), 1-8.

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar - 388120,

Gujarat, India


