BANACH ALGEBRAS IN WHICH EVERY ELEMENT IS A TOPOLOGICAL ZERO DIVISOR

S. J. BHATT AND H. V. DEDANIA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Every element of a complex Banach algebra $(A, \|\cdot\|)$ is a topological divisor of zero, if at least one of the following holds: (i) A is infinite dimensional and admits an orthogonal basis, (ii) A is a nonunital uniform Banach algebra in which the Silov boundary ∂A coincides with the Gelfand space $\Delta(A)$; and (iii) A is a nonunital hermitian Banach *-algebra with continuous involution. Several algebras of analysis have this property. Examples are discussed to show that (a) neither hermiticity nor $\partial A = \Delta(A)$ can be omitted, and that (b) in case (ii), $\partial A = \Delta(A)$ is not a necessary condition.

1

Theorem. Every element of a complex Banach algebra $(A, \|\cdot\|)$ is a topological divisor of zero (TDZ), if at least one of the following holds:

(i) A is infinite dimensional and admits an orthogonal basis.

(ii) A is a nonunital uniform Banach algebra (uB-algebra) in which the Silov boundary ∂A coincides with the carrier space (the Gelfand space) $\Delta(A)$ (in particular, A is a nonunital regular uB-algebra).

(iii) A is a nonunital hermitian Banach*-algebra with continuous involution (in particular, A is a nonunital C^* -algebra).

An element x in a Banach algebra A is a TDZ if there exists a sequence (x_n) , $||x_n|| = 1$, for n = 1, 2, ..., in A such that either $x_n x \to 0$ or $xx_n \to 0$. An orthogonal basis [1, 3] in A is a sequence (e_n) in A such that: (i) each $x \in A$ can be expressed as $x = \sum \alpha_n e_n$, α_n 's are scalars; and (ii) $e_m e_n = \delta_{mn} e_n$, δ_{mn} being the Kronecker delta. If (e_n) is an orthogonal basis in A, then (e_n) is a Schauder basis [1] and A is semisimple, commutative, and nonunital [3]. A is a uB-algebra if $||x^2|| = ||x||^2$ ($x \in A$). Such a Banach algebra A is commutative and semisimple [2]. A hermitian Banach *-algebra [2, 5] is a Banach *-algebra in which each $h = h^*$ has real spectrum. The above theorem supplements the well-known result [5, Theorem 2.3.5, p. 57] that every element in a radical Banach algebra is a (two-sided) TDZ.

©1995 American Mathematical Society 0002-9939/95 \$1.00 + \$.25 per page

Received by the editors May 21, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46H05, 46J05, 46K05.

Key words and phrases. Topological divisor of zero, hermitian Banach *-algebra, orthogonal basis, uniform Banach algebra.

2

Proof of the Theorem. (i) Let (e_n) be an orthogonal basis in A. Let $x \in A$, $x = \sum \alpha_n e_n$. Since $e_m e_n = \delta_{mn} e_n$ for all m, n, it follows that for any k, $||e_k|| = ||e_k^2|| \le ||e_k||^2$, and hence $||e_k|| \ge 1$; and $xe_k = (\sum \alpha_n e_n)e_k = \sum \alpha_n e_n e_k = \alpha_k e_k \to 0$ as $k \to \infty$. Letting $f_k = e_k/||e_k||$, $||f_k|| = 1$, and $||xf_k|| \le ||xe_k|| \to 0$.

(ii) Let $x \in A$, $\varepsilon > 0$. Since A is nonunital, $\Delta(A)$ is a noncompact locally compact Hausdorff space and the Gelfand transform \hat{x} of x vanishes at infinity. Hence, there exists a complex homomorphism $f \in \Delta(A)$ such that $|f(x)| < \varepsilon/2$. Let $U = \{g \in \Delta(A) : |g(x) - f(x)| < \varepsilon/2\}$, a neighborhood of f in the Gelfand topology on $\Delta(A)$. For $g \in U$, $|g(x)| \le |g(x) - f(x)| + |f(x)| < \varepsilon$. Also, since A is a uB-algebra, for any $y \in A$, $\|y\| = \|\hat{y}\|_{\infty} = \sup\{|g(y)| : g \in \Delta(A)\}$. Since $f \in \Delta(A) = \partial A$, [4, Corollary 9.2.2, p. 225] implies that there exists $y \in A$ such that $\|y\| = \|\hat{y}\|_{\infty} \le \varepsilon$. Hence there exists a sequence $(y_n), \|y_n\| = 1$, in A, such that $xy_n \to 0$, and the proof of (ii) is complete. In a regular commutative Banach algebra $A, \partial A = \Delta(A)$ [4, Theorem 9.2.3, p. 227].

(iii) We can take $||x^*|| = ||x||$ for all $x \in A$. Let $h \in A$, $h = h^*$. Then, for any $n \in \mathbb{N}$, *inh* is quasiregular. Hence [5, Corollary 1.5.10, p. 25] implies that h is a TDZ in A. It follows from this that for any $x \in A$, x^*x is a TDZ. We may assume that x^*x is a left TDZ. Hence by [5, Lemma 1.5.1 (ii), p. 20], either x^* or x is a left TDZ. By continuity of the involution, it follows that x is a TDZ.

3

Examples. (3.1) For the unit circle T, the Lebesgue space $L^p(T)$, $1 , is a convolution Banach algebra with orthogonal basis <math>e_n(z) = z^n$ $(n \in \mathbb{N})$ [3]. This is because, for each $f \in L^p(T)$, the Fourier series of f converges to f in the norm of $L^p(T)$. The Banach sequence algebras c_0 , l^p $(1 \le p < \infty)$, with pointwise multiplication, have $e_n = (\delta_{nm})_{m=1}^{\infty}$ as orthogonal basis. The Hardy space $H^p(U)$ (1 on an open unit disc <math>U is a Banach algebra with Hadamard product

$$f * g(z) = \frac{1}{2\pi i} \int_{|u|=r} f(u)g(zu^{-1})u^{-1} du, \qquad |z| < r < 1, \ z \in U.$$

It has orthogonal basis $e_n(z) = z^n$ $(n \in \mathbb{N})$ [3]. In all these algebras, every element is TDZ.

(3.2) For a locally compact nondiscrete abelian group G, the convolution Banach algebra $L^1(G)$ is a nonunital hermitian Banach *-algebra with involution $f^*(t) = \overline{f(-t)}$. Thus every element of $L^1(G)$ is TDZ. For G = T (the unit circle), the subspaces C(T) (continuous functions) and $C^m(T)$ (C^m -functions), $1 \le m < \infty$, of $L^1(T)$ are convolution Banach algebras with respective norms

$$||f||_{\infty} = \sup\{|f(z)|: z \in T\}$$
 and $||f||_{m} = \sup_{z \in T} \sum_{k=0}^{m} \frac{|f^{k}(z)|}{k!}$

In fact, C(T) and each $C^m(T)$ are ideals in $L^1(T)$; hence, they are spectrally

invariant in $L^1(T)$. Thus C(T) and $C^m(T)$ are hermitian algebras and each of their elements is TDZ.

(3.3) Let A be a normed algebra with completion \overline{A} . If every element of A is TDZ, then so is in \overline{A} , because TDZs in A form a closed set. Let \mathscr{F} be the *-algebra of all finite rank operators on an infinite-dimensional Hilbert space H. By [5, p. 279], every element of \mathscr{F} is a zero divisor in \mathscr{F} . Hence it follows that in the Banach algebras $(C^p(H), \|\cdot\|_p), 1 \le p < \infty$, of operators of Schatten class C^p , every element is TDZ.

(3.4) In the above Theorem, neither the condition $\partial A = \Delta(A)$ in (ii) nor the hermiticity condition in (iii) can be omitted. Let A = A(D), the supnorm disc algebra of the closed unit disc D, viz., the algebra of all continuous functions on D that are analytic in the interior of D, with the involution $f^*(z) = \overline{f(\overline{z})}$ $(f \in A)$. Let $I = \{f \in A : f(0) = 0\}$, a closed ideal in A. Note that I (as well as A(D)) is not hermitian and $\partial I \neq \Delta(I)$. The function f(z) = z, $z \in D$, in I is not TDZ in I.

(3.5) There exists a uB-algebra A in which every element is TDZ but $\partial A \neq \Delta(A)$. For 1 < r < R, define $U_R = \{z \in C : |z| < R\}$, \overline{U}_R = the closure of U_R , $A = \{f \in C(\overline{U}_R) : f \text{ is analytic in open unit disc}\}$, and $B = \{f \in A : f(z) = 0, r \leq |z| \leq R\}$. Then B is a nonunital uB-algebra in which [4, Corollary 9.5.1, p. 246] implies that every element of B is TDZ. But $\partial B = \{z : 1 \leq |z| < r\}$ and $\Delta(B) = \{z : |z| < r\}$.

(3.6) Let T be a bijective bounded linear operator on an infinite-dimensional Hilbert space H. Let $C^*(T)$ = the operator norm closure of polynomials (without constant terms) in T and T^* . It follows from (iii) of the above Theorem that the identity operator belongs to $C^*(T)$.

Acknowledgment

The authors are thankful to M. H. Vasavada for critically reading the manuscript and to A. B. Patel for a discussion pertaining to (3.6). H. V. Dedania is grateful to National Board for Higher Mathematics (India) for a fellowship.

References

- 1. S. J. Bhatt and G. M. Deheri, *Köthe spaces and topological algebras with bases*, Proc. Indian Acad. Sci. Math. Sci. **100** (1990), 259–273.
- 2. F. F. Bonsall and J. Duncan, *Complete normed algebras*, Springer-Verlag, Berlin, Heidelberg, and New York, 1973.
- T. Husain and S. Watson, Topological algebras with orthogonal Schauder bases, Pacific J. Math. 91 (1980), 339-347.
- 4. R. Larsen, Banach algebras, Marcel Dekker, New York, 1973.
- 5. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, NJ, 1960.

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India