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BANACH ALGEBRAS IN WHICH EVERY ELEMENT
IS A TOPOLOGICAL ZERO DIVISOR

S. J. BHATT AND H. V. DEDANIA

(Communicated by Palle E. T. Jorgensen)

Abstract. Every element of a complex Banach algebra (A, || • ||) is a topo-

logical divisor of zero, if at least one of the following holds: (i) A is infinite

dimensional and admits an orthogonal basis, (ii) A is a nonunital uniform Ba-

nach algebra in which the Silov boundary dA coincides with the Gelfand space

A(A) ; and (iii) A is a nonunital hermitian Banach *-algebra with continuous

involution. Several algebras of analysis have this property. Examples are dis-

cussed to show that (a) neither hermiticity nor dA = A(A) can be omitted, and

that (b) in case (ii), dA = &(A) is not a necessary condition.
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Theorem. Every element of a complex Banach algebra (A, \\-\\) is a topological

divisor of zero (TDZ), if at least one of the following holds:
(i) A is infinite dimensional and admits an orthogonal basis.
(ii) A is a nonunital uniform Banach algebra (uB-algebra) in which the Silov

boundary dA coincides with the carrier space (the Gelfand space) A(A) (in
particular, A is a nonunital regular uB-algebrd).

(iii) A is a nonunital hermitian Banach*-algebra with continuous involution

(in particular, A is a nonunital C*-algebra).

An element x in a Banach algebra A is a TDZ if there exists a sequence

(xn), \\Xn\\ = 1, for « = 1, 2, ... , in A such that either x„x -» 0 or xxn —► 0.

An orthogonal basis [1, 3] in A is a sequence (e„) in A such that: (i) each
x £ A can be expressed as x = £ an^n , an's are scalars; and (ii) emen = ôm„en ,

öm„ being the Kronecker delta. If (en) is an orthogonal basis in A, then (e„)

is a Schauder basis [1] and A is semisimple, commutative, and nonunital [3].

A is a uB-algebra if ||.x2|| = ||x||2 (x £ A). Such a Banach algebra A is

commutative and semisimple [2]. A hermitian Banach *-algebra [2, 5] is a

Banach *-algebra in which each h = «* has real spectrum. The above theorem
supplements the well-known result [5, Theorem 2.3.5, p. 57] that every element

in a radical Banach algebra is a (two-sided) TDZ.
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Proof of the Theorem, (i) Let (e„) be an orthogonal basis in A. Let x £

A, x = £ an^n ■ Since eme„ - 6mne„ for all m, «, it follows that for any

£> Ik/til = 11**11 < lkifcll2> and hence \\ek\\ > 1; and xek = (Y,a„e„)ek =
Ea„ev?ifc = <**<?* -<• 0 as k — oo. Letting /*. = ffc/||^||, ||À|| = 1, and
||*/*||<||xe*||-0.

(ii) Let x £ A, e > 0. Since A is nonunital, A(^) is a noncompact lo-

cally compact Hausdorff space and the Gelfand transform x of x vanishes

at infinity. Hence, there exists a complex homomorphism / e A(A) such

that \f(x)\ < e/2. Let U = {g £ A(A): \g(x) - f(x)\ < e/2}, a neigh-
borhood of / in the Gelfand topology on A(A). For g e U, \g(x)\ <
\g(x) - f(x)\ + \f(x)\ < e. Also, since A is a uB-algebra, for any y £ A,

\\y\\ = ILPIU = sw{\g(y)\: g £ A(A)}. Since / e A(A) = dA, [4, Corollary
9.2.2, p. 225] implies that there exists y £ A such that ||y|| = ||y||oo = 1 and,

for g £ A(A)\U, \g(y)\ < e/\\x\\. It follows that \\xy\\ = \\xy\\oc < e. Hence
there exists a sequence (y„), \\y„ || = 1, in A, such that xyn -* 0, and the proof
of (ii) is complete. In a regular commutative Banach algebra A, dA — A(A)

[4, Theorem 9.2.3, p. 227].
(iii) We can take ||x*|| = \\x\\ for all x £ A . Let « € A , h — h*. Then, for

any « e N, inh is quasiregular. Hence [5, Corollary 1.5.10, p. 25] implies that
« is a TDZ in A. It follows from this that for any x £ A, x*x is a TDZ.
We may assume that x*x is a left TDZ. Hence by [5, Lemma 1.5.1 (ii), p. 20],

either x* or x is a left TDZ. By continuity of the involution, it follows that
x is a TDZ.

3

Examples. (3.1) For the unit circle T, the Lebesgue space Lp(T), 1 < p < oo ,

is a convolution Banach algebra with orthogonal basis e„(z) = z" (n £ N) [3].

This is because, for each / e LP(T), the Fourier series of / converges to / in
the norm of LP(T). The Banach sequence algebras Co , lp (1 < P < oo), with

pointwise multiplication, have e„ = (Snm)^=x as orthogonal basis. The Hardy

space HP(U) (1 < p < oo) on an open unit disc U is a Banach algebra with
Hadamard product

f*g(z) = TT-.f     f(u)g(zu~l)u~ldu,        \z\ <r< 1, ze U.
2m JM=r

It has orthogonal basis en(z) - zn (n £ N) [3]. In all these algebras, every
element is TDZ.

(3.2) For a locally compact nondiscrete abelian group G, the convolution Ba-

nach algebra LX(G) is a nonunital hermitian Banach *-algebra with involution

f*(t) = f(-t). Thus every element of Ll(G) is TDZ. For G = T (the unit cir-
cle), the subspaces C(T) (continuous functions) and Cm(T) (Cm-functions),

1 < m < oo, of Ll(T) are convolution Banach algebras with respective norms

ll/Hoo = sup{|/(z)|:zer}   and   ||/||M = sup¿ ^^ .

In fact, C(T) and each Cm(T) are ideals in Ll(T) ; hence, they are spectrally
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invariant in Ll(T). Thus C(T) and Cm(T) are hermitian algebras and each

of their elements is TDZ.
(3.3) Let A be a normed algebra with completion A . If every element of

A is TDZ, then so is in A, because TDZs in A form a closed set. Let y
be the *-algebra of all finite rank operators on an infinite-dimensional Hilbert

space H. By [5, p. 279], every element of y is a zero divisor in y. Hence it

follows that in the Banach algebras (C(H), || • \\p), 1 < p < oo, of operators
of Schatten class C" , every element is TDZ.

(3.4) In the above Theorem, neither the condition dA = A(A) in (ii) nor the

hermiticity condition in (iii) can be omitted. Let A = A(D), the supnorm disc

algebra of the closed unit disc D, viz., the algebra of all continuous functions

on D that are analytic in the interior of D, with the involution f*(z) - f(z)

(f £A). Let / = {/ £ A : f(0) = 0}, a closed ideal in A . Note that / (as well
as A(D)) is not hermitian and dl ^ A(I). The function f(z) = z, z e D, in

/ is not TDZ in /.
(3.5) There exists a uB-algebra A in which every element is TDZ but dA ^

A(A) .For 1_< r < R, define UR = {z £ C: \z\ < R} , UR= the closure of UR ,

A = {/ £ C(UR) : f is analytic in open unit disc}, and B = {/ £ A : f(z) = 0,
r < \z\ < R}. Then B is a nonunital uB-algebra in which [4, Corollary 9.5.1,

p. 246] implies that every element of B is TDZ. But dB = {z: 1 < \z\ < r}
and A(B) = {z: \z\ < r}.

(3.6) Let T be a bijective bounded linear operator on an infinite-dimensional

Hilbert space H. Let C*(T) = the operator norm closure of polynomials (with-

out constant terms) in T and T*. It follows from (iii) of the above Theorem

that the identity operator belongs to C*(T).
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