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Abstract. Given an m-tempered strongly continuous action α of R by contin-
uous ∗-automorphisms of a Frechet ∗-algebra A, it is shown that the enveloping
σ -C∗-algebra E(S(R, A∞, α)) of the smooth Schwartz crossed product S(R, A∞, α) of
the Frechet algebra A∞ of C∞-elements of A is isomorphic to the σ -C∗-crossed product
C∗(R, E(A), α) of the enveloping σ -C∗-algebra E(A) of A by the induced action. When
A is a hermitian Q-algebra, one gets K-theory isomorphism RK∗(S(R, A∞, α)) =
K∗(C∗(R, E(A), α) for the representable K-theory of Frechet algebras. An applica-
tion to the differential structure of a C∗-algebra defined by densely defined differential
seminorms is given.
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1. Introduction

Given a strongly continuous action α of R by continuous ∗-automorphisms of a Frechet
∗-algebra A, several crossed product Frechet algebras can be constructed [11,14]. They
include the smooth Schwartz crossed product S(R, A, α), the L1-crossed products
L1(R, A, α) and L1

|·|(R, A, α), and the σ -C∗-crossed product C∗(R, A, α). Let E(A)

denote the enveloping σ -C∗-algebra of A [1,6]; and (A∞, τ ) denote the Frechet ∗-algebra
consisting of all C∞-elements of A with the C∞-topology τ ([14], Appendix I). The fol-
lowing theorem shows that for a smooth action, the eveloping algebra of smooth crossed
product is the continuous crossed product of the enveloping algebra.

Theorem 1. Let α be an m-tempered strongly continuous action of R by continuous
∗-automorphisms of a Frechet ∗-algebra A. Let A admit a bounded approximate identity
which is contained in A∞ and which is a bounded approximate identity for the Frechet
algebra A∞. Then E(S(R, A∞, α)) ∼= E(L1

|·|(R, A∞, α)) ∼= C∗(R, E(A), α). Further,

if α is isometric, then E(L1(R, A, α)) ∼= C∗(R, E(A), α).

Notice that neither L1(R, A, α) nor S(R, A∞, α) need be a subalgebra of C∗(R, E(A),

α). A particular case of Theorem 1 when A is a dense subalgebra of C∗-algebra has
been treated in [2]. Let RK∗ (respectively K∗) denote the representable K-theory functor
(respectively K-theory functor) on Frechet algebras [10]. We have the following isomor-
phism of K-theory, obtained without direct appeal to spectral invariance.
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Theorem 2. Let A be as in the statement of Theorem 1. Assume that A is hermitian and
a Q-algebra. Then RK∗(S(R, A∞, α) ∼= K∗(C∗(R, E(A), α)). Further if the action α is
isometric on A, then RK∗(L1(R, A, α)) ∼= K∗(C∗(R, E(A), α)).

We apply this to the differential structure of a C∗-algebra. Let α be an action of R on a
C∗-algebra A leaving a dense ∗-subalgebra U invariant. Let T ∼ (Tk)

∞
0 be a differential

∗-seminorm on U in the sense of Blackadar and Cuntz [5] with T0(x) = ‖ · ‖ the C∗-norm
from A. Let T be α-invariant. Let U(k) be the completion of U in the submultiplicative
∗-norm pk(x) = ∑k

i=0 Ti(x). The differential Frechet ∗-algebra defined by T is Uτ =
lim← U(k), the inverse limit of Banach ∗-algebras U(k).

Now consider Ũ to be the α-invariant smooth envelope of U defined to be the completion
of U in the collection of all α-invariant differential ∗-seminorms. Notice that neither Uτ

nor Ũ is a subalgebra of A, though each admits a continuous surjective ∗-homomorphism
onto A induced by the inclusion U → A. There exists actions of R on each of Uτ and Ũ
induced by α. The following is a smooth Frechet analogue of Connes’ analogue of Thom
isomorphism [7]. It supplements an analogues result in [11].

Theorem 3.

(a) RK∗(S(R, U∞τ , α)) = K∗+1(A).
(b) Assume that Ũ is metrizable. Then RK∗(S(R, Ũ, α)) = K∗+1(A).

2. Preliminaries and notations

A Frechet ∗-algebra (A, t) is a complete topological involutive algebra A whose topology
t is defined by a separating sequence {‖ · ‖n: n ∈ N} of seminorms satisfying ‖xy‖n ≤
‖x‖n‖y‖n, ‖x∗‖n = ‖x‖n, ‖x‖n ≤ ‖x‖n+1 for all x, y in A and all n in N. If each
‖ · ‖n satisfies ‖x∗x‖n = ‖x‖2n for all x in A, then A is a σ -C∗-algebra [9]. A is called
a Q-algebra if the set of all quasi-regular elements of A is an open set. For each n in N,
let An be the Hausdorff completion of (A, ‖ · ‖n). There exists norm decreasing surjective
∗-homomorphisms πn: An+1 → An, πn(x + ker ‖ · ‖n+1) = x + ker ‖ · ‖n for all x ∈ A.
Then the sequence

A1
π1←−−−−− A2

π2←−−− A3
π3←−−− · · · πn−1←−−−−− An

πn←−−− An+1 ←− · · ·
is an inverse limit sequence of Banach ∗-algebras and A = lim← An, the inverse limit of

Banach ∗-algebras. Let Rep(A) be the set of all ∗-homomorphisms π : A→ B(Hπ) of A

into the C∗-algebras B(Hπ) of all bounded linear operators on Hilbert spaces Hπ . Let

Repn(A) := {π ∈ Rep(A) : there exists k > 0 such that

‖π(x)‖ ≤ k‖x‖n for all x}.
Then |x|n := sup{‖π(x)‖: π ∈ Repn(A)} defines a C∗-seminorm on A. The star radical
of A is

srad(A) = {x ∈ A : |x|n = 0 for all n in N}.
The enveloping σ -C∗-algebra (E(A), τ ) of A is the completion of A/srad(A) in the topol-
ogy τ defined by the C∗-seminorms {| · |n: n ∈ N}, |x + srad(A)|n = |x|n for x in A.
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Let α be a strongly continuous action of R by continuous ∗-automorphisms of A. The
C∞-elements of A for the action α are

A∞ := {x ∈ A : t → αt (x) is a C∞-function}.
It is a dense ∗-subalgebra of A which is a Frechet algebra with the topology defined by the
submultiplicative ∗-seminorms

‖x‖k,n = ‖x‖n +
k∑

j=0

(1/j !)‖δj x‖n, n ∈ N, k ∈ Z
+ = N ∪ (0)

where δ is the derivation δ(x) = (d/dt)αt (x)|t=0. By Theorem A.2 of [14], α leaves A∞
invariant and each αt restricted to A∞ gives a continuous ∗-automorphism of the Frechet
algebra A∞. The action α is smooth if A∞ = A.

2.1 Smooth Schwartz crossed product [14]

Assume that α is m-tempered in the sense that for each n ∈ N, there exists a polynomial
Pn such that ‖αr(x)‖n ≤ Pn(r)‖x‖n for all r ∈ R and all x ∈ A. Let S(R) be the Schwartz
space. The completed (projective) tensor product S(R) ⊗ A = S(R, A) consisting of
A-valued Schwartz functions on R is a Frechet algebra with the twisted convolution

(f ∗ g)(r) =
∫

R

f (s)αs(g(r − s))ds

called the smooth Schwartz crossed product by R denoted by S(R, A, α). The algebra
S(R, A∞, α) is a Frechet ∗-algebra with the involution f ∗(r) = αr(f (−r)∗) (Corollary 4.9
of [14]) whose topology τs is defined by the seminorms

‖f ‖n,l,m =
∑

i+j=n

∫
R

(1+ |r|)i‖f (j)(r)‖l,mdr, n ∈ Z
+, l ∈ Z

+, m ∈ N

where

‖f (j)(r)‖l,m =
l∑

k=0

(1/k!)‖δk(αs((d
j /drj )f (r))|s=0‖m

(Theorem 3.1.7 of [14], [11]). These seminorms are submultiplicative if α is isometric on
A in the sense that ‖αr(x)‖n = ‖x‖n for all n ∈ N and all x ∈ A.

2.2 L1-crossed products [11,14]

Let Fd be the set of all functions f : R→ A for which

‖f ‖d,m :=
∫

R

(1+ |r|)d‖f (r)‖mdr <∞

for all m in N. Here
∫

denotes the upper integral. Let Ld be the closure in Fd of the set of
all measurable simple functions f : R→ A in the topology on Fd given by the seminorms
{‖ · ‖d,m: m ∈ N}. Let Nd = ∩{ker ‖ · ‖d,m: m ∈ N}. Then Nd = Nd+1; Ld := Ld/Nd
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is complete in {‖ · ‖d,m: m ∈ N} and Ld+1 → Ld continuously. The space of | · |-rapidly
vanishing L1-functions from R to A is L1

|·|(R, A, α) := ∩{Ld : d ∈ Z
+}, a Frechet algebra

with the topology given by the seminorms {‖ · ‖d,m: m ∈ N, d ∈ Z
+} and with twisted

convolution. Assume that α is isometric on (A, {‖ · ‖n}). Then the completed projective
tensor product L1(R) ⊗ A = L1(R, A) is a Frechet ∗-algebra with twisted convolution
and the involution f → f ∗. This L1-crossed product is denoted by L1(R, A, α). Notice
that α is isometric on (A∞, {‖ · ‖n,m}) also, so that the Frechet ∗- algebra L1(R, A∞, α)

is defined; and then the induced actions (αrf )(s) = αr(f (s)) on L1(R, A∞, α) and on
L1(R, A, α) are also isometric.

2.3 σ -C∗-crossed product

Assume that α is isometric. We define the σ -C∗-crossed product C∗(R, A, α) of A by R

to be the enveloping σ -C∗-algebra E(L1(R, A, α)) of L1(R, A, α).

3. Technical lemmas

Lemma 3.1. Let α be m-tempered on A. Then α extends as a strongly continuous isometric
action of R by continuous ∗-automorphisms of the σ -C∗-algebra E(A).

Proof. By the m-temperedness of α, for each n ∈ N, there exists a polynomial Pn such
that for all x ∈ A and all r ∈ R, ‖αr(x)‖n ≤ Pn(r)‖x‖n. Let r ∈ R. Let x ∈ srad(A).
Then for all π ∈ Rep(A), π(x) = 0, so that σ(αr(x)) = 0 for all σ ∈ Rep(A), hence
αr(x) ∈ srad(A). Thus αr(srad(A)) ⊆ srad(A), and the map

α̃r : A/srad(A)→ A/srad(A), α̃r ([x]) = [αr(x)],

where [x] = x+srad(A), is a well-defined ∗-homomorphism. Further, let α̃r [x] = 0. Then
αr(x) ∈ srad(A). Hence x = α−r (αr(x)) ∈ srad(A), [x] = 0. Thus α̃r is one-to-one,
which is clearly surjective. Now, for each n ∈ N, and for all x ∈ A,

|α̃r [x]|n = |[αr(x)]|n ≤ ‖αr(x)‖n ≤ Pn(r)‖x‖n.
Since, by definition, | · |n is the greatest C∗-seminorm on A/srad(A) satisfying that for
some kn > 0, |[z]|n ≤ kn‖z‖n for all z ∈ A, it follows that |α̃r [x]|n ≤ |[x]|n for all x in
A. Hence

|[x]|n ≤ |α̃−r (α̃r [x]|n = |α̃−r [αr(x)]|n ≤ |[αr(x)]|n = |α̃r [x]|n
showing that |α̃r [x]|n = |[x]|n for all x ∈ A, r ∈ R, n ∈ N. It follows that α̃r extends
as a ∗-automorphism α̃r : E(A) → E(A) satisfying |α̃r (z)|n = |z|n for all z ∈ A and all
n ∈ N; and α̃: R→ Aut∗(E(A)), r → α̃r defines an isometric action of R on E(A). We
verify that α̃ is strongly continuous. Let z ∈ E(A). It is sufficient to prove that the map
f : R→ E(A), f (r) = αr(z) is continuous at r = 0. Choose zn = [xn] in A/srad(A) such
that zn → z in E(A). Fix k ∈ N, ε > 0. Choose n0 in N such that |zn0 − z|k < ε/3 with
zn0 = [xn0 ]. Then for all r ∈ R, |α̃r (z)− α̃r (zn0)|k = |z−zn0 |k < ε/3. Since α is strongly
continuous, there exists a δ > 0 such that |r| < δ implies that ‖αr(x0) − x0‖k < ε/3.
Then for all such r , |α̃r (z)− z|k < ε showing the desired continuity of f . This completes
the proof. �
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Notation. Henceforth we denote the action α̃ by α.
A covariant representation of the Frechet algebra dynamical system (R, A, α) is a triple

(π, U, H) such that

(a) π : A→ B(H) is a ∗-homomorphism;
(b) U : R→ U(H) is a strongly continuous unitary representation of R on H ; and
(c) π(αt (x)) = Utπ(x)U∗t for all x ∈ A and all t ∈ R.

The following is an analogue of Proposition 7.6.4, p. 257 of [12] which can be proved
along the same lines. Let C∞c (R, A∞) = C∞c (R) ⊗ A∞ (completed projective tensor
product) be the space of all A∞-valued C∞-functions on R with compact supports.

Lemma 3.2. Let A have a bounded approximate identity (el) contained in A∞ which is
also a bounded approximate identity for the Frechet algebra A∞. (In particular, let A be
unital.)

(a) If (π, U, H) is a covariant representation of (R, A∞, α), then there exists a non-
degenerate ∗- representation (π × U, H) of S(R, A∞, α) such that

(π × U)y =
∫

R

π(y(t))Utdt

for every y in C∞c (R, A∞). The correspondence (π, U, H)→ (π×U, H) is bijective
onto the set of all non-degenerate ∗-representations of S(R, A∞, α).

(b) Let α be isometric. Then the above gives a one-to-one correspondence between the
covariant representations of (R, A, α) and non-degenerate ∗-representations of each
of L1(R, A∞, α) and L1(R, A, α).

Lemma 3.3. E(A∞) = E(A); and for all k in Z
+, n in N, ‖n,k = ‖n.

Proof. Consider the inverse limit A = lim← An as in the Introduction. Since α sat-

isfies ‖αr(x)‖n ≤ Pn(r)‖x‖n for all x ∈ R, all r ∈ A and all n ∈ N, it follows
that for each n, α ‘extends’ uniquely as a strongly continuous action α(n) of R by
continuous ∗-automorphisms of the Banach ∗-algebra An. Let (An,m, ‖ · ‖n,m) be the
Banach algebra consisting of all Cm-elements y of An with the norm ‖ · ‖n,m =
‖y‖n +

∑m
i=1(1/i!)‖δi(x)‖n. Let (A∞n , {‖ ‖m,n: m ∈ Z

+}) be the Frechet algebra
consisting of all C∞-elements of An for the action α(n). Then

A∞ = lim← A∞n = lim← lim← Am,n = lim← An,n.

By Theorem 2.2 of [15], each Am,n is dense and spectrally invariant in An. Hence each
An,m is a Q-normed algebra in the norm ‖ · ‖n of An.

Let π : A∞ → B(H) be a ∗-representation of A on a Hilbert space H . Since the topology
of A∞ is determined by the seminorms

‖x‖n,n = ‖x‖n +
n∑

j=1

(1/j !)‖δj (x)‖n, n ∈ N

it follows that for some k > 0, ‖π(x)‖ ≤ k‖x‖n,n for all a ∈ A∞. Hence π defines a
∗-homomorphism π : (An,n, ‖ ‖n,n) → B(H) satisfying ‖π(x)‖ ≤ k‖x‖n,n for all x in
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An,n. Since (An,n, ‖ ‖n) is a Q-normed ∗-algebra, this map π is continuous in the norm
‖ ‖n on An,n. In fact, for all x in A∞,

‖π(x)‖2 = ‖π(x∗x)‖ = rB(H)(π(x∗x)) ≤ rAn,n(π(x∗x + ker ‖ ‖n,n))

≤ ‖x∗x + ker ‖ ‖n‖ = ‖x∗x‖n ≤ ‖x‖2.
Thus ‖π(x)‖ ≤ ‖x‖n for all x in A∞. Since A∞ is dense in A, π can be uniquely extended
as a ∗-representation π : A→ B(H) satisfying that ‖π(x)‖ ≤ ‖x‖n for all x in A. Then by
the definition of the C∗-seminorm | |n on A, π extends as a continuous ∗-homomorphism
π̃ : E(A) → B(H) such that ‖π̃(x)‖ ≤ |x|n for all x in E(A). This also implies that
E(A∞) = E(A) and | · |n,m = | · |n for all n, m.

Lemma 3.4. Let B be a σ -C∗-algebra. Let j : A → E(A) be j (x) = x + srad(A). Let
π : A→ B be a ∗-homomorphism. Then there exists a unique ∗-homomorphism π̃ : E(A)→
B such that π = π̃ ◦ j .

This follows immediately by taking B = lim← Bn, where Bn’s are C∗-algebras, and by

the universal property of E(A).

4. Proof of Theorem 1

Step I. Rep(S(R, A∞, α)) = Rep(S(R, E(A), α)) = Rep(L1(R, E(A), α)) up to one-
to-one correspondence.

By Lemma 3.1, the Frechet algebras S(R, E(A), α) and L1(R, E(A), α) are ∗-algebras
with the continuous involution y → y∗, y∗(t) = αt (y(−t))∗. By Lemma 3.2,
Rep(S(R, E(A), α)) = Rep(L1(R, E(A), α)) each identified with the set of all covariant
representations. Let ρ: S(R, A∞, α) → B(H) be in Rep(S(R, A∞, α)). There exists
c > 0 and appropriate n, l, m such that for all y,

‖ρ(y)‖ ≤ c‖y‖n,l,m = c
∑

i+j=n

∫
R

(1+ |r|)i‖y(j)(r)‖l,mdr. (1)

By Lemma 3.2, there exists a covariant representation (π, U, H) of (R, A∞, α) on H such
that ρ = π × U . Thus π : A∞ → B(H) is a ∗-homomorphism and U : R → U(H) is a
strongly continuous unitary representation such that

(i) ρ(f ) = ∫
R

π(f (t))Utdt for all f in S(R, A∞, α), (2)

(ii) π(αt (x)) = Utπ(x)U∗t for all x ∈ A∞, t ∈ R, (3)

(iii) there exists K > 0 such that ‖π(x)‖ ≤ k‖x‖l,m for all x ∈ A∞.

The l, m in (iii) are the same as in (1). Let {| · |l,m: l in Z
+, m in N} be the sequence of

C∗-seminorms on A∞ (and also on E(A∞) via srad A∞) which are defined by the submul-
tiplicative ∗-seminorms {‖·‖l,m: l in Z

+, m in N}. Then |·|l,m is the greatest C∗-seminorm on
A∞ satisfying that there exists M = Ml,m > 0 such that | · |l,m ≤M‖ · ‖l,m. Hence by (iii)
above, π can be uniquely extended as a continuous ∗-homomorphism π̃ : E(A∞)→ B(H)

such that π̃(j (x)) = π(x) for all x ∈ A∞; and

‖π̃(x)‖ ≤ |x|l,m for all x ∈ E(A∞). (4)
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Here j is the map j : A∞ → E(A∞), j (x) = x + srad A∞. Let l denote max(l, m). Then
we have

‖ρ(y)‖ ≤ c‖y‖n,l,l for all y ∈ S(R, A∞, α);
‖π(x)‖ ≤ k‖x‖l,l for all x ∈ A∞;
‖π̃(z)‖ ≤ |z|l,l for all z ∈ E(A∞). (5)

By Lemma 3.3, π̃ : E(A)→ B(H) is a ∗-representation satisfying ‖π̃(x)‖ ≤ |x|l for all x

in E(A). We have the following commutative diagram.

Now, let α: R → Aut∗E(A) be the action on E(A) induced by α as in Lemma 3.1
satisfying

αt (j (x)) = j (αt (x)) for all x in A. (6)

Then (π̃, U, H) is a covariant representation of (R, E(A), α). Indeed, let x ∈ A∞, y =
j (x). Then for all t ∈ R,

π̃(αt (y)) = π̃(αt (j (x))) = α̃(j (αt (x))) = π(αt (x)) = Utπ(x)U∗t
= Ut π̃(j (x))U∗t = Ut π̃(y)U∗t .

By the continuity of π̃ and αt , it follows that π̃(αt (y)) = Ut π̃(y)U∗t for all y ∈ E(A)

and all t ∈ R. Hence by Lemma 3.2, ρ̃ = π̃ × U is a non-degenerate ∗-representation of
each of S(R, E(A), α) and L1(R, E(A), α) satisfying, for some constants c and c′, the
following (using (5)):

(iv) For all f in L1(R, E(A), α), ‖ρ(f )‖ ≤ c|f |l = c
∫
R
|f (t)|ldt .

(v) For all f in S(R, E(A), α), ‖ρ̃(f )‖ ≤ c′|f |n,l,m. (7)

Thus given a ∗-representation ρ of S(R, A∞, α), there is canonically associated a
∗-representation ρ̃ of each of S(R, E(A), α) and L1(R, E(A), α).

Conversely, given ρ in Rep(S(R, E(A), α)), ρ = π ×U for a covariant representation
(π, U) of (R, E(A), α), π ◦ j is a covariant representation of A, and then (π ◦ j)× U is
in Rep(S(R, A∞, α)).

Step II. The σ -C∗-algebra C∗(R, E(A), α) is universal for the ∗-representations of the
Frechet algebra S(R, A∞, α).
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Let j̃ : S(R, A∞, α)→ L1(R, E(A), α) be the map

j̃ (f ) = j ◦ f = f̃ (say), i.e.,

j̃ (f )(r) = j (f (r)) = f (r)+ srad(A)∞ for all r ∈ R. (8)

Notice that the map j̃ is defined and is continuous; because (S(R, A∞, α)) ⊂ L1(R,

A∞, α) ⊂ L1(R, A, α), and for n in N and m in Z
+, all f in S(R, A∞, α),

|f̃ (t)|n ≤ ‖f (t)‖n ≤ M‖f (t)‖m,n, and hence∫
R

|f̃ (t)|ldt ≤
∫

R

‖f (t)‖m,ndt <∞

so that f ∈ L1(R, E(A), α). Let j1: L1(R, E(A), α) → C∗(R, E(A), α) be the natural
map j1(f ) = f + srad(L1(R, E(A), α)). This gives the continuous ∗-homomorphism

J : j1 ◦ j̃ : S(R, A∞, α)→ C∗(R, E(A), α). (9)

Let ρ ∈ Rep(S(R, A∞, α)), ρ = π × U in usual notations with π : A∞ → B(H) in
Rep(E(A)) such that π = π̃ ◦ j . Let ρ̃: L1(R, E(A), α)→ B(H) be ρ̃ = π̃ × U . Then
for all f in S(R, A∞, α),

ρ̃(j̃ (f )) = (π̃ × U)(j̃ (f )) =
∫

R

π̃(j̃ (f )(t))Utdt =
∫

R

π̃(j ◦ f )(t)Utdt

=
∫

R

π̃(j (f (t)))Utdt =
∫

R

π̃(f (t)+ srad(A))Utdt

=
∫

R

π(f (t))Utdt = ρ(f ).

Thus j̃ ◦ ρ̃ = ρ; and hence J ◦ ρ̄ = ρ, where J = j1 ◦ j̃ and ρ̄ ∈ Rep(C∗(R, E(A), α))

is defined by j1 ◦ ρ̄ = ρ̃ in view of C∗(R, E(A), α) = E(L1(R, E(A), α)).

Step III. Given a ∗-homomorphism ρ: S(R, A∞, α) → B from S(R, A∞, α) to a
σ -C∗-algebraB, there exists ∗-homomorphisms ρ̃:L1(R, E(A), α)→ B, ρ̃:C∗(R, E(A),

α)→ B such that ρ = ρ̃ ◦ j̃ = ρ̄ ◦ J and ρ̃ = ρ̄ ◦ j1.

This follows by applying Step II to each of the factor C∗-algebra Bn in the inverse limit
decomposition of B.

Step IV. C∗(R, E(A), α) = E(S(R, A∞, α)) up to homeomorphic ∗-isomorphism.
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Let k: S(R, E(A), α)→ E(S(R, A∞, α)) be k(f ) = f+srad S(R, A∞, α). Then there
exists a ∗-homomorphism k̄: C∗(R, E(A), α)→ E(S(R, A∞, α)) such that k̄◦J = k. We
show that k̄ is the desired homeomorphic ∗-isomorphism making the following diagram
commutative.

(10)

By the universal property of E(S(R, A∞, α)), there exists a ∗-homomorphism
J̄ : E(S(R, A∞, α)) → C∗(R, E(A), α) such that J̄ ◦ k = J . We claim that |k̄|Im(J ) is
injective. Indeed, let f ∈ S(R, A∞, α) be such that k̄(J (f )) = 0. Hence k(f ) = 0, so
that f ∈ srad(S(R, A∞, α)). Thus, for all ρ ∈ Rep(S(R, A∞, α)), ρ(f ) = 0. Therefore,
by Step I, σ(f̄ ) = 0 for all σ ∈ Rep(L1(R, E(A), α)). (Recall that f̃ = j ◦ f = j̃ (f ).)
Hence j̃ (f ) is in srad(L1(R, E(A), α)), and so j1(j̃ (f )) = 0. Therefore J (f ) = 0. It
follows that k̄ is injective on Im(J ).

Now by (10) and the injectivity of k̄ on Im(J ), J̄ ◦ k = J . Hence J = J̄ ◦ k̄ ◦ J , and
so J̄ ◦ k̄ = id on Im(J ). Similarly k̄ ◦ J̄ (k(f )) = k̄(J (f )) = k(f ), hence k̄ ◦ J̄ = id
on Im(k). Thus k̄ = (J̄ )−1 on Im(J ). Thus k̄ is a homeomorphic ∗-isomorphism from
the dense ∗-subalgebra J (S(R, A∞, α)) of C∗(R, E(A), α) on the dense ∗-subalgebra
k(S(R, A∞, α)) of E(S(R, A∞, α)). It follows that C∗(R, E(A), α) is homeomorphically
∗-isomorphic to E(S(R, A∞, α)).

Step V. E(L1
|·|(R, A∞, α)) = C∗(R, E(A), α).

Let R act on L1
|·|(R, A, α) by xf (y) = f (x − y). For this action, (L1

|·|((R, A, α))∞ =
S(R, A, α) by Theorem 2.1.7 of [14]. Thus S(R, A∞, α) = (L1

|·|((R, A, α))∞. Hence by

Lemma 3.4, E(L1
|·|(R, A∞, α))∞ = E(S(R, A∞, α)) = C∗(R, E(A), α). This completes

the proof of Theorem 1. �

5. Proof of Theorem 2

Let the Frechet algebra A be hermitian and a Q-algebra. Hence A is spectrally bounded,
i.e., the spectral radius r(x) = rA(x) < ∞ for all x ∈ A. Let sA(x) := r(x∗x)1/2 be the
Ptak’s spectral function on A. By Corollary 2.2 of [1], E(A) is a C∗-algebra, the com-
plete C∗-norm of E(A) being defined by the greatest C∗-seminorm p∞(·) (automatically
continuous) on A. Now for any x ∈ A,

p∞(x)2 = p∞(x∗x) = ‖x∗x + srad(A)‖
= rE(A)(x

∗x + srad(A)) ≤ rA(x∗x) = sA(x)2.

Hence p∞(x) ≤ sA(x) for all x ∈ A. By the hermiticity and Q-property, sA(·) is a
C∗-seminorm (Theorem 8.17 of [8]), hence p∞(·) = s(·) ≥ r(·). In this case, rad(A) =
srad(A). Let Aq = A/rad(A) which is a dense ∗-subalgebra of the C∗-algebra E(A) and
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is also a Frechet Q-algebra with the quotient topology tq . Let [x] = x + rad(A) for all
x ∈ A. Since the spectrum

spA(x) = spAq
([x]), rA(x) = rAq ([x]), sA(x) = sAq ([x]),

and so rAq ([x]) ≤ sAq ([x]) = ‖[x]‖∞. Hence ‖ · ‖∞ is a spectral norm on Aq , i.e.,
(Aq, ‖·‖∞) is a Q-algebra. Thus Aq is spectrally invariant in E(A). Hence by Corollary 7.9
of [10], K∗(Aq) = RK∗(Aq) = K∗(E(A)).

Now consider the maps

A
j−−−→ Aq

id−−−→ E(A)

and, for each positive integer n, the induced maps

Mn(A)
jn=j⊗idn−−−−−−→ Mn(Aq) = [Mn(A)]q

id−−−→ Mn(E(A)) = E(Mn(A)).

By the spectral invariance of A in Aq via the map j, j (inv(A)) = inv(Aq), where inv(K)

denotes the group of invertible elements of K . Let inv0(·) denote the principle component
in inv(·). We use the following.

Lemma 5.1. Let B be a Frechet Q-algebra or a normed Q-algebra. Then inv0(B) is the
subgroup generated by the range exp B of the exponential function.

The Frechet Q-algebra case follows by adapting the proof of the corresponding Banach
algebra result in Theorem 1.4.10 of [13]. If (B, ‖ ·‖) is a Q-normed algebra, then (B, ‖ ·‖)
is advertably complete in the sense that if a Cauchy sequence (xn) converges to an element
x ∈ inv(B∼) (B∼ being the completion of B), then x ∈ B. Hence the exponential function
is defined on B; and then the Banach algebra proof can be adapted.

We use the above lemma to verify the following:

Claim. jn(inv0(Mn(A))) = inv0(Mn(Aq)).

Take n = 1. It is clear that j (inv0(A)) ⊆ inv0(Aq). Let y ∈ inv0(Aq). Hence
y = � exp(zi) for finitely many zi = [xi] = xi + rad(A) for some xi in A. Then
y = [� exp(xi)]. Hence y ∈ j (inv0(A)). Thus j (inv0(A)) = inv0(Aq). Now take
n > 1. As A is spectrally invariant in Aq , it follows from Theorem 2.1 of [16] that the
Frechet Q-algebra Mn(A) is spectrally invariant in Mn(Aq) via jn. Also, Mn(Aq) =
(Mn(A))q is a Q-algebra in both the quotient topology as well as the C∗-norm induced
from Mn(E(A)) = E(MnA). Applying arguments analogous to above, it follows that
jn(inv0(Mn(A))) = inv0(Mn(Aq)).

Now consider the surjective group homomorphisms

inv(Mn(A))
jn−−−→ inv(Mn(Aq))

J−−→ inv(Mn(Aq))/inv0(Mn(Aq)).

It follows that ker(J ◦ jn) = inv0(Mn(A)), with the result, the group inv(Mn(A))/

inv0(Mn(A)) is isomorphic to the group inv(Mn(Aq))/inv0(Mn(Aq)). Hence by the defi-
nition of the K-theory group K1,

K1(A) = lim→ (inv(Mn(A))/inv0(Mn(A)))

= lim→ (inv(Mn(Aq))/inv0(Mn(Aq))) = K1(Aq).
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For B to be A or Aq , let the suspension of B be

SB = {f ∈ C([0, 1], B) : f (0) = f (1) = 0} ∼= C0(R, B).

We use the Bott periodicity theorem K0(B) = K1(SB) to show that K0(A) = K0(Aq).
It is standard that rad(SA) = rad(C0(R, A)) ∼= C0(R, rad(A)). Hence

SAq = C0(R, Aq) = C0(R, A/rad(A)) ∼= C0(R, A)/C0(R, rad(A))

= C0(R, A)/rad(C0(R, A)) = SA/rad(A)).

Hence

K0(Aq) = K1(SAq) = K1(SA/rad(SA)) = K0(A).

Thus we have

K∗(A) = K∗(Aq) = K∗(E(A)) = RK∗(A) = RK∗(Aq).

Now A∞ is spectrally invariant in A (Theorem 2.2 of [15]); and the action α on A∞ is
smooth (Theorem A.2 of [14]). Then applying the Phillips–Schweitzer analogue of Thom
isomorphism for smooth Frechet algebra crossed product (Theorem 1.2 of [11]) and Connes
analogue of Thom isomorphism for C∗-algebra crossed product [7], it follows that

RK∗(S(R, A∞, α)) = RK∗+1(A
∞) = RK∗+1(A) = RK∗+1(E(A))

= RK∗(C∗(R, E(A), α)) = K∗(C∗(R, E(A), α)).

When α is isometric, Theorem 1.3.4 of [11] implies that RK∗(S(R, A∞, α)) =
RK∗(L1(R, A, α)). This completes the proof. �

6. An application to the differential structure in C∗C∗C∗-algebras

Let U be a unital ∗-algebra. Let ‖ · ‖ be a C∗-norm on U . Let (A, ‖ · ‖) be the completion
of (U, ‖ · ‖). Following [5], a map T : U → l1(N) is a differential seminorm if T (x) =
(Tk(x))∞0 ∈ l1(N) satisfies the following:

(i) Tk(x) ≥ 0 for all k and for all x.
(ii) For all x, y in U and scalars λ, T (x + y) ≤ T (x)+ T (y), T (λx) = |λ|T (x).

(iii) For all x, y in U , for all k,

Tk(xy) ≤
∑

i+j=k

Ti(x)Tj (y).

(iv) There exists a constant c > 0 such that T0(x) ≤ c‖x‖ ∀x ∈ U .

By (ii), each Tk is a seminorm. We say that T is a differential ∗-seminorm if addition-
ally;

(v) Tk(x
∗) = Tk(x) for all x and for all k.

Further T is a differential norm if T (x) = 0 implies x = 0. Throughout we assume
that T0(x) = ‖x‖, x ∈ U . The total norm of T is Ttot(x) =∑∞

k=0 Tk(x), x ∈ U . Given T ,
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the differential Frechet ∗-algebra defined by T is constructed as follows. For each k, let
pk(x) = ∑k

i=0 Ti(x), x ∈ U . Then each pk is a submultiplicative ∗-norm; and on U , we
have

p0 ≤ p1 ≤ p2 ≤ · · · ≤ pk ≤ pk+1 ≤ · · ·
and (pk)

∞
0 is a separating family of submultiplicative ∗-norms on U . Let τ be the locally

convex ∗-algebra topology on U defined by (pk)
∞
0 . Let Uτ = (U, τ )∼ the completion of

U in τ and let U(k) = (U, pk)
∼ the completion of U in pk . Then Uτ is a Frechet locally m-

convex ∗-algebra, U(k) is a Banach ∗-algebra. Let UT be the completion of (U, Ttot). Then
the Banach ∗-algebra UT = {x ∈ Uτ : supn pn(x) < ∞}, the bounded part of Uτ . By the
definitions, there exists continuous surjective ∗-homomorphisms φk: U(k)→ A, φ: Uτ →
A. The identity map U → U extends uniquely as continuous surjective ∗-homomorphisms
ϕk: U(k+1)→ U(k) such that

U(0)
ϕ0←−−−− U(1)

ϕ1←−−−− U(2)
ϕ2←−−−− U(3)←−−−− · · ·

is a dense inverse limit sequence of Banach ∗-algebras and Uτ = lim← U(k).

Lemma 6.1 [4]. Let (U, ‖ · ‖) be a C∗-normed algebra. Let A be the completion of U . Let
B denote U(k) or Uτ with respective topologies. Then the following hold:

(i) B is a hermitian Q-algebra.
(ii) E(B) = A.

(iii) K∗(B) = K∗(A) = RK∗(B).

The K-theory result follows from the following.

Lemma 6.2 [4]. Let A be a Frechet algebra in which each element is bounded. Let A be
spectrally invariant in E(A). Then K∗(A) = K∗(E(A)).

Now let α be an action of R on A leaving U invariant. Let T be α-invariant, i.e.,
Tk(α(x)) = Tk(x) for all k and for all x. Then α induces isometric actions of R on each
of U(k), Uτ and UT . Let B be as above. Hence the crossed product Frechet ∗-algebras
L1(R, B∞, α), L1(R, B, α), S(R, B, α) and S(R, B∞, α) are defined. Theorem 2 and
Lemma 6.1 give the following, which is Theorem 3(a).

COROLLARY 6.3

RK∗(S(R, B∞, α)) = RK∗(S(R, B, α)) = RK∗(C∗(R, A, α)) = K∗+1(A).

Now let Ũ be the completion of U in the family F of all α-invariant differential ∗-norms
on U . Then Ũ is a complete locally m-convex ∗-algebra admitting a continuous surjective
∗-homomorphism �: Ũ → A. This α-invariant smooth envelope Ũ is different from the
smooth envelope defined in [5], and it need not be a subalgebra of A.

Lemma 6.4. Assume that Ũ is metrizable. Then Ũ is a hermitian Q-algebra, E(Ũ) = A,
and K∗(Ũ) = K∗(A).

This supplements a comment in p. 279 of [5] that K∗(A) = K̇∗(U1) where U1 is
the completion of U in all, not necessarily α-invariant nor closable, differential semi-
norms.
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Proof. Since Ũ = lim← Uτ , we have E(Ũ) = lim← E(Uτ ) = A; and Ũ admits greatest
continuous C∗-seminorm, say p∞(·) [1]. It is easily seen that for any x ∈ Ũ , the spectral
radius in Ũr(x) ≤ p∞(x); and Ũ is a hermitian Q-algebra. This implies, in view of Ẽ(Ũ) =
A, that the spectrum in Ũsp(x) = spA(j (x)) for all x in Ũ , where j (x) = x + srad Ũ .

It follows from Lemma 6.2 that K∗(A) = K∗(E(A)). Hence Lemma 6.4 follows. �

Now the action α induces an isometric action of R on Ũ , with the result that the
crossed product algebras S(R, Ũ, α) and L1(R, Ũ, α) are defined and are complete locally
m-convex ∗-algebras with a C∗-enveloping algebras satisfying

E(S(R, Ũ, α)) = E(L1(R, Ũ, α))

= C∗(R, E(Ũ), α)

= C∗(R, A, α).

Theorem 2 quickly gives the following which is Theorem 3(b).

COROLLARY 6.5

Assume that Ũ is metrizable. Then RK∗(S(R, Ũ, α)) = K∗+1(A).
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