Enveloping $\sigma-C^{*}$-algebra of a smooth Frechet algebra crossed product by $\mathbb{R}, \boldsymbol{K}$-theory and differential structure in C^{*}-algebras

SUBHASH J BHATT
Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India E-mail: subhashbhaib@yahoo.co.in

MS received 9 August 2004

Abstract

Given an m-tempered strongly continuous action α of \mathbb{R} by continuous *-automorphisms of a Frechet ${ }^{*}$-algebra A, it is shown that the enveloping $\sigma-C^{*}$-algebra $E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ of the smooth Schwartz crossed product $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ of the Frechet algebra A^{∞} of C^{∞}-elements of A is isomorphic to the $\sigma-C^{*}$-crossed product $C^{*}(\mathbb{R}, E(A), \alpha)$ of the enveloping $\sigma-C^{*}$-algebra $E(A)$ of A by the induced action. When A is a hermitian Q-algebra, one gets K-theory isomorphism $R K_{*}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)=$ $K_{*}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right.$ for the representable K-theory of Frechet algebras. An application to the differential structure of a C^{*}-algebra defined by densely defined differential seminorms is given.

Keywords. Frechet *-algebra; enveloping $\sigma-C^{*}$-algebra; smooth crossed product; m-tempered action; K-theory; differential structure in C^{*}-algebras.

1. Introduction

Given a strongly continuous action α of \mathbb{R} by continuous *-automorphisms of a Frechet *-algebra A, several crossed product Frechet algebras can be constructed [11,14]. They include the smooth Schwartz crossed product $S(\mathbb{R}, A, \alpha)$, the L^{1}-crossed products $L^{1}(\mathbb{R}, A, \alpha)$ and $L_{|\cdot|}^{1}(\mathbb{R}, A, \alpha)$, and the $\sigma-C^{*}$-crossed product $C^{*}(\mathbb{R}, A, \alpha)$. Let $E(A)$ denote the enveloping $\sigma-C^{*}$-algebra of $A[1,6]$; and $\left(A^{\infty}, \tau\right)$ denote the Frechet ${ }^{*}$-algebra consisting of all C^{∞}-elements of A with the C^{∞}-topology τ ([14], Appendix I). The following theorem shows that for a smooth action, the eveloping algebra of smooth crossed product is the continuous crossed product of the enveloping algebra.

Theorem 1. Let α be an m-tempered strongly continuous action of \mathbb{R} by continuous *-automorphisms of a Frechet *-algebra A. Let A admit a bounded approximate identity which is contained in A^{∞} and which is a bounded approximate identity for the Frechet algebra A^{∞}. Then $E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right) \cong E\left(L_{|\cdot|}^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)\right) \cong C^{*}(\mathbb{R}, E(A), \alpha)$. Further, if α is isometric, then $E\left(L^{1}(\mathbb{R}, A, \alpha)\right) \cong C^{*}(\mathbb{R}, E(A), \alpha)$.

Notice that neither $L^{1}(\mathbb{R}, A, \alpha)$ nor $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ need be a subalgebra of $C^{*}(\mathbb{R}, E(A)$, α). A particular case of Theorem 1 when A is a dense subalgebra of C^{*}-algebra has been treated in [2]. Let $R K_{*}$ (respectively K_{*}) denote the representable K-theory functor (respectively K-theory functor) on Frechet algebras [10]. We have the following isomorphism of K-theory, obtained without direct appeal to spectral invariance.

Theorem 2. Let A be as in the statement of Theorem 1. Assume that A is hermitian and a Q-algebra. Then $R K_{*}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right) \cong K_{*}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right)\right.$. Further if the action α is isometric on A, then $R K_{*}\left(L^{1}(\mathbb{R}, A, \alpha)\right) \cong K_{*}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right)$.

We apply this to the differential structure of a C^{*}-algebra. Let α be an action of \mathbb{R} on a C^{*}-algebra A leaving a dense ${ }^{*}$-subalgebra \mathcal{U} invariant. Let $T \sim\left(T_{k}\right)_{0}^{\infty}$ be a differential ${ }^{*}$-seminorm on \mathcal{U} in the sense of Blackadar and Cuntz [5] with $T_{0}(x)=\|\cdot\|$ the C^{*}-norm from A. Let T be α-invariant. Let $\mathcal{U}_{(k)}$ be the completion of \mathcal{U} in the submultiplicative *-norm $p_{k}(x)=\sum_{i=0}^{k} T_{i}(x)$. The differential Frechet ${ }^{*}$-algebra defined by T is $\mathcal{U}_{\tau}=$ $\lim _{\leftarrow} \mathcal{U}_{(k)}$, the inverse limit of Banach ${ }^{*}$-algebras $\mathcal{U}_{(k)}$.

Now consider $\tilde{\mathcal{U}}$ to be the α-invariant smooth envelope of \mathcal{U} defined to be the completion of \mathcal{U} in the collection of all α-invariant differential ${ }^{*}$-seminorms. Notice that neither \mathcal{U}_{τ} nor $\tilde{\mathcal{U}}$ is a subalgebra of A, though each admits a continuous surjective ${ }^{*}$-homomorphism onto A induced by the inclusion $\mathcal{U} \rightarrow A$. There exists actions of \mathbb{R} on each of \mathcal{U}_{τ} and $\tilde{\mathcal{U}}$ induced by α. The following is a smooth Frechet analogue of Connes' analogue of Thom isomorphism [7]. It supplements an analogues result in [11].

Theorem 3.

(a) $R K_{*}\left(S\left(\mathbb{R}, \mathcal{U}_{\tau}^{\infty}, \alpha\right)\right)=K_{*+1}(A)$.
(b) Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $R K_{*}(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha))=K_{*+1}(A)$.

2. Preliminaries and notations

A Frechet ${ }^{*}$-algebra (A, t) is a complete topological involutive algebra A whose topology t is defined by a separating sequence $\left\{\|\cdot\|_{n}: n \in \mathbb{N}\right\}$ of seminorms satisfying $\|x y\|_{n} \leq$ $\|x\|_{n}\|y\|_{n},\left\|x^{*}\right\|_{n}=\|x\|_{n},\|x\|_{n} \leq\|x\|_{n+1}$ for all x, y in A and all n in \mathbb{N}. If each $\|\cdot\|_{n}$ satisfies $\left\|x^{*} x\right\|_{n}=\|x\|_{n}^{2}$ for all x in A, then A is a $\sigma-C^{*}$-algebra [9]. A is called a Q-algebra if the set of all quasi-regular elements of A is an open set. For each n in \mathbb{N}, let A_{n} be the Hausdorff completion of $\left(A,\|\cdot\|_{n}\right)$. There exists norm decreasing surjective *-homomorphisms $\pi_{n}: A_{n+1} \rightarrow A_{n}, \pi_{n}\left(x+\operatorname{ker}\|\cdot\|_{n+1}\right)=x+\operatorname{ker}\|\cdot\|_{n}$ for all $x \in A$. Then the sequence

$$
A_{1} \stackrel{\pi_{1}}{\longleftarrow} A_{2} \stackrel{\pi_{2}}{\longleftarrow} A_{3} \stackrel{\pi_{3}}{\longleftarrow} \cdots \stackrel{\pi_{n-1}}{\longleftarrow} A_{n} \stackrel{\pi_{n}}{\longleftarrow} A_{n+1} \longleftarrow \cdots
$$

is an inverse limit sequence of Banach ${ }^{*}$-algebras and $A=\lim _{\leftarrow} A_{n}$, the inverse limit of Banach *-algebras. Let $\operatorname{Rep}(A)$ be the set of all ${ }^{*}$-homomorphisms $\pi: A \rightarrow B\left(H_{\pi}\right)$ of A into the C^{*}-algebras $B\left(H_{\pi}\right)$ of all bounded linear operators on Hilbert spaces H_{π}. Let

$$
\begin{aligned}
\operatorname{Rep}_{n}(A):= & \{\pi \in \operatorname{Rep}(A): \text { there exists } k>0 \text { such that } \\
& \left.\|\pi(x)\| \leq k\|x\|_{n} \text { for all } x\right\} .
\end{aligned}
$$

Then $|x|_{n}:=\sup \left\{\|\pi(x)\|: \pi \in \operatorname{Rep}_{n}(A)\right\}$ defines a C^{*}-seminorm on A. The star radical of A is

$$
\operatorname{srad}(A)=\left\{x \in A:|x|_{n}=0 \text { for all } n \text { in } \mathbb{N}\right\} .
$$

The enveloping $\sigma-C^{*}$-algebra $(E(A), \tau)$ of A is the completion of $A / \operatorname{srad}(A)$ in the topology τ defined by the C^{*}-seminorms $\left\{|\cdot|_{n}: n \in \mathbb{N}\right\},|x+\operatorname{srad}(A)|_{n}=|x|_{n}$ for x in A.

Let α be a strongly continuous action of \mathbb{R} by continuous *-automorphisms of A. The C^{∞}-elements of A for the action α are

$$
A^{\infty}:=\left\{x \in A: t \rightarrow \alpha_{t}(x) \text { is a } C^{\infty} \text {-function }\right\} .
$$

It is a dense ${ }^{*}$-subalgebra of A which is a Frechet algebra with the topology defined by the submultiplicative ${ }^{*}$-seminorms

$$
\|x\|_{k, n}=\|x\|_{n}+\sum_{j=0}^{k}(1 / j!)\left\|\delta^{j} x\right\|_{n}, \quad n \in \mathbb{N}, k \in \mathbb{Z}^{+}=\mathbb{N} \cup(0)
$$

where δ is the derivation $\delta(x)=\left.(\mathrm{d} / \mathrm{d} t) \alpha_{t}(x)\right|_{t=0}$. By Theorem A. 2 of [14], α leaves A^{∞} invariant and each α_{t} restricted to A^{∞} gives a continuous ${ }^{*}$-automorphism of the Frechet algebra A^{∞}. The action α is smooth if $A^{\infty}=A$.

2.1 Smooth Schwartz crossed product [14]

Assume that α is m-tempered in the sense that for each $n \in \mathbb{N}$, there exists a polynomial P_{n} such that $\left\|\alpha_{r}(x)\right\|_{n} \leq P_{n}(r)\|x\|_{n}$ for all $r \in \mathbb{R}$ and all $x \in A$. Let $S(\mathbb{R})$ be the Schwartz space. The completed (projective) tensor product $S(\mathbb{R}) \otimes A=S(\mathbb{R}, A)$ consisting of A-valued Schwartz functions on \mathbb{R} is a Frechet algebra with the twisted convolution

$$
(f * g)(r)=\int_{R} f(s) \alpha_{s}(g(r-s)) \mathrm{d} s
$$

called the smooth Schwartz crossed product by \mathbb{R} denoted by $S(\mathbb{R}, A, \alpha)$. The algebra $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ is a Frechet ${ }^{*}$-algebra with the involution $f^{*}(r)=\alpha_{r}\left(f(-r)^{*}\right)$ (Corollary 4.9 of [14]) whose topology τ_{s} is defined by the seminorms

$$
\|f\|_{n, l, m}=\sum_{i+j=n} \int_{R}(1+|r|)^{i}\left\|f^{(j)}(r)\right\|_{l, m} \mathrm{~d} r, \quad n \in \mathbb{Z}^{+}, l \in \mathbb{Z}^{+}, m \in \mathbb{N}
$$

where

$$
\left\|f^{(j)}(r)\right\|_{l, m}=\sum_{k=0}^{l}(1 / k!) \| \delta^{k}\left(\left.\alpha_{s}\left(\left(\mathrm{~d}^{j} / \mathrm{d} r^{j}\right) f(r)\right)\right|_{s=0} \|_{m}\right.
$$

(Theorem 3.1.7 of [14], [11]). These seminorms are submultiplicative if α is isometric on A in the sense that $\left\|\alpha_{r}(x)\right\|_{n}=\|x\|_{n}$ for all $n \in \mathbb{N}$ and all $x \in A$.

2.2 L^{1}-crossed products [11,14]

Let F_{d} be the set of all functions $f: \mathbb{R} \rightarrow A$ for which

$$
\|f\|_{d, m}:=\int_{R}(1+|r|)^{d}\|f(r)\|_{m} \mathrm{~d} r<\infty
$$

for all m in \mathbb{N}. Here \int denotes the upper integral. Let \mathbb{L}_{d} be the closure in F_{d} of the set of all measurable simple functions $f: \mathbb{R} \rightarrow A$ in the topology on F_{d} given by the seminorms $\left\{\|\cdot\|_{d, m}: m \in \mathbb{N}\right\}$. Let $N_{d}=\cap\left\{\operatorname{ker}\|\cdot\|_{d, m}: m \in \mathbb{N}\right\}$. Then $N_{d}=N_{d+1} ; L_{d}:=\mathbb{L}_{d} / N_{d}$
is complete in $\left\{\|\cdot\|_{d, m}: m \in \mathbb{N}\right\}$ and $L_{d+1} \rightarrow L_{d}$ continuously. The space of $|\cdot|$-rapidly vanishing L^{1}-functions from \mathbb{R} to A is $L_{|\cdot|}^{1}(\mathbb{R}, A, \alpha):=\cap\left\{L_{d}: d \in \mathbb{Z}^{+}\right\}$, a Frechet algebra with the topology given by the seminorms $\left\{\|\cdot\|_{d, m}: m \in \mathbb{N}, d \in \mathbb{Z}^{+}\right\}$and with twisted convolution. Assume that α is isometric on ($A,\left\{\|\cdot\|_{n}\right\}$). Then the completed projective tensor product $L^{1}(\mathbb{R}) \otimes A=L^{1}(\mathbb{R}, A)$ is a Frechet ${ }^{*}$-algebra with twisted convolution and the involution $f \rightarrow f^{*}$. This L^{1}-crossed product is denoted by $L^{1}(\mathbb{R}, A, \alpha)$. Notice that α is isometric on $\left(A^{\infty},\left\{\|\cdot\|_{n, m}\right\}\right)$ also, so that the Frechet ${ }^{*}$ - algebra $L^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)$ is defined; and then the induced actions $\left(\alpha_{r} f\right)(s)=\alpha_{r}(f(s))$ on $L^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)$ and on $L^{1}(\mathbb{R}, A, \alpha)$ are also isometric.

$2.3 \sigma-C^{*}$-crossed product

Assume that α is isometric. We define the σ - C^{*}-crossed product $C^{*}(\mathbb{R}, A, \alpha)$ of A by \mathbb{R} to be the enveloping σ - C^{*}-algebra $E\left(L^{1}(\mathbb{R}, A, \alpha)\right)$ of $L^{1}(\mathbb{R}, A, \alpha)$.

3. Technical lemmas

Lemma 3.1. Let α be m-tempered on A. Then α extends as a strongly continuous isometric action of \mathbb{R} by continuous ${ }^{*}$-automorphisms of the $\sigma-C^{*}$-algebra $E(A)$.

Proof. By the m-temperedness of α, for each $n \in \mathbb{N}$, there exists a polynomial P_{n} such that for all $x \in A$ and all $r \in \mathbb{R},\left\|\alpha_{r}(x)\right\|_{n} \leq P_{n}(r)\|x\|_{n}$. Let $r \in \mathbb{R}$. Let $x \in \operatorname{srad}(A)$. Then for all $\pi \in \operatorname{Rep}(A), \pi(x)=0$, so that $\sigma\left(\alpha_{r}(x)\right)=0$ for all $\sigma \in \operatorname{Rep}(A)$, hence $\alpha_{r}(x) \in \operatorname{srad}(A)$. Thus $\alpha_{r}(\operatorname{srad}(A)) \subseteq \operatorname{srad}(A)$, and the map

$$
\tilde{\alpha}_{r}: A / \operatorname{srad}(A) \rightarrow A / \operatorname{srad}(A), \quad \tilde{\alpha}_{r}([x])=\left[\alpha_{r}(x)\right],
$$

where $[x]=x+\operatorname{srad}(A)$, is a well-defined *-homomorphism. Further, let $\tilde{\alpha}_{r}[x]=0$. Then $\alpha_{r}(x) \in \operatorname{srad}(A)$. Hence $x=\alpha_{-r}\left(\alpha_{r}(x)\right) \in \operatorname{srad}(A),[x]=0$. Thus $\tilde{\alpha}_{r}$ is one-to-one, which is clearly surjective. Now, for each $n \in \mathbb{N}$, and for all $x \in A$,

$$
\left|\tilde{\alpha}_{r}[x]\right|_{n}=\left|\left[\alpha_{r}(x)\right]\right|_{n} \leq\left\|\alpha_{r}(x)\right\|_{n} \leq P_{n}(r)\|x\|_{n} .
$$

Since, by definition, $|\cdot|_{n}$ is the greatest C^{*}-seminorm on $A / \operatorname{srad}(A)$ satisfying that for some $k_{n}>0,|[z]|_{n} \leq k_{n}\|z\|_{n}$ for all $z \in A$, it follows that $\left|\tilde{\alpha}_{r}[x]\right|_{n} \leq|[x]|_{n}$ for all x in A. Hence

$$
|[x]|_{n} \leq \mid \tilde{\alpha}_{-r}\left(\left.\tilde{\alpha}_{r}[x]\right|_{n}=\left|\tilde{\alpha}_{-r}\left[\alpha_{r}(x)\right]\right|_{n} \leq\left|\left[\alpha_{r}(x)\right]\right|_{n}=\left|\tilde{\alpha}_{r}[x]\right|_{n}\right.
$$

showing that $\left|\tilde{\alpha}_{r}[x]\right|_{n}=|[x]|_{n}$ for all $x \in A, r \in \mathbb{R}, n \in \mathbb{N}$. It follows that $\tilde{\alpha}_{r}$ extends as a ${ }^{*}$-automorphism $\tilde{\alpha}_{r}: E(A) \rightarrow E(A)$ satisfying $\left|\tilde{\alpha}_{r}(z)\right|_{n}=|z|_{n}$ for all $z \in A$ and all $n \in \mathbb{N}$; and $\tilde{\alpha}: \mathbb{R} \rightarrow \operatorname{Aut}^{*}(E(A)), r \rightarrow \tilde{\alpha}_{r}$ defines an isometric action of \mathbb{R} on $E(A)$. We verify that $\tilde{\alpha}$ is strongly continuous. Let $z \in E(A)$. It is sufficient to prove that the map $f: \mathbb{R} \rightarrow E(A), f(r)=\alpha_{r}(z)$ is continuous at $r=0$. Choose $z_{n}=\left[x_{n}\right]$ in $A / \operatorname{srad}(A)$ such that $z_{n} \rightarrow z$ in $E(A)$. Fix $k \in \mathbb{N}, \varepsilon>0$. Choose n_{0} in \mathbb{N} such that $\left|z_{n_{0}}-z\right|_{k}<\varepsilon / 3$ with $z_{n_{0}}=\left[x_{n_{0}}\right]$. Then for all $r \in \mathbb{R},\left|\tilde{\alpha}_{r}(z)-\tilde{\alpha}_{r}\left(z_{n_{0}}\right)\right|_{k}=\left|z-z_{n_{0}}\right| k<\varepsilon / 3$. Since α is strongly continuous, there exists a $\delta>0$ such that $|r|<\delta$ implies that $\left\|\alpha_{r}\left(x_{0}\right)-x_{0}\right\|_{k}<\varepsilon / 3$. Then for all such $r,\left|\tilde{\alpha}_{r}(z)-z\right|_{k}<\varepsilon$ showing the desired continuity of f. This completes the proof.

Notation. Henceforth we denote the action $\tilde{\alpha}$ by α.
A covariant representation of the Frechet algebra dynamical system (\mathbb{R}, A, α) is a triple (π, U, H) such that
(a) $\pi: A \rightarrow B(H)$ is a *-homomorphism;
(b) $U: \mathbb{R} \rightarrow \mathcal{U}(H)$ is a strongly continuous unitary representation of \mathbb{R} on H; and
(c) $\pi\left(\alpha_{t}(x)\right)=U_{t} \pi(x) U_{t}^{*}$ for all $x \in A$ and all $t \in \mathbb{R}$.

The following is an analogue of Proposition 7.6.4, p. 257 of [12] which can be proved along the same lines. Let $C_{c}^{\infty}\left(\mathbb{R}, A^{\infty}\right)=C_{c}^{\infty}(\mathbb{R}) \otimes A^{\infty}$ (completed projective tensor product) be the space of all A^{∞}-valued C^{∞}-functions on \mathbb{R} with compact supports.

Lemma 3.2. Let A have a bounded approximate identity $\left(e_{l}\right)$ contained in A^{∞} which is also a bounded approximate identity for the Frechet algebra A^{∞}. (In particular, let A be unital.)
(a) If (π, U, H) is a covariant representation of $\left(\mathbb{R}, A^{\infty}, \alpha\right)$, then there exists a nondegenerate ${ }^{*}$ - representation $(\pi \times U, H)$ of $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ such that

$$
(\pi \times U) y=\int_{R} \pi(y(t)) U_{t} \mathrm{~d} t
$$

for every y in $C_{c}^{\infty}\left(\mathbb{R}, A^{\infty}\right)$. The correspondence $(\pi, U, H) \rightarrow(\pi \times U, H)$ is bijective onto the set of all non-degenerate *-representations of $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$.
(b) Let α be isometric. Then the above gives a one-to-one correspondence between the covariant representations of (\mathbb{R}, A, α) and non-degenerate *-representations of each of $L^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)$ and $L^{1}(\mathbb{R}, A, \alpha)$.

Lemma 3.3. $E\left(A^{\infty}\right)=E(A)$; and for all k in \mathbb{Z}^{+}, n in $\mathbb{N},\left\|_{n, k}=\right\|_{n}$.
Proof. Consider the inverse limit $A=\underset{\leftarrow}{\lim } A_{n}$ as in the Introduction. Since α satisfies $\left\|\alpha_{r}(x)\right\|_{n} \leq P_{n}(r)\|x\|_{n}$ for all $x \in \mathbb{R}$, all $r \in A$ and all $n \in \mathbb{N}$, it follows that for each n, α 'extends' uniquely as a strongly continuous action $\alpha^{(n)}$ of \mathbb{R} by continuous *-automorphisms of the Banach ${ }^{*}$-algebra A_{n}. Let ($A_{n, m},\|\cdot\|_{n, m}$) be the Banach algebra consisting of all C^{m}-elements y of A_{n} with the norm $\|\cdot\|_{n, m}=$ $\|y\|_{n}+\sum_{i=1}^{m}(1 / i!)\left\|\delta^{i}(x)\right\|_{n}$. Let $\left(A_{n}^{\infty},\left\{\| \|_{m, n}: m \in \mathbb{Z}^{+}\right\}\right.$) be the Frechet algebra consisting of all C^{∞}-elements of A_{n} for the action $\alpha^{(n)}$. Then

$$
A^{\infty}=\lim _{\leftarrow} A_{n}^{\infty}=\lim _{\leftarrow} \lim _{\leftarrow} A_{m, n}=\lim _{\leftarrow} A_{n, n} .
$$

By Theorem 2.2 of [15], each $A_{m, n}$ is dense and spectrally invariant in A_{n}. Hence each $A_{n, m}$ is a Q-normed algebra in the norm $\|\cdot\|_{n}$ of A_{n}.

Let $\pi: A^{\infty} \rightarrow B(H)$ be a ${ }^{*}$-representation of A on a Hilbert space H. Since the topology of A^{∞} is determined by the seminorms

$$
\|x\|_{n, n}=\|x\|_{n}+\sum_{j=1}^{n}(1 / j!)\left\|\delta^{j}(x)\right\|_{n}, \quad n \in \mathbb{N}
$$

it follows that for some $k>0,\|\pi(x)\| \leq k\|x\|_{n, n}$ for all $a \in A^{\infty}$. Hence π defines a *-homomorphism $\pi:\left(A_{n, n},\| \|_{n, n}\right) \rightarrow B(H)$ satisfying $\|\pi(x)\| \leq k\|x\|_{n, n}$ for all x in
$A_{n, n}$. Since $\left(A_{n, n},\| \|_{n}\right)$ is a Q-normed ${ }^{*}$-algebra, this map π is continuous in the norm $\left\|\|_{n}\right.$ on $A_{n, n}$. In fact, for all x in A^{∞},

$$
\begin{aligned}
\|\pi(x)\|^{2} & =\left\|\pi\left(x^{*} x\right)\right\|=r_{B(H)}\left(\pi\left(x^{*} x\right)\right) \leq r_{A_{n, n}}\left(\pi\left(x^{*} x+\operatorname{ker}\| \|_{n, n}\right)\right) \\
& \leq\left\|x^{*} x+\operatorname{ker}\right\|\left\|_{n}\right\|=\left\|x^{*} x\right\|_{n} \leq\|x\|^{2} .
\end{aligned}
$$

Thus $\|\pi(x)\| \leq\|x\|_{n}$ for all x in A^{∞}. Since A^{∞} is dense in A, π can be uniquely extended as a *-representation $\pi: A \rightarrow B(H)$ satisfying that $\|\pi(x)\| \leq\|x\|_{n}$ for all x in A. Then by the definition of the C^{*}-seminorm $\left|\left.\right|_{n}\right.$ on A, π extends as a continuous ${ }^{*}$-homomorphism $\tilde{\pi}: E(A) \rightarrow B(H)$ such that $\|\tilde{\pi}(x)\| \leq|x|_{n}$ for all x in $E(A)$. This also implies that $E\left(A^{\infty}\right)=E(A)$ and $|\cdot|_{n, m}=|\cdot|_{n}$ for all n, m.
Lemma 3.4. Let B be a $\sigma-C^{*}$-algebra. Let $j: A \rightarrow E(A)$ be $j(x)=x+\operatorname{srad}(A)$. Let $\pi: A \rightarrow B$ be a*-homomorphism. Then there exists a unique ${ }^{*}$-homomorphism $\tilde{\pi}: E(A) \rightarrow$ B such that $\pi=\tilde{\pi} \circ j$.

This follows immediately by taking $B=\lim _{\leftarrow} B_{n}$, where B_{n} 's are C^{*}-algebras, and by the universal property of $E(A)$.

4. Proof of Theorem 1

Step I. $\operatorname{Rep}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)=\operatorname{Rep}(S(\mathbb{R}, E(A), \alpha))=\operatorname{Rep}\left(L^{1}(\mathbb{R}, E(A), \alpha)\right)$ up to one-to-one correspondence.

By Lemma 3.1, the Frechet algebras $S(\mathbb{R}, E(A), \alpha)$ and $L^{1}(\mathbb{R}, E(A), \alpha)$ are *-algebras with the continuous involution $y \rightarrow y^{*}, y^{*}(t)=\alpha_{t}(y(-t))^{*}$. By Lemma 3.2, $\operatorname{Rep}(S(\mathbb{R}, E(A), \alpha))=\operatorname{Rep}\left(L^{1}(\mathbb{R}, E(A), \alpha)\right)$ each identified with the set of all covariant representations. Let $\rho: S\left(\mathbb{R}, A^{\infty}, \alpha\right) \rightarrow B(H)$ be in $\operatorname{Rep}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$. There exists $c>0$ and appropriate n, l, m such that for all y,

$$
\begin{equation*}
\|\rho(y)\| \leq c\|y\|_{n, l, m}=c \sum_{i+j=n} \int_{R}(1+|r|)^{i}\left\|y^{(j)}(r)\right\|_{l, m} \mathrm{~d} r . \tag{1}
\end{equation*}
$$

By Lemma 3.2, there exists a covariant representation (π, U, H) of $\left(\mathbb{R}, A^{\infty}, \alpha\right)$ on H such that $\rho=\pi \times U$. Thus $\pi: A^{\infty} \rightarrow B(H)$ is a ${ }^{*}$-homomorphism and $U: \mathbb{R} \rightarrow \mathcal{U}(H)$ is a strongly continuous unitary representation such that

$$
\begin{equation*}
\rho(f)=\int_{R} \pi(f(t)) U_{t} \mathrm{~d} t \quad \text { for all } f \text { in } S\left(\mathbb{R}, A^{\infty}, \alpha\right), \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\pi\left(\alpha_{t}(x)\right)=U_{t} \pi(x) U_{t}^{*} \quad \text { for all } x \in A^{\infty}, t \in \mathbb{R}, \tag{2}
\end{equation*}
$$

(iii) there exists $K>0$ such that $\|\pi(x)\| \leq k\|x\|_{l, m}$ for all $x \in A^{\infty}$.

The l, m in (iii) are the same as in (1). Let $\left\{|\cdot|_{l, m}: l\right.$ in \mathbb{Z}^{+}, m in $\left.\mathbb{N}\right\}$ be the sequence of C^{*}-seminorms on A^{∞} (and also on $E\left(A^{\infty}\right)$ via srad A^{∞}) which are defined by the submultiplicative ${ }^{*}$-seminorms $\left\{\|\cdot\|_{l, m}: l\right.$ in \mathbb{Z}^{+}, m in $\left.\mathbb{N}\right\}$. Then $|\cdot|_{l, m}$ is the greatest C^{*}-seminorm on A^{∞} satisfying that there exists $M=M_{l, m}>0$ such that $|\cdot|_{l, m} \leq M\|\cdot\|_{l, m}$. Hence by (iii) above, π can be uniquely extended as a continuous ${ }^{*}$-homomorphism $\tilde{\pi}: E\left(A^{\infty}\right) \rightarrow B(H)$ such that $\tilde{\pi}(j(x))=\pi(x)$ for all $x \in A^{\infty}$; and

$$
\begin{equation*}
\|\tilde{\pi}(x)\| \leq|x|_{l, m} \text { for all } x \in E\left(A^{\infty}\right) \tag{4}
\end{equation*}
$$

Here j is the map $j: A^{\infty} \rightarrow E\left(A^{\infty}\right), j(x)=x+\operatorname{srad} A^{\infty}$. Let l denote $\max (l, m)$. Then we have

$$
\begin{align*}
\|\rho(y)\| & \leq c\|y\|_{n, l, l} \text { for all } y \in S\left(\mathbb{R}, A^{\infty}, \alpha\right) ; \\
\|\pi(x)\| & \leq k\|x\|_{l, l} \text { for all } x \in A^{\infty} ; \\
\|\tilde{\pi}(z)\| & \leq|z|_{l, l} \text { for all } z \in E\left(A^{\infty}\right) . \tag{5}
\end{align*}
$$

By Lemma 3.3, $\tilde{\pi}: E(A) \rightarrow B(H)$ is a *-representation satisfying $\|\tilde{\pi}(x)\| \leq|x|_{l}$ for all x in $E(A)$. We have the following commutative diagram.

Now, let $\alpha: \mathbb{R} \rightarrow$ Aut $^{*} E(A)$ be the action on $E(A)$ induced by α as in Lemma 3.1 satisfying

$$
\begin{equation*}
\alpha_{t}(j(x))=j\left(\alpha_{t}(x)\right) \quad \text { for all } x \text { in } A . \tag{6}
\end{equation*}
$$

Then $(\tilde{\pi}, U, H)$ is a covariant representation of $(\mathbb{R}, E(A), \alpha)$. Indeed, let $x \in A^{\infty}, y=$ $j(x)$. Then for all $t \in \mathbb{R}$,

$$
\begin{aligned}
\tilde{\pi}\left(\alpha_{t}(y)\right) & =\tilde{\pi}\left(\alpha_{t}(j(x))\right)=\tilde{\alpha}\left(j\left(\alpha_{t}(x)\right)\right)=\pi\left(\alpha_{t}(x)\right)=U_{t} \pi(x) U_{t}^{*} \\
& =U_{t} \tilde{\pi}(j(x)) U_{t}^{*}=U_{t} \tilde{\pi}(y) U_{t}^{*} .
\end{aligned}
$$

By the continuity of $\tilde{\pi}$ and α_{t}, it follows that $\tilde{\pi}\left(\alpha_{t}(y)\right)=U_{t} \tilde{\pi}(y) U_{t}^{*}$ for all $y \in E(A)$ and all $t \in \mathbb{R}$. Hence by Lemma 3.2, $\tilde{\rho}=\tilde{\pi} \times U$ is a non-degenerate ${ }^{*}$-representation of each of $S(\mathbb{R}, E(A), \alpha)$ and $L^{1}(\mathbb{R}, E(A), \alpha)$ satisfying, for some constants c and c^{\prime}, the following (using (5)):

$$
\begin{align*}
& \text { For all } f \text { in } L^{1}(\mathbb{R}, E(A), \alpha),\|\rho(f)\| \leq c|f|_{l}=c \int_{R}|f(t)|_{\mathrm{d}} \mathrm{~d} t \tag{iv}\\
& \text { For all } f \text { in } S(\mathbb{R}, E(A), \alpha),\|\tilde{\rho}(f)\| \leq c^{\prime}|f|_{n, l, m} . \tag{v}
\end{align*}
$$

Thus given a *-representation ρ of $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$, there is canonically associated a *-representation $\tilde{\rho}$ of each of $S(\mathbb{R}, E(A), \alpha)$ and $L^{1}(\mathbb{R}, E(A), \alpha)$.

Conversely, given ρ in $\operatorname{Rep}(S(\mathbb{R}, E(A), \alpha)), \rho=\pi \times U$ for a covariant representation (π, U) of $(\mathbb{R}, E(A), \alpha), \pi \circ j$ is a covariant representation of A, and then $(\pi \circ j) \times U$ is in $\operatorname{Rep}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$.

Step II. The σ - C^{*}-algebra $C^{*}(\mathbb{R}, E(A), \alpha)$ is universal for the *-representations of the Frechet algebra $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$.

Let $\tilde{j}: S\left(\mathbb{R}, A^{\infty}, \alpha\right) \rightarrow L^{1}(\mathbb{R}, E(A), \alpha)$ be the map

$$
\begin{align*}
\tilde{j}(f) & =j \circ f=\tilde{f}(\text { say }), \quad \text { i.e., } \\
\tilde{j}(f)(r) & =j(f(r))=f(r)+\operatorname{srad}(A)^{\infty} \quad \text { for all } r \in \mathbb{R} \tag{8}
\end{align*}
$$

Notice that the map \tilde{j} is defined and is continuous; because $\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right) \subset L^{1}(\mathbb{R}$, $\left.A^{\infty}, \alpha\right) \subset L^{1}(\mathbb{R}, A, \alpha)$, and for n in \mathbb{N} and m in \mathbb{Z}^{+}, all f in $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$,

$$
\begin{aligned}
& |\tilde{f}(t)|_{n} \leq\|f(t)\|_{n} \leq M\|f(t)\|_{m, n}, \quad \text { and hence } \\
& \int_{R}|\tilde{f}(t)|_{l} \mathrm{~d} t \leq \int_{R}\|f(t)\|_{m, n} \mathrm{~d} t<\infty
\end{aligned}
$$

so that $f \in L^{1}(\mathbb{R}, E(A), \alpha)$. Let $j_{1}: L^{1}(\mathbb{R}, E(A), \alpha) \rightarrow C^{*}(\mathbb{R}, E(A), \alpha)$ be the natural $\operatorname{map} j_{1}(f)=f+\operatorname{srad}\left(L^{1}(\mathbb{R}, E(A), \alpha)\right)$. This gives the continuous *-homomorphism

$$
\begin{equation*}
J: j_{1} \circ \tilde{j}: S\left(\mathbb{R}, A^{\infty}, \alpha\right) \rightarrow C^{*}(\mathbb{R}, E(A), \alpha) \tag{9}
\end{equation*}
$$

Let $\rho \in \operatorname{Rep}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right), \rho=\pi \times U$ in usual notations with $\pi: A^{\infty} \rightarrow B(H)$ in $\operatorname{Rep}(E(A))$ such that $\pi=\tilde{\pi} \circ j$. Let $\tilde{\rho}: L^{1}(\mathbb{R}, E(A), \alpha) \rightarrow B(H)$ be $\tilde{\rho}=\tilde{\pi} \times U$. Then for all f in $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$,

$$
\begin{aligned}
\tilde{\rho}(\tilde{j}(f)) & =(\tilde{\pi} \times U)(\tilde{j}(f))=\int_{R} \tilde{\pi}(\tilde{j}(f)(t)) U_{t} \mathrm{~d} t=\int_{R} \tilde{\pi}(j \circ f)(t) U_{t} \mathrm{~d} t \\
& =\int_{R} \tilde{\pi}(j(f(t))) U_{t} \mathrm{~d} t=\int_{R} \tilde{\pi}(f(t)+\operatorname{srad}(A)) U_{t} \mathrm{~d} t \\
& =\int_{R} \pi(f(t)) U_{t} \mathrm{~d} t=\rho(f) .
\end{aligned}
$$

Thus $\tilde{j} \circ \tilde{\rho}=\rho$; and hence $J \circ \bar{\rho}=\rho$, where $J=j_{1} \circ \tilde{j}$ and $\bar{\rho} \in \operatorname{Rep}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right)$ is defined by $j_{1} \circ \bar{\rho}=\tilde{\rho}$ in view of $C^{*}(\mathbb{R}, E(A), \alpha)=E\left(L^{1}(\mathbb{R}, E(A), \alpha)\right)$.
Step III. Given a ${ }^{*}$-homomorphism $\rho: S\left(\mathbb{R}, A^{\infty}, \alpha\right) \rightarrow B$ from $S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ to a $\sigma-C^{*}$-algebra B, there exists ${ }^{*}$-homomorphisms $\tilde{\rho}: L^{1}(\mathbb{R}, E(A), \alpha) \rightarrow B, \tilde{\rho}: C^{*}(\mathbb{R}, E(A)$, $\alpha) \rightarrow B$ such that $\rho=\tilde{\rho} \circ \tilde{j}=\bar{\rho} \circ J$ and $\tilde{\rho}=\bar{\rho} \circ j_{1}$.

This follows by applying Step II to each of the factor C^{*}-algebra B_{n} in the inverse limit decomposition of B.

Step IV. $C^{*}(\mathbb{R}, E(A), \alpha)=E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ up to homeomorphic *-isomorphism.

Let $k: S(\mathbb{R}, E(A), \alpha) \rightarrow E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ be $k(f)=f+\operatorname{srad} S\left(\mathbb{R}, A^{\infty}, \alpha\right)$. Then there exists a ${ }^{*}$-homomorphism $\bar{k}: C^{*}(\mathbb{R}, E(A), \alpha) \rightarrow E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ such that $\bar{k} \circ J=k$. We show that \bar{k} is the desired homeomorphic ${ }^{*}$-isomorphism making the following diagram commutative.

By the universal property of $E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$, there exists a ${ }^{*}$-homomorphism $\bar{J}: E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right) \rightarrow C^{*}(\mathbb{R}, E(A), \alpha)$ such that $\bar{J} \circ k=J$. We claim that $|\bar{k}|_{\operatorname{Im}(J)}$ is injective. Indeed, let $f \in S\left(\mathbb{R}, A^{\infty}, \alpha\right)$ be such that $\bar{k}(J(f))=0$. Hence $k(f)=0$, so that $f \in \operatorname{srad}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$. Thus, for all $\rho \in \operatorname{Rep}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right), \rho(f)=0$. Therefore, by Step $\mathrm{I}, \sigma(\bar{f})=0$ for all $\sigma \in \operatorname{Rep}\left(L^{1}(\mathbb{R}, E(A), \alpha)\right)$. (Recall that $\tilde{f}=j \circ f=\tilde{j}(f)$.) Hence $\tilde{j}(f)$ is in $\operatorname{srad}\left(L^{1}(\mathbb{R}, E(A), \alpha)\right.$, and so $j_{1}(\tilde{j}(f))=0$. Therefore $J(f)=0$. It follows that \bar{k} is injective on $\operatorname{Im}(J)$.

Now by (10) and the injectivity of \bar{k} on $\operatorname{Im}(J), \bar{J} \circ k=J$. Hence $J=\bar{J} \circ \bar{k} \circ J$, and so $\bar{J} \circ \bar{k}=\operatorname{id}$ on $\operatorname{Im}(J)$. Similarly $\bar{k} \circ \bar{J}(k(f))=\bar{k}(J(f))=k(f)$, hence $\bar{k} \circ \bar{J}=\mathrm{id}$ on $\operatorname{Im}(k)$. Thus $\bar{k}=(\bar{J})^{-1}$ on $\operatorname{Im}(J)$. Thus \bar{k} is a homeomorphic ${ }^{*}$-isomorphism from the dense ${ }^{*}$-subalgebra $J\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ of $C^{*}(\mathbb{R}, E(A), \alpha)$ on the dense ${ }^{*}$-subalgebra $k\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$ of $E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$. It follows that $C^{*}(\mathbb{R}, E(A), \alpha)$ is homeomorphically *-isomorphic to $E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)$.

Step V. $E\left(L_{|\cdot|}^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)=C^{*}(\mathbb{R}, E(A), \alpha)$.
Let \mathbb{R} act on $L_{|\cdot|}^{1}(\mathbb{R}, A, \alpha)$ by $x f(y)=f(x-y)$. For this action, $\left(L_{|\cdot|}^{1}((\mathbb{R}, A, \alpha))^{\infty}=\right.$ $S(\mathbb{R}, A, \alpha)$ by Theorem 2.1.7 of [14]. Thus $S\left(\mathbb{R}, A^{\infty}, \alpha\right)=\left(L_{|\cdot|}^{1}((\mathbb{R}, A, \alpha))^{\infty}\right.$. Hence by Lemma 3.4, $E\left(L_{|\cdot|}^{1}\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)^{\infty}=E\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)=C^{*}(\mathbb{R}, E(A), \alpha)$. This completes the proof of Theorem 1.

5. Proof of Theorem 2

Let the Frechet algebra A be hermitian and a Q-algebra. Hence A is spectrally bounded, i.e., the spectral radius $r(x)=r_{A}(x)<\infty$ for all $x \in A$. Let $s_{A}(x):=r\left(x^{*} x\right)^{1 / 2}$ be the Ptak's spectral function on A. By Corollary 2.2 of [1], $E(A)$ is a C^{*}-algebra, the complete C^{*}-norm of $E(A)$ being defined by the greatest C^{*}-seminorm $p_{\infty}(\cdot)$ (automatically continuous) on A. Now for any $x \in A$,

$$
\begin{aligned}
p_{\infty}(x)^{2} & =p_{\infty}\left(x^{*} x\right)=\left\|x^{*} x+\operatorname{srad}(A)\right\| \\
& =r_{E(A)}\left(x^{*} x+\operatorname{srad}(A)\right) \leq r_{A}\left(x^{*} x\right)=s_{A}(x)^{2} .
\end{aligned}
$$

Hence $p_{\infty}(x) \leq s_{A}(x)$ for all $x \in A$. By the hermiticity and Q-property, $s_{A}(\cdot)$ is a C^{*}-seminorm (Theorem 8.17 of [8]), hence $p_{\infty}(\cdot)=s(\cdot) \geq r(\cdot)$. In this case, $\operatorname{rad}(A)=$ $\operatorname{srad}(A)$. Let $A_{q}=A / \operatorname{rad}(A)$ which is a dense *-subalgebra of the C^{*}-algebra $E(A)$ and
is also a Frechet Q-algebra with the quotient topology t_{q}. Let $[x]=x+\operatorname{rad}(A)$ for all $x \in A$. Since the spectrum

$$
\operatorname{sp}_{A}(x)=\operatorname{sp}_{A_{q}}([x]), \quad r_{A}(x)=r_{A_{q}}([x]), \quad s_{A}(x)=s_{A_{q}}([x]),
$$

and so $r_{A_{q}}([x]) \leq s_{A_{q}}([x])=\|[x]\|_{\infty}$. Hence $\|\cdot\|_{\infty}$ is a spectral norm on A_{q}, i.e., $\left(A_{q},\|\cdot\|_{\infty}\right)$ is a Q-algebra. Thus A_{q} is spectrally invariant in $E(A)$. Hence by Corollary 7.9 of [10], $K_{*}\left(A_{q}\right)=R K_{*}\left(A_{q}\right)=K_{*}(E(A))$.

Now consider the maps

$$
A \xrightarrow{j} A_{q} \xrightarrow{\text { id }} E(A)
$$

and, for each positive integer n, the induced maps

$$
M_{n}(A) \xrightarrow{j_{n}=j \otimes \mathrm{id}_{n}} M_{n}\left(A_{q}\right)=\left[M_{n}(A)\right]_{q} \xrightarrow{\mathrm{id}} M_{n}(E(A))=E\left(M_{n}(A)\right) .
$$

By the spectral invariance of A in A_{q} via the map $j, j(\operatorname{inv}(A))=\operatorname{inv}\left(A_{q}\right)$, where $\operatorname{inv}(K)$ denotes the group of invertible elements of K. Let $\operatorname{inv}_{0}(\cdot)$ denote the principle component in inv (\cdot). We use the following.

Lemma 5.1. Let B be a Frechet Q-algebra or a normed Q-algebra. Then $\operatorname{inv}_{0}(B)$ is the subgroup generated by the range $\exp B$ of the exponential function.

The Frechet Q-algebra case follows by adapting the proof of the corresponding Banach algebra result in Theorem 1.4.10 of [13]. If ($B,\|\cdot\|$) is a Q-normed algebra, then $(B,\|\cdot\|)$ is advertably complete in the sense that if a Cauchy sequence (x_{n}) converges to an element $x \in \operatorname{inv}\left(B^{\sim}\right)\left(B^{\sim}\right.$ being the completion of $\left.B\right)$, then $x \in B$. Hence the exponential function is defined on B; and then the Banach algebra proof can be adapted.

We use the above lemma to verify the following:
Claim. $j_{n}\left(\operatorname{inv}_{0}\left(M_{n}(A)\right)\right)=\operatorname{inv}_{0}\left(M_{n}\left(A_{q}\right)\right)$.
Take $n=1$. It is clear that $j\left(\operatorname{inv}_{0}(A)\right) \subseteq \operatorname{inv}_{0}\left(A_{q}\right)$. Let $y \in \operatorname{inv}_{0}\left(A_{q}\right)$. Hence $y=\Pi \exp \left(z_{i}\right)$ for finitely many $z_{i}=\left[x_{i}\right]=x_{i}+\operatorname{rad}(A)$ for some x_{i} in A. Then $y=\left[\Pi \exp \left(x_{i}\right)\right]$. Hence $y \in j\left(\operatorname{inv}_{0}(A)\right)$. Thus $j\left(\operatorname{inv}_{0}(A)\right)=\operatorname{inv}_{0}\left(A_{q}\right)$. Now take $n>1$. As A is spectrally invariant in A_{q}, it follows from Theorem 2.1 of [16] that the Frechet Q-algebra $M_{n}(A)$ is spectrally invariant in $M_{n}\left(A_{q}\right)$ via j_{n}. Also, $M_{n}\left(A_{q}\right)=$ $\left(M_{n}(A)\right)_{q}$ is a Q-algebra in both the quotient topology as well as the C^{*}-norm induced from $M_{n}(E(A))=E\left(M_{n} A\right)$. Applying arguments analogous to above, it follows that $j_{n}\left(\operatorname{inv}_{0}\left(M_{n}(A)\right)\right)=\operatorname{inv}_{0}\left(M_{n}\left(A_{q}\right)\right)$.

Now consider the surjective group homomorphisms

$$
\operatorname{inv}\left(M_{n}(A)\right) \xrightarrow{j_{n}} \operatorname{inv}\left(M_{n}\left(A_{q}\right)\right) \xrightarrow{J} \operatorname{inv}\left(M_{n}\left(A_{q}\right)\right) / \operatorname{inv}_{0}\left(M_{n}\left(A_{q}\right)\right) .
$$

It follows that $\operatorname{ker}\left(J \circ j_{n}\right)=\operatorname{inv}_{0}\left(M_{n}(A)\right)$, with the result, the $\operatorname{group} \operatorname{inv}\left(M_{n}(A)\right) /$ $\operatorname{inv}_{0}\left(M_{n}(A)\right)$ is isomorphic to the $\operatorname{group} \operatorname{inv}\left(M_{n}\left(A_{q}\right)\right) / \operatorname{inv}_{0}\left(M_{n}\left(A_{q}\right)\right)$. Hence by the definition of the K-theory group K_{1},

$$
\begin{aligned}
K_{1}(A) & =\lim _{\rightarrow}\left(\operatorname{inv}\left(M_{n}(A)\right) / \operatorname{inv}_{0}\left(M_{n}(A)\right)\right) \\
& =\lim _{\rightarrow}\left(\operatorname{inv}\left(M_{n}\left(A_{q}\right)\right) / \operatorname{inv}_{0}\left(M_{n}\left(A_{q}\right)\right)\right)=K_{1}\left(A_{q}\right) .
\end{aligned}
$$

For B to be A or A_{q}, let the suspension of B be

$$
S B=\{f \in C([0,1], B): f(0)=f(1)=0\} \cong C_{0}(\mathbb{R}, B)
$$

We use the Bott periodicity theorem $K_{0}(B)=K_{1}(S B)$ to show that $K_{0}(A)=K_{0}\left(A_{q}\right)$. It is standard that $\operatorname{rad}(S A)=\operatorname{rad}\left(C_{0}(\mathbb{R}, A)\right) \cong C_{0}(\mathbb{R}, \operatorname{rad}(A))$. Hence

$$
\begin{aligned}
S A_{q} & =C_{0}\left(\mathbb{R}, A_{q}\right)=C_{0}(\mathbb{R}, A / \operatorname{rad}(A)) \cong C_{0}(\mathbb{R}, A) / C_{0}(\mathbb{R}, \operatorname{rad}(A)) \\
& \left.=C_{0}(\mathbb{R}, A) / \operatorname{rad}\left(C_{0}(\mathbb{R}, A)\right)=S A / \operatorname{rad}(A)\right) .
\end{aligned}
$$

Hence

$$
K_{0}\left(A_{q}\right)=K_{1}\left(S A_{q}\right)=K_{1}(S A / \operatorname{rad}(S A))=K_{0}(A)
$$

Thus we have

$$
K_{*}(A)=K_{*}\left(A_{q}\right)=K_{*}(E(A))=R K_{*}(A)=R K_{*}\left(A_{q}\right) .
$$

Now A^{∞} is spectrally invariant in A (Theorem 2.2 of [15]); and the action α on A^{∞} is smooth (Theorem A. 2 of [14]). Then applying the Phillips-Schweitzer analogue of Thom isomorphism for smooth Frechet algebra crossed product (Theorem 1.2 of [11]) and Connes analogue of Thom isomorphism for C^{*}-algebra crossed product [7], it follows that

$$
\begin{aligned}
R K_{*}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right) & =R K_{*+1}\left(A^{\infty}\right)=R K_{*+1}(A)=R K_{*+1}(E(A)) \\
& =R K_{*}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right)=K_{*}\left(C^{*}(\mathbb{R}, E(A), \alpha)\right) .
\end{aligned}
$$

When α is isometric, Theorem 1.3.4 of [11] implies that $R K_{*}\left(S\left(\mathbb{R}, A^{\infty}, \alpha\right)\right)=$ $R K_{*}\left(L^{1}(\mathbb{R}, A, \alpha)\right)$. This completes the proof.

6. An application to the differential structure in C^{*}-algebras

Let \mathcal{U} be a unital ${ }^{*}$-algebra. Let $\|\cdot\|$ be a C^{*}-norm on \mathcal{U}. Let $(A,\|\cdot\|)$ be the completion of $(\mathcal{U},\|\cdot\|)$. Following [5], a map $T: \mathcal{U} \rightarrow l^{1}(\mathbb{N})$ is a differential seminorm if $T(x)=$ $\left(T_{k}(x)\right)_{0}^{\infty} \in l^{1}(\mathbb{N})$ satisfies the following:
(i) $T_{k}(x) \geq 0$ for all k and for all x.
(ii) For all x, y in \mathcal{U} and scalars $\lambda, T(x+y) \leq T(x)+T(y), T(\lambda x)=|\lambda| T(x)$.
(iii) For all x, y in \mathcal{U}, for all k,

$$
T_{k}(x y) \leq \sum_{i+j=k} T_{i}(x) T_{j}(y) .
$$

(iv) There exists a constant $c>0$ such that $T_{0}(x) \leq c\|x\| \forall x \in \mathcal{U}$.

By (ii), each T_{k} is a seminorm. We say that T is a differential ${ }^{*}$-seminorm if additionally;
(v) $T_{k}\left(x^{*}\right)=T_{k}(x)$ for all x and for all k.

Further T is a differential norm if $T(x)=0$ implies $x=0$. Throughout we assume that $T_{0}(x)=\|x\|, x \in \mathcal{U}$. The total norm of T is $T_{\text {tot }}(x)=\sum_{k=0}^{\infty} T_{k}(x), x \in \mathcal{U}$. Given T,
the differential Frechet ${ }^{*}$-algebra defined by T is constructed as follows. For each k, let $p_{k}(x)=\sum_{i=0}^{k} T_{i}(x), x \in \mathcal{U}$. Then each p_{k} is a submultiplicative ${ }^{*}$-norm; and on \mathcal{U}, we have

$$
p_{0} \leq p_{1} \leq p_{2} \leq \cdots \leq p_{k} \leq p_{k+1} \leq \cdots
$$

and $\left(p_{k}\right)_{0}^{\infty}$ is a separating family of submultiplicative *-norms on \mathcal{U}. Let τ be the locally convex ${ }^{*}$-algebra topology on \mathcal{U} defined by $\left(p_{k}\right)_{0}^{\infty}$. Let $\mathcal{U}_{\tau}=(\mathcal{U}, \tau)^{\sim}$ the completion of \mathcal{U} in τ and let $\mathcal{U}_{(k)}=\left(\mathcal{U}, p_{k}\right)^{\sim}$ the completion of \mathcal{U} in p_{k}. Then \mathcal{U}_{τ} is a Frechet locally m convex *-algebra, $\mathcal{U}_{(k)}$ is a Banach *-algebra. Let \mathcal{U}_{T} be the completion of $\left(\mathcal{U}, T_{\text {tot }}\right)$. Then the Banach ${ }^{*}$-algebra $\mathcal{U}_{T}=\left\{x \in \mathcal{U}_{\tau}: \sup _{n} p_{n}(x)<\infty\right\}$, the bounded part of \mathcal{U}_{τ}. By the definitions, there exists continuous surjective ${ }^{*}$-homomorphisms $\phi_{k}: \mathcal{U}_{(k)} \rightarrow A, \phi: \mathcal{U}_{\tau} \rightarrow$ A. The identity map $\mathcal{U} \rightarrow \mathcal{U}$ extends uniquely as continuous surjective ${ }^{*}$-homomorphisms $\varphi_{k}: \mathcal{U}_{(k+1)} \rightarrow \mathcal{U}_{(k)}$ such that

$$
\mathcal{U}_{(0)} \stackrel{\varphi_{0}}{\longleftarrow} \mathcal{U}_{(1)} \stackrel{\varphi_{1}}{\longleftarrow} \mathcal{U}_{(2)} \stackrel{\varphi_{2}}{\longleftarrow} \mathcal{U}_{(3)} \longleftarrow \cdots
$$

is a dense inverse limit sequence of Banach *-algebras and $\mathcal{U}_{\tau}=\lim _{\leftarrow} \mathcal{U}_{(k)}$.
Lemma 6.1 [4]. Let $(\mathcal{U},\|\cdot\|)$ be a C^{*}-normed algebra. Let A be the completion of \mathcal{U}. Let B denote $\mathcal{U}_{(k)}$ or \mathcal{U}_{τ} with respective topologies. Then the following hold:
(i) B is a hermitian Q-algebra.
(ii) $E(B)=A$.
(iii) $K_{*}(B)=K_{*}(A)=R K_{*}(B)$.

The K-theory result follows from the following.
Lemma 6.2 [4]. Let A be a Frechet algebra in which each element is bounded. Let A be spectrally invariant in $E(A)$. Then $K_{*}(A)=K_{*}(E(A))$.

Now let α be an action of \mathbb{R} on A leaving \mathcal{U} invariant. Let T be α-invariant, i.e., $T_{k}(\alpha(x))=T_{k}(x)$ for all k and for all x. Then α induces isometric actions of \mathbb{R} on each of $\mathcal{U}_{(k)}, \mathcal{U}_{\tau}$ and \mathcal{U}_{T}. Let B be as above. Hence the crossed product Frechet ${ }^{*}$-algebras $L^{1}\left(\mathbb{R}, B^{\infty}, \alpha\right), L^{1}(\mathbb{R}, B, \alpha), S(\mathbb{R}, B, \alpha)$ and $S\left(\mathbb{R}, B^{\infty}, \alpha\right)$ are defined. Theorem 2 and Lemma 6.1 give the following, which is Theorem 3(a).

COROLLARY 6.3
$R K_{*}\left(S\left(\mathbb{R}, B^{\infty}, \alpha\right)\right)=R K_{*}(S(\mathbb{R}, B, \alpha))=R K_{*}\left(C^{*}(\mathbb{R}, A, \alpha)\right)=K_{*+1}(A)$.
Now let $\tilde{\mathcal{U}}$ be the completion of \mathcal{U} in the family \mathcal{F} of all α-invariant differential *-norms on \mathcal{U}. Then $\tilde{\mathcal{U}}$ is a complete locally m-convex ${ }^{*}$-algebra admitting a continuous surjective *-homomorphism $\Psi: \tilde{\mathcal{U}} \rightarrow A$. This α-invariant smooth envelope $\tilde{\mathcal{U}}$ is different from the smooth envelope defined in [5], and it need not be a subalgebra of A.
Lemma 6.4. Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $\tilde{\mathcal{U}}$ is a hermitian Q-algebra, $E(\tilde{\mathcal{U}})=A$, and $K_{*}(\tilde{\mathcal{U}})=K_{*}(A)$.

This supplements a comment in p. 279 of [5] that $K_{*}(A)=\dot{K}_{*}\left(\mathcal{U}_{1}\right)$ where \mathcal{U}_{1} is the completion of \mathcal{U} in all, not necessarily α-invariant nor closable, differential seminorms.

Proof. Since $\tilde{\mathcal{U}}=\lim _{\leftarrow} \mathcal{U}_{\tau}$, we have $E(\tilde{\mathcal{U}})=\lim _{\leftarrow} E\left(\mathcal{U}_{\tau}\right)=A$; and $\tilde{\mathcal{U}}$ admits greatest continuous C^{*}-seminorm, say $p_{\infty}(\cdot)$ [1]. It is easily seen that for any $x \in \tilde{\mathcal{U}}$, the spectral radius in $\tilde{\mathcal{U}} r(x) \leq p_{\infty}(x)$; and $\tilde{\mathcal{U}}$ is a hermitian Q-algebra. This implies, in view of $\tilde{E}(\tilde{\mathcal{U}})=$ A, that the spectrum in $\tilde{\mathcal{U}} \operatorname{sp}(x)=\operatorname{sp}_{A}(j(x))$ for all x in $\tilde{\mathcal{U}}$, where $j(x)=x+\operatorname{srad} \tilde{\mathcal{U}}$.

It follows from Lemma 6.2 that $K_{*}(A)=K_{*}(E(A))$. Hence Lemma 6.4 follows.
Now the action α induces an isometric action of \mathbb{R} on $\tilde{\mathcal{U}}$, with the result that the crossed product algebras $S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)$ and $L^{1}(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)$ are defined and are complete locally m-convex *-algebras with a C^{*}-enveloping algebras satisfying

$$
\begin{aligned}
E(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)) & =E\left(L^{1}(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)\right) \\
& =C^{*}(\mathbb{R}, E(\tilde{\mathcal{U}}), \alpha) \\
& =C^{*}(\mathbb{R}, A, \alpha) .
\end{aligned}
$$

Theorem 2 quickly gives the following which is Theorem 3(b).

COROLLARY 6.5

Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $R K_{*}(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha))=K_{*+1}(A)$.

References

[1] Bhatt S J, Karia D J, Topological algebras with C^{*}-enveloping algebras, Proc. Indian Acad. Sci. (Math. Sci.) 102 (1992) 201-215
[2] Bhatt S J, Toplogical *-algebras with C^{*}-enveloping algebras II, Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001) 65-94
[3] Bhatt S J, Inoue A and Ogi H , Unbounded C^{*}-seminorms and unbounded C^{*}-spectral algebras, J. Operator Theory 45 (2001) 53-80
[4] Bhatt S J, Inoue A and Ogi H, Spectral invariance, K-theory isomorphism and an application to the differential structure of C^{*}-algebras, J. Operator Theory 49 (2003) 389-405
[5] Blackadar B and Cuntz J, Differential Banach algebra norms and smooth subalgebras of C^{*}-algebras, J. Operator Theory 26 (1991) 255-282
[6] Brooks R M, On representing F^{*}-algebras, Pacific J. Math. 39 (1971) 51-69
[7] Connes A, An analogue of the Thom isomorphism for crossed products of a C^{*}-algebra by an action of $R, A d v$. Math. 39 (1981) 31-55
[8] Fragoulopoulou M, Symmetric topological ${ }^{*}$-algebras: Applications, Schriften Math. Inst. Uni. Munster, 3 Ser., Heft 9 (1993)
[9] Phillips N C, Inverse limits of C^{*}-algebras, J. Operator Theory 19 (1988) 159-195
[10] Phillips N C, K-theory for Frechet algebras, Int. J. Math. 2(1) (1991) 77-129
[11] Phillips N C and Schweitzer L B, Representable K-theory for smooth crossed products by R and Z, Trans. Am. Math. Soc. 344 (1994) 173-201
[12] Pedersen G K, C^{*}-algebras and their automorphism groups, London Math. Soc. Monograph No. 14 (London, New York, San Francisco: Academic Press) (1979)
[13] Rickart C E, General theory of Banach algebras (D. Van Nostrand Publ. Co.) (1960)
[14] Schweitzer L B, Dense m-convex Frechet algebras of operator algebra crossed products by Lie groups, Int. J. Math. 4 (1993) 601-673
[15] Schweitzer L B, Special invariance of dense subalgebras of operator algebras, Int. J. Math. 4 (1993) 289-317
[16] Schweitzer L B, A short proof that $M_{n}(A)$ is local if A is local and Frechet, Int. J. Math. 3 (1992) 581-589

