Enveloping σ -*C**-algebra of a smooth Frechet algebra crossed product by \mathbb{R} , *K*-theory and differential structure in *C**-algebras

SUBHASH J BHATT

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India E-mail: subhashbhaib@yahoo.co.in

MS received 9 August 2004

Abstract. Given an *m*-tempered strongly continuous action α of \mathbb{R} by continuous *-automorphisms of a Frechet *-algebra *A*, it is shown that the enveloping σ -*C**-algebra $E(S(\mathbb{R}, A^{\infty}, \alpha))$ of the smooth Schwartz crossed product $S(\mathbb{R}, A^{\infty}, \alpha)$ of the Frechet algebra A^{∞} of C^{∞} -elements of *A* is isomorphic to the σ -*C**-crossed product $C^*(\mathbb{R}, E(A), \alpha)$ of the enveloping σ -*C**-algebra E(A) of *A* by the induced action. When *A* is a hermitian *Q*-algebra, one gets *K*-theory isomorphism $RK_*(S(\mathbb{R}, A^{\infty}, \alpha)) = K_*(C^*(\mathbb{R}, E(A), \alpha))$ for the representable *K*-theory of Frechet algebras. An application to the differential structure of a *C**-algebra defined by densely defined differential seminorms is given.

Keywords. Frechet *-algebra; enveloping σ -*C**-algebra; smooth crossed product; *m*-tempered action; *K*-theory; differential structure in *C**-algebras.

1. Introduction

Given a strongly continuous action α of \mathbb{R} by continuous *-automorphisms of a Frechet *-algebra *A*, several crossed product Frechet algebras can be constructed [11,14]. They include the smooth Schwartz crossed product $S(\mathbb{R}, A, \alpha)$, the L^1 -crossed products $L^1(\mathbb{R}, A, \alpha)$ and $L^1_{|\cdot|}(\mathbb{R}, A, \alpha)$, and the σ -*C**-crossed product $C^*(\mathbb{R}, A, \alpha)$. Let E(A) denote the enveloping σ -*C**-algebra of *A* [1,6]; and (A^{∞}, τ) denote the Frechet *-algebra consisting of all C^{∞} -elements of *A* with the C^{∞} -topology τ ([14], Appendix I). The following theorem shows that for a smooth action, the eveloping algebra of smooth crossed product is the continuous crossed product of the enveloping algebra.

Theorem 1. Let α be an *m*-tempered strongly continuous action of \mathbb{R} by continuous *-automorphisms of a Frechet *-algebra A. Let A admit a bounded approximate identity which is contained in A^{∞} and which is a bounded approximate identity for the Frechet algebra A^{∞} . Then $E(S(\mathbb{R}, A^{\infty}, \alpha)) \cong E(L^1_{|\cdot|}(\mathbb{R}, A^{\infty}, \alpha)) \cong C^*(\mathbb{R}, E(A), \alpha)$. Further, if α is isometric, then $E(L^1(\mathbb{R}, A, \alpha)) \cong C^*(\mathbb{R}, E(A), \alpha)$.

Notice that neither $L^1(\mathbb{R}, A, \alpha)$ nor $S(\mathbb{R}, A^{\infty}, \alpha)$ need be a subalgebra of $C^*(\mathbb{R}, E(A), \alpha)$. A particular case of Theorem 1 when A is a dense subalgebra of C^* -algebra has been treated in [2]. Let RK_* (respectively K_*) denote the representable K-theory functor (respectively K-theory functor) on Frechet algebras [10]. We have the following isomorphism of K-theory, obtained without direct appeal to spectral invariance.

Theorem 2. Let A be as in the statement of Theorem 1. Assume that A is hermitian and a Q-algebra. Then $RK_*(S(\mathbb{R}, A^{\infty}, \alpha) \cong K_*(C^*(\mathbb{R}, E(A), \alpha))$. Further if the action α is isometric on A, then $RK_*(L^1(\mathbb{R}, A, \alpha)) \cong K_*(C^*(\mathbb{R}, E(A), \alpha))$.

We apply this to the differential structure of a C^* -algebra. Let α be an action of \mathbb{R} on a C^* -algebra A leaving a dense *-subalgebra \mathcal{U} invariant. Let $T \sim (T_k)_0^\infty$ be a differential *-seminorm on \mathcal{U} in the sense of Blackadar and Cuntz [5] with $T_0(x) = \|\cdot\|$ the C^* -norm from A. Let T be α -invariant. Let $\mathcal{U}_{(k)}$ be the completion of \mathcal{U} in the submultiplicative *-norm $p_k(x) = \sum_{i=0}^k T_i(x)$. The differential Frechet *-algebra defined by T is $\mathcal{U}_{\tau} = \lim \mathcal{U}_{(k)}$, the inverse limit of Banach *-algebras $\mathcal{U}_{(k)}$.

Now consider $\tilde{\mathcal{U}}$ to be the α -invariant smooth envelope of \mathcal{U} defined to be the completion of \mathcal{U} in the collection of all α -invariant differential *-seminorms. Notice that neither \mathcal{U}_{τ} nor $\tilde{\mathcal{U}}$ is a subalgebra of A, though each admits a continuous surjective *-homomorphism onto A induced by the inclusion $\mathcal{U} \to A$. There exists actions of \mathbb{R} on each of \mathcal{U}_{τ} and $\tilde{\mathcal{U}}$ induced by α . The following is a smooth Frechet analogue of Connes' analogue of Thom isomorphism [7]. It supplements an analogues result in [11].

Theorem 3.

(a) $RK_*(S(\mathbb{R}, \mathcal{U}^{\infty}_{\tau}, \alpha)) = K_{*+1}(A).$

(b) Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $RK_*(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)) = K_{*+1}(A)$.

2. Preliminaries and notations

A *Frechet* *-*algebra* (*A*, *t*) is a complete topological involutive algebra *A* whose topology *t* is defined by a separating sequence $\{\|\cdot\|_n : n \in \mathbb{N}\}$ of seminorms satisfying $\|xy\|_n \leq \|x\|_n \|y\|_n$, $\|x^*\|_n = \|x\|_n$, $\|x\|_n \leq \|x\|_{n+1}$ for all *x*, *y* in *A* and all *n* in \mathbb{N} . If each $\|\cdot\|_n$ satisfies $\|x^*x\|_n = \|x\|_n^2$ for all *x* in *A*, then *A* is a σ -*C**-*algebra* [9]. *A* is called a *Q*-*algebra* if the set of all quasi-regular elements of *A* is an open set. For each *n* in \mathbb{N} , let *A_n* be the Hausdorff completion of $(A, \|\cdot\|_n)$. There exists norm decreasing surjective *-homomorphisms $\pi_n: A_{n+1} \to A_n, \pi_n(x + \ker \|\cdot\|_{n+1}) = x + \ker \|\cdot\|_n$ for all $x \in A$. Then the sequence

$$A_1 \xleftarrow{\pi_1} A_2 \xleftarrow{\pi_2} A_3 \xleftarrow{\pi_3} \cdots \xleftarrow{\pi_{n-1}} A_n \xleftarrow{\pi_n} A_{n+1} \xleftarrow{\cdots}$$

is an inverse limit sequence of Banach *-algebras and $A = \lim_{\leftarrow} A_n$, the inverse limit of Banach *-algebras. Let Rep(A) be the set of all *-homomorphisms $\pi: A \to B(H_{\pi})$ of A into the C*-algebras $B(H_{\pi})$ of all bounded linear operators on Hilbert spaces H_{π} . Let

$$\operatorname{Rep}_n(A) := \{ \pi \in \operatorname{Rep}(A) : \text{ there exists } k > 0 \text{ such that} \\ \|\pi(x)\| \le k \|x\|_n \text{ for all } x \}.$$

Then $|x|_n := \sup\{||\pi(x)||: \pi \in \operatorname{Rep}_n(A)\}$ defines a C*-seminorm on A. The star radical of A is

$$\operatorname{srad}(A) = \{x \in A : |x|_n = 0 \text{ for all } n \text{ in } \mathbb{N}\}.$$

The enveloping σ -*C**-algebra (*E*(*A*), τ) of *A* is the completion of *A*/srad(*A*) in the topology τ defined by the *C**-seminorms { $|\cdot|_n: n \in \mathbb{N}$ }, $|x + \operatorname{srad}(A)|_n = |x|_n$ for *x* in *A*.

163

Let α be a strongly continuous action of \mathbb{R} by continuous *-automorphisms of *A*. The C^{∞} -elements of *A* for the action α are

$$A^{\infty} := \{x \in A : t \to \alpha_t(x) \text{ is a } C^{\infty} \text{-function}\}.$$

It is a dense *-subalgebra of A which is a Frechet algebra with the topology defined by the submultiplicative *-seminorms

$$\|x\|_{k,n} = \|x\|_n + \sum_{j=0}^k (1/j!) \|\delta^j x\|_n, \quad n \in \mathbb{N}, \ k \in \mathbb{Z}^+ = \mathbb{N} \cup (0)$$

where δ is the derivation $\delta(x) = (d/dt)\alpha_t(x)|_{t=0}$. By Theorem A.2 of [14], α leaves A^{∞} invariant and each α_t restricted to A^{∞} gives a continuous *-automorphism of the Frechet algebra A^{∞} . The action α is *smooth* if $A^{\infty} = A$.

2.1 Smooth Schwartz crossed product [14]

Assume that α is *m*-tempered in the sense that for each $n \in \mathbb{N}$, there exists a polynomial P_n such that $\|\alpha_r(x)\|_n \leq P_n(r)\|x\|_n$ for all $r \in \mathbb{R}$ and all $x \in A$. Let $S(\mathbb{R})$ be the Schwartz space. The completed (projective) tensor product $S(\mathbb{R}) \otimes A = S(\mathbb{R}, A)$ consisting of *A*-valued Schwartz functions on \mathbb{R} is a Frechet algebra with the twisted convolution

$$(f * g)(r) = \int_{R} f(s)\alpha_{s}(g(r-s))ds$$

called the *smooth Schwartz crossed product by* \mathbb{R} denoted by $S(\mathbb{R}, A, \alpha)$. The algebra $S(\mathbb{R}, A^{\infty}, \alpha)$ is a Frechet *-algebra with the involution $f^*(r) = \alpha_r (f(-r)^*)$ (Corollary 4.9 of [14]) whose topology τ_s is defined by the seminorms

$$\|f\|_{n,l,m} = \sum_{i+j=n} \int_{R} (1+|r|)^{i} \|f^{(j)}(r)\|_{l,m} \mathrm{d}r, \quad n \in \mathbb{Z}^{+}, l \in \mathbb{Z}^{+}, m \in \mathbb{N}$$

where

$$\|f^{(j)}(r)\|_{l,m} = \sum_{k=0}^{l} (1/k!) \|\delta^k(\alpha_s((\mathrm{d}^j/\mathrm{d} r^j)f(r))|_{s=0}\|_m$$

(Theorem 3.1.7 of [14], [11]). These seminorms are submultiplicative if α is isometric on *A* in the sense that $\|\alpha_r(x)\|_n = \|x\|_n$ for all $n \in \mathbb{N}$ and all $x \in A$.

2.2 L^1 -crossed products [11,14]

Let F_d be the set of all functions $f: \mathbb{R} \to A$ for which

$$||f||_{d,m} := \int_{R} (1+|r|)^{d} ||f(r)||_{m} \mathrm{d}r < \infty$$

for all m in \mathbb{N} . Here \int denotes the upper integral. Let \mathbb{L}_d be the closure in F_d of the set of all measurable simple functions $f: \mathbb{R} \to A$ in the topology on F_d given by the seminorms $\{ \| \cdot \|_{d,m} : m \in \mathbb{N} \}$. Let $N_d = \cap \{ \ker \| \cdot \|_{d,m} : m \in \mathbb{N} \}$. Then $N_d = N_{d+1}$; $L_d := \mathbb{L}_d/N_d$

164 Subhash J Bhatt

is complete in $\{\|\cdot\|_{d,m} : m \in \mathbb{N}\}$ and $L_{d+1} \to L_d$ continuously. The space of $|\cdot|$ -rapidly vanishing L^1 -functions from \mathbb{R} to A is $L^1_{|\cdot|}(\mathbb{R}, A, \alpha) := \cap \{L_d : d \in \mathbb{Z}^+\}$, a Frechet algebra with the topology given by the seminorms $\{\|\cdot\|_{d,m} : m \in \mathbb{N}, d \in \mathbb{Z}^+\}$ and with twisted convolution. Assume that α is isometric on $(A, \{\|\cdot\|_n\})$. Then the completed projective tensor product $L^1(\mathbb{R}) \otimes A = L^1(\mathbb{R}, A)$ is a Frechet *-algebra with twisted convolution and the involution $f \to f^*$. This L^1 -crossed product is denoted by $L^1(\mathbb{R}, A, \alpha)$. Notice that α is isometric on $(A^{\infty}, \{\|\cdot\|_{n,m}\})$ also, so that the Frechet *- algebra $L^1(\mathbb{R}, A^{\infty}, \alpha)$ is defined; and then the induced actions $(\alpha_r f)(s) = \alpha_r(f(s))$ on $L^1(\mathbb{R}, A^{\infty}, \alpha)$ and on $L^1(\mathbb{R}, A, \alpha)$ are also isometric.

2.3 σ -C*-crossed product

Assume that α is isometric. We define the σ -*C*^{*}-*crossed product* $C^*(\mathbb{R}, A, \alpha)$ of *A* by \mathbb{R} to be the enveloping σ -*C*^{*}-algebra $E(L^1(\mathbb{R}, A, \alpha))$ of $L^1(\mathbb{R}, A, \alpha)$.

3. Technical lemmas

Lemma 3.1. Let α be *m*-tempered on *A*. Then α extends as a strongly continuous isometric action of \mathbb{R} by continuous *-automorphisms of the σ -*C**-algebra *E*(*A*).

Proof. By the *m*-temperedness of α , for each $n \in \mathbb{N}$, there exists a polynomial P_n such that for all $x \in A$ and all $r \in \mathbb{R}$, $\|\alpha_r(x)\|_n \leq P_n(r)\|x\|_n$. Let $r \in \mathbb{R}$. Let $x \in \operatorname{srad}(A)$. Then for all $\pi \in \operatorname{Rep}(A)$, $\pi(x) = 0$, so that $\sigma(\alpha_r(x)) = 0$ for all $\sigma \in \operatorname{Rep}(A)$, hence $\alpha_r(x) \in \operatorname{srad}(A)$. Thus $\alpha_r(\operatorname{srad}(A)) \subseteq \operatorname{srad}(A)$, and the map

$$\tilde{\alpha}_r : A/\operatorname{srad}(A) \to A/\operatorname{srad}(A), \quad \tilde{\alpha}_r([x]) = [\alpha_r(x)],$$

where $[x] = x + \operatorname{srad}(A)$, is a well-defined *-homomorphism. Further, let $\tilde{\alpha}_r[x] = 0$. Then $\alpha_r(x) \in \operatorname{srad}(A)$. Hence $x = \alpha_{-r}(\alpha_r(x)) \in \operatorname{srad}(A)$, [x] = 0. Thus $\tilde{\alpha}_r$ is one-to-one, which is clearly surjective. Now, for each $n \in \mathbb{N}$, and for all $x \in A$,

$$|\tilde{\alpha}_r[x]|_n = |[\alpha_r(x)]|_n \le ||\alpha_r(x)||_n \le P_n(r)||x||_n$$

Since, by definition, $|\cdot|_n$ is the greatest C^* -seminorm on $A/\operatorname{srad}(A)$ satisfying that for some $k_n > 0$, $|[z]|_n \le k_n ||z||_n$ for all $z \in A$, it follows that $|\tilde{\alpha}_r[x]|_n \le |[x]|_n$ for all x in A. Hence

$$|[x]|_n \le |\tilde{\alpha}_{-r}(\tilde{\alpha}_r[x])|_n = |\tilde{\alpha}_{-r}[\alpha_r(x)]|_n \le |[\alpha_r(x)]|_n = |\tilde{\alpha}_r[x]|_n$$

showing that $|\tilde{\alpha}_r[x]|_n = |[x]|_n$ for all $x \in A$, $r \in \mathbb{R}$, $n \in \mathbb{N}$. It follows that $\tilde{\alpha}_r$ extends as a *-automorphism $\tilde{\alpha}_r$: $E(A) \to E(A)$ satisfying $|\tilde{\alpha}_r(z)|_n = |z|_n$ for all $z \in A$ and all $n \in \mathbb{N}$; and $\tilde{\alpha}$: $\mathbb{R} \to \operatorname{Aut}^*(E(A))$, $r \to \tilde{\alpha}_r$ defines an isometric action of \mathbb{R} on E(A). We verify that $\tilde{\alpha}$ is strongly continuous. Let $z \in E(A)$. It is sufficient to prove that the map $f: \mathbb{R} \to E(A)$, $f(r) = \alpha_r(z)$ is continuous at r = 0. Choose $z_n = [x_n]$ in $A/\operatorname{srad}(A)$ such that $z_n \to z$ in E(A). Fix $k \in \mathbb{N}$, $\varepsilon > 0$. Choose n_0 in \mathbb{N} such that $|z_{n_0} - z|_k < \varepsilon/3$ with $z_{n_0} = [x_{n_0}]$. Then for all $r \in \mathbb{R}$, $|\tilde{\alpha}_r(z) - \tilde{\alpha}_r(z_{n_0})|_k = |z - z_{n_0}|_k < \varepsilon/3$. Since α is strongly continuous, there exists a $\delta > 0$ such that $|r| < \delta$ implies that $||\alpha_r(x_0) - x_0||_k < \varepsilon/3$. Then for all such r, $|\tilde{\alpha}_r(z) - z|_k < \varepsilon$ showing the desired continuity of f. This completes the proof. \Box *Notation*. Henceforth we denote the action $\tilde{\alpha}$ by α .

A *covariant representation* of the Frechet algebra dynamical system (\mathbb{R} , A, α) is a triple (π , U, H) such that

- (a) $\pi: A \to B(H)$ is a *-homomorphism;
- (b) $U: \mathbb{R} \to \mathcal{U}(H)$ is a strongly continuous unitary representation of \mathbb{R} on H; and
- (c) $\pi(\alpha_t(x)) = U_t \pi(x) U_t^*$ for all $x \in A$ and all $t \in \mathbb{R}$.

The following is an analogue of Proposition 7.6.4, p. 257 of [12] which can be proved along the same lines. Let $C_c^{\infty}(\mathbb{R}, A^{\infty}) = C_c^{\infty}(\mathbb{R}) \otimes A^{\infty}$ (completed projective tensor product) be the space of all A^{∞} -valued C^{∞} -functions on \mathbb{R} with compact supports.

Lemma 3.2. Let A have a bounded approximate identity (e_l) contained in A^{∞} which is also a bounded approximate identity for the Frechet algebra A^{∞} . (In particular, let A be unital.)

 (a) If (π, U, H) is a covariant representation of (ℝ, A[∞], α), then there exists a nondegenerate *- representation (π × U, H) of S(ℝ, A[∞], α) such that

$$(\pi \times U)y = \int_R \pi(y(t))U_t dt$$

for every y in $C_c^{\infty}(\mathbb{R}, A^{\infty})$. The correspondence $(\pi, U, H) \rightarrow (\pi \times U, H)$ is bijective onto the set of all non-degenerate *-representations of $S(\mathbb{R}, A^{\infty}, \alpha)$.

(b) Let α be isometric. Then the above gives a one-to-one correspondence between the covariant representations of (ℝ, A, α) and non-degenerate *-representations of each of L¹(ℝ, A[∞], α) and L¹(ℝ, A, α).

Lemma 3.3. $E(A^{\infty}) = E(A)$; and for all k in \mathbb{Z}^+ , n in \mathbb{N} , $\|_{n,k} = \|_n$.

Proof. Consider the inverse limit $A = \lim_{\leftarrow} A_n$ as in the Introduction. Since α satisfies $\|\alpha_r(x)\|_n \leq P_n(r)\|x\|_n$ for all $x \in \mathbb{R}$, all $r \in A$ and all $n \in \mathbb{N}$, it follows that for each n, α 'extends' uniquely as a strongly continuous action $\alpha^{(n)}$ of \mathbb{R} by continuous *-automorphisms of the Banach *-algebra A_n . Let $(A_{n,m}, \|\cdot\|_{n,m})$ be the Banach algebra consisting of all C^m -elements y of A_n with the norm $\|\cdot\|_{n,m} = \|y\|_n + \sum_{i=1}^m (1/i!) \|\delta^i(x)\|_n$. Let $(A_n^\infty, \{\|\|\|_{m,n}: m \in \mathbb{Z}^+\})$ be the Frechet algebra consisting of all C^∞ -elements of A_n for the action $\alpha^{(n)}$. Then

$$A^{\infty} = \lim A_n^{\infty} = \lim \lim A_{m,n} = \lim A_{n,n}.$$

By Theorem 2.2 of [15], each $A_{m,n}$ is dense and spectrally invariant in A_n . Hence each $A_{n,m}$ is a *Q*-normed algebra in the norm $\|\cdot\|_n$ of A_n .

Let $\pi: A^{\infty} \to B(H)$ be a *-representation of A on a Hilbert space H. Since the topology of A^{∞} is determined by the seminorms

$$||x||_{n,n} = ||x||_n + \sum_{j=1}^n (1/j!) ||\delta^j(x)||_n, \quad n \in \mathbb{N}$$

it follows that for some k > 0, $||\pi(x)|| \le k ||x||_{n,n}$ for all $a \in A^{\infty}$. Hence π defines a *-homomorphism $\pi: (A_{n,n}, || \cdot ||_{n,n}) \to B(H)$ satisfying $||\pi(x)|| \le k ||x||_{n,n}$ for all x in

 $A_{n,n}$. Since $(A_{n,n}, || ||_n)$ is a *Q*-normed *-algebra, this map π is continuous in the norm $|| ||_n$ on $A_{n,n}$. In fact, for all x in A^{∞} ,

$$\|\pi(x)\|^{2} = \|\pi(x^{*}x)\| = r_{B(H)}(\pi(x^{*}x)) \le r_{A_{n,n}}(\pi(x^{*}x + \ker \| \|_{n,n}))$$
$$\le \|x^{*}x + \ker \| \|_{n}\| = \|x^{*}x\|_{n} \le \|x\|^{2}.$$

Thus $||\pi(x)|| \le ||x||_n$ for all x in A^{∞} . Since A^{∞} is dense in A, π can be uniquely extended as a *-representation $\pi: A \to B(H)$ satisfying that $||\pi(x)|| \le ||x||_n$ for all x in A. Then by the definition of the C*-seminorm $||_n$ on A, π extends as a continuous *-homomorphism $\tilde{\pi}: E(A) \to B(H)$ such that $||\tilde{\pi}(x)|| \le |x|_n$ for all x in E(A). This also implies that $E(A^{\infty}) = E(A)$ and $|\cdot|_{n,m} = |\cdot|_n$ for all n, m.

Lemma 3.4. Let B be a σ -C*-algebra. Let $j: A \to E(A)$ be $j(x) = x + \operatorname{srad}(A)$. Let $\pi: A \to B$ be a*-homomorphism. Then there exists a unique *-homomorphism $\tilde{\pi}: E(A) \to B$ such that $\pi = \tilde{\pi} \circ j$.

This follows immediately by taking $B = \lim_{\leftarrow} B_n$, where B_n 's are C^* -algebras, and by the universal property of E(A).

4. Proof of Theorem 1

Step I. $\operatorname{Rep}(S(\mathbb{R}, A^{\infty}, \alpha)) = \operatorname{Rep}(S(\mathbb{R}, E(A), \alpha)) = \operatorname{Rep}(L^1(\mathbb{R}, E(A), \alpha))$ up to one-to-one correspondence.

By Lemma 3.1, the Frechet algebras $S(\mathbb{R}, E(A), \alpha)$ and $L^1(\mathbb{R}, E(A), \alpha)$ are *-algebras with the continuous involution $y \rightarrow y^*, y^*(t) = \alpha_t(y(-t))^*$. By Lemma 3.2, $\operatorname{Rep}(S(\mathbb{R}, E(A), \alpha)) = \operatorname{Rep}(L^1(\mathbb{R}, E(A), \alpha))$ each identified with the set of all covariant representations. Let ρ : $S(\mathbb{R}, A^{\infty}, \alpha) \rightarrow B(H)$ be in $\operatorname{Rep}(S(\mathbb{R}, A^{\infty}, \alpha))$. There exists c > 0 and appropriate n, l, m such that for all y,

$$\|\rho(\mathbf{y})\| \le c \|\mathbf{y}\|_{n,l,m} = c \sum_{i+j=n} \int_{R} (1+|r|)^{i} \|\mathbf{y}^{(j)}(r)\|_{l,m} \mathrm{d}r.$$
(1)

By Lemma 3.2, there exists a covariant representation (π, U, H) of $(\mathbb{R}, A^{\infty}, \alpha)$ on H such that $\rho = \pi \times U$. Thus $\pi: A^{\infty} \to B(H)$ is a *-homomorphism and $U: \mathbb{R} \to U(H)$ is a strongly continuous unitary representation such that

(i) $\rho(f) = \int_{R} \pi(f(t)) U_t dt$ for all f in $S(\mathbb{R}, A^{\infty}, \alpha)$, (2)

(ii)
$$\pi(\alpha_t(x)) = U_t \pi(x) U_t^*$$
 for all $x \in A^\infty, t \in \mathbb{R}$, (3)

(iii) there exists
$$K > 0$$
 such that $||\pi(x)|| \le k ||x||_{l,m}$ for all $x \in A^{\infty}$

The l, m in (iii) are the same as in (1). Let $\{|\cdot|_{l,m} : l \text{ in } \mathbb{Z}^+, m \text{ in } \mathbb{N}\}$ be the sequence of C^* -seminorms on A^{∞} (and also on $E(A^{\infty})$ via srad A^{∞}) which are defined by the submultiplicative *-seminorms $\{||\cdot||_{l,m} : l \text{ in } \mathbb{Z}^+, m \text{ in } \mathbb{N}\}$. Then $|\cdot|_{l,m}$ is the greatest C^* -seminorm on A^{∞} satisfying that there exists $M = M_{l,m} > 0$ such that $|\cdot|_{l,m} \le M ||\cdot||_{l,m}$. Hence by (iii) above, π can be uniquely extended as a continuous *-homomorphism $\tilde{\pi} : E(A^{\infty}) \to B(H)$ such that $\tilde{\pi}(j(x)) = \pi(x)$ for all $x \in A^{\infty}$; and

$$\|\tilde{\pi}(x)\| \le |x|_{l,m} \text{ for all } x \in E(A^{\infty}).$$
(4)

Here j is the map $j: A^{\infty} \to E(A^{\infty}), j(x) = x + \operatorname{srad} A^{\infty}$. Let l denote $\max(l, m)$. Then we have

$$\begin{aligned} \|\rho(y)\| &\leq c \|y\|_{n,l,l} \text{ for all } y \in S(\mathbb{R}, A^{\infty}, \alpha); \\ \|\pi(x)\| &\leq k \|x\|_{l,l} \text{ for all } x \in A^{\infty}; \\ \|\tilde{\pi}(z)\| &\leq |z|_{l,l} \text{ for all } z \in E(A^{\infty}). \end{aligned}$$

$$(5)$$

By Lemma 3.3, $\tilde{\pi}$: $E(A) \to B(H)$ is a *-representation satisfying $\|\tilde{\pi}(x)\| \le |x|_l$ for all x in E(A). We have the following commutative diagram.

Now, let α : $\mathbb{R} \to \operatorname{Aut}^* E(A)$ be the action on E(A) induced by α as in Lemma 3.1 satisfying

$$\alpha_t(j(x)) = j(\alpha_t(x)) \quad \text{for all } x \text{ in } A.$$
(6)

Then $(\tilde{\pi}, U, H)$ is a covariant representation of $(\mathbb{R}, E(A), \alpha)$. Indeed, let $x \in A^{\infty}$, y = j(x). Then for all $t \in \mathbb{R}$,

$$\tilde{\pi}(\alpha_t(y)) = \tilde{\pi}(\alpha_t(j(x))) = \tilde{\alpha}(j(\alpha_t(x))) = \pi(\alpha_t(x)) = U_t \pi(x) U_t^*$$
$$= U_t \tilde{\pi}(j(x)) U_t^* = U_t \tilde{\pi}(y) U_t^*.$$

By the continuity of $\tilde{\pi}$ and α_t , it follows that $\tilde{\pi}(\alpha_t(y)) = U_t \tilde{\pi}(y) U_t^*$ for all $y \in E(A)$ and all $t \in \mathbb{R}$. Hence by Lemma 3.2, $\tilde{\rho} = \tilde{\pi} \times U$ is a non-degenerate *-representation of each of $S(\mathbb{R}, E(A), \alpha)$ and $L^1(\mathbb{R}, E(A), \alpha)$ satisfying, for some constants *c* and *c'*, the following (using (5)):

(iv) For all
$$f$$
 in $L^1(\mathbb{R}, E(A), \alpha)$, $\|\rho(f)\| \le c|f|_l = c \int_R |f(t)|_l dt$.
(v) For all f in $S(\mathbb{R}, E(A), \alpha)$, $\|\tilde{\rho}(f)\| \le c'|f|_{n,l,m}$. (7)

Thus given a *-representation ρ of $S(\mathbb{R}, A^{\infty}, \alpha)$, there is canonically associated a *-representation $\tilde{\rho}$ of each of $S(\mathbb{R}, E(A), \alpha)$ and $L^1(\mathbb{R}, E(A), \alpha)$.

Conversely, given ρ in Rep $(S(\mathbb{R}, E(A), \alpha))$, $\rho = \pi \times U$ for a covariant representation (π, U) of $(\mathbb{R}, E(A), \alpha)$, $\pi \circ j$ is a covariant representation of A, and then $(\pi \circ j) \times U$ is in Rep $(S(\mathbb{R}, A^{\infty}, \alpha))$.

Step II. The σ -C*-algebra $C^*(\mathbb{R}, E(A), \alpha)$ is universal for the *-representations of the Frechet algebra $S(\mathbb{R}, A^{\infty}, \alpha)$.

Subhash J Bhatt

Let \tilde{j} : $S(\mathbb{R}, A^{\infty}, \alpha) \to L^{1}(\mathbb{R}, E(A), \alpha)$ be the map $\tilde{j}(f) = j \circ f = \tilde{f} \text{ (say)}, \quad \text{i.e.,}$ $\tilde{j}(f)(r) = j(f(r)) = f(r) + \operatorname{srad}(A)^{\infty} \text{ for all } r \in \mathbb{R}.$ (8)

Notice that the map \tilde{j} is defined and is continuous; because $(S(\mathbb{R}, A^{\infty}, \alpha)) \subset L^1(\mathbb{R}, A^{\infty}, \alpha) \subset L^1(\mathbb{R}, A, \alpha)$, and for *n* in \mathbb{N} and *m* in \mathbb{Z}^+ , all *f* in $S(\mathbb{R}, A^{\infty}, \alpha)$,

$$\|\tilde{f}(t)\|_{n} \leq \|f(t)\|_{n} \leq M \|f(t)\|_{m,n}, \text{ and hence}$$
$$\int_{R} \|\tilde{f}(t)\|_{l} dt \leq \int_{R} \|f(t)\|_{m,n} dt < \infty$$

so that $f \in L^1(\mathbb{R}, E(A), \alpha)$. Let $j_1: L^1(\mathbb{R}, E(A), \alpha) \to C^*(\mathbb{R}, E(A), \alpha)$ be the natural map $j_1(f) = f + \operatorname{srad}(L^1(\mathbb{R}, E(A), \alpha))$. This gives the continuous *-homomorphism

$$J: j_{1} \circ \tilde{j}: S(\mathbb{R}, A^{\infty}, \alpha) \to C^{*}(\mathbb{R}, E(A), \alpha).$$

$$S(\mathbb{R}, A^{\infty}, \alpha)$$

$$\tilde{j}$$

$$L^{1}(\mathbb{R}, E(A), \alpha)$$

$$\rho$$

$$B(H).$$

$$j_{1}$$

$$\rho$$

$$C^{*}(\mathbb{R}, E(A), \alpha)$$

$$(9)$$

Let $\rho \in \operatorname{Rep}(S(\mathbb{R}, A^{\infty}, \alpha)), \rho = \pi \times U$ in usual notations with $\pi: A^{\infty} \to B(H)$ in $\operatorname{Rep}(E(A))$ such that $\pi = \tilde{\pi} \circ j$. Let $\tilde{\rho}: L^1(\mathbb{R}, E(A), \alpha) \to B(H)$ be $\tilde{\rho} = \tilde{\pi} \times U$. Then for all f in $S(\mathbb{R}, A^{\infty}, \alpha)$,

$$\tilde{\rho}(\tilde{j}(f)) = (\tilde{\pi} \times U)(\tilde{j}(f)) = \int_{R} \tilde{\pi}(\tilde{j}(f)(t))U_{t}dt = \int_{R} \tilde{\pi}(j \circ f)(t)U_{t}dt$$
$$= \int_{R} \tilde{\pi}(j(f(t)))U_{t}dt = \int_{R} \tilde{\pi}(f(t) + \operatorname{srad}(A))U_{t}dt$$
$$= \int_{R} \pi(f(t))U_{t}dt = \rho(f).$$

Thus $\tilde{j} \circ \tilde{\rho} = \rho$; and hence $J \circ \bar{\rho} = \rho$, where $J = j_1 \circ \tilde{j}$ and $\bar{\rho} \in \operatorname{Rep}(C^*(\mathbb{R}, E(A), \alpha))$ is defined by $j_1 \circ \bar{\rho} = \tilde{\rho}$ in view of $C^*(\mathbb{R}, E(A), \alpha) = E(L^1(\mathbb{R}, E(A), \alpha))$.

Step III. Given a *-homomorphism $\rho: S(\mathbb{R}, A^{\infty}, \alpha) \to B$ from $S(\mathbb{R}, A^{\infty}, \alpha)$ to a σ -*C**-algebra *B*, there exists *-homomorphisms $\tilde{\rho}: L^1(\mathbb{R}, E(A), \alpha) \to B$, $\tilde{\rho}: C^*(\mathbb{R}, E(A), \alpha) \to B$ such that $\rho = \tilde{\rho} \circ \tilde{j} = \bar{\rho} \circ J$ and $\tilde{\rho} = \bar{\rho} \circ j_1$.

This follows by applying Step II to each of the factor C^* -algebra B_n in the inverse limit decomposition of B.

Step IV. $C^*(\mathbb{R}, E(A), \alpha) = E(S(\mathbb{R}, A^{\infty}, \alpha))$ up to homeomorphic *-isomorphism.

168

Let $k: S(\mathbb{R}, E(A), \alpha) \to E(S(\mathbb{R}, A^{\infty}, \alpha))$ be $k(f) = f + \text{srad } S(\mathbb{R}, A^{\infty}, \alpha)$. Then there exists a *-homomorphism $\bar{k}: C^*(\mathbb{R}, E(A), \alpha) \to E(S(\mathbb{R}, A^{\infty}, \alpha))$ such that $\bar{k} \circ J = k$. We show that \bar{k} is the desired homeomorphic *-isomorphism making the following diagram commutative.

$$C^{*}(\mathbb{R}, E(A), \alpha) \xrightarrow{\overline{k}} E(S(\mathbb{R}, A^{\infty}, \alpha)).$$
(10)

By the universal property of $E(S(\mathbb{R}, A^{\infty}, \alpha))$, there exists a *-homomorphism \overline{J} : $E(S(\mathbb{R}, A^{\infty}, \alpha)) \rightarrow C^*(\mathbb{R}, E(A), \alpha)$ such that $\overline{J} \circ k = J$. We claim that $|\overline{k}|_{\mathrm{Im}(J)}$ is injective. Indeed, let $f \in S(\mathbb{R}, A^{\infty}, \alpha)$ be such that $\overline{k}(J(f)) = 0$. Hence k(f) = 0, so that $f \in \mathrm{srad}(S(\mathbb{R}, A^{\infty}, \alpha))$. Thus, for all $\rho \in \mathrm{Rep}(S(\mathbb{R}, A^{\infty}, \alpha))$, $\rho(f) = 0$. Therefore, by Step I, $\sigma(\overline{f}) = 0$ for all $\sigma \in \mathrm{Rep}(L^1(\mathbb{R}, E(A), \alpha))$. (Recall that $\overline{f} = j \circ f = \overline{j}(f)$.) Hence $\overline{j}(f)$ is in $\mathrm{srad}(L^1(\mathbb{R}, E(A), \alpha))$, and so $j_1(\overline{j}(f)) = 0$. Therefore J(f) = 0. It follows that \overline{k} is injective on $\mathrm{Im}(J)$.

Now by (10) and the injectivity of \bar{k} on Im(*J*), $\bar{J} \circ k = J$. Hence $J = \bar{J} \circ \bar{k} \circ J$, and so $\bar{J} \circ \bar{k} = \text{id}$ on Im(*J*). Similarly $\bar{k} \circ \bar{J}(k(f)) = \bar{k}(J(f)) = k(f)$, hence $\bar{k} \circ \bar{J} = \text{id}$ on Im(*k*). Thus $\bar{k} = (\bar{J})^{-1}$ on Im(*J*). Thus \bar{k} is a homeomorphic *-isomorphism from the dense *-subalgebra $J(S(\mathbb{R}, A^{\infty}, \alpha))$ of $C^*(\mathbb{R}, E(A), \alpha)$ on the dense *-subalgebra $k(S(\mathbb{R}, A^{\infty}, \alpha))$ of $E(S(\mathbb{R}, A^{\infty}, \alpha))$. It follows that $C^*(\mathbb{R}, E(A), \alpha)$ is homeomorphically *-isomorphic to $E(S(\mathbb{R}, A^{\infty}, \alpha))$.

Step V.
$$E(L^1_{|\cdot|}(\mathbb{R}, A^{\infty}, \alpha)) = C^*(\mathbb{R}, E(A), \alpha).$$

Let \mathbb{R} act on $L^1_{|\cdot|}(\mathbb{R}, A, \alpha)$ by xf(y) = f(x - y). For this action, $(L^1_{|\cdot|}(\mathbb{R}, A, \alpha))^{\infty} = S(\mathbb{R}, A, \alpha)$ by Theorem 2.1.7 of [14]. Thus $S(\mathbb{R}, A^{\infty}, \alpha) = (L^1_{|\cdot|}((\mathbb{R}, A, \alpha))^{\infty}$. Hence by Lemma 3.4, $E(L^1_{|\cdot|}(\mathbb{R}, A^{\infty}, \alpha))^{\infty} = E(S(\mathbb{R}, A^{\infty}, \alpha)) = C^*(\mathbb{R}, E(A), \alpha)$. This completes the proof of Theorem 1.

5. Proof of Theorem 2

Let the Frechet algebra *A* be hermitian and a *Q*-algebra. Hence *A* is spectrally bounded, i.e., the spectral radius $r(x) = r_A(x) < \infty$ for all $x \in A$. Let $s_A(x) := r(x^*x)^{1/2}$ be the Ptak's spectral function on *A*. By Corollary 2.2 of [1], E(A) is a *C**-algebra, the complete *C**-norm of E(A) being defined by the greatest *C**-seminorm $p_{\infty}(\cdot)$ (automatically continuous) on *A*. Now for any $x \in A$,

$$p_{\infty}(x)^{2} = p_{\infty}(x^{*}x) = \|x^{*}x + \operatorname{srad}(A)\|$$

= $r_{E(A)}(x^{*}x + \operatorname{srad}(A)) \le r_{A}(x^{*}x) = s_{A}(x)^{2}$.

Hence $p_{\infty}(x) \leq s_A(x)$ for all $x \in A$. By the hermiticity and *Q*-property, $s_A(\cdot)$ is a C^* -seminorm (Theorem 8.17 of [8]), hence $p_{\infty}(\cdot) = s(\cdot) \geq r(\cdot)$. In this case, rad(A) = srad(A). Let $A_q = A/rad(A)$ which is a dense *-subalgebra of the C^* -algebra E(A) and

is also a Frechet *Q*-algebra with the quotient topology t_q . Let [x] = x + rad(A) for all $x \in A$. Since the spectrum

$$sp_A(x) = sp_{A_q}([x]), \quad r_A(x) = r_{A_q}([x]), \quad s_A(x) = s_{A_q}([x]),$$

and so $r_{A_q}([x]) \leq s_{A_q}([x]) = ||[x]||_{\infty}$. Hence $|| \cdot ||_{\infty}$ is a spectral norm on A_q , i.e., $(A_q, || \cdot ||_{\infty})$ is a *Q*-algebra. Thus A_q is spectrally invariant in E(A). Hence by Corollary 7.9 of [10], $K_*(A_q) = RK_*(A_q) = K_*(E(A))$.

Now consider the maps

 $A \xrightarrow{j} A_q \xrightarrow{\text{id}} E(A)$

and, for each positive integer n, the induced maps

$$M_n(A) \xrightarrow{j_n = j \otimes \mathrm{id}_n} M_n(A_q) = [M_n(A)]_q \xrightarrow{\mathrm{id}} M_n(E(A)) = E(M_n(A)).$$

By the spectral invariance of A in A_q via the map j, $j(inv(A)) = inv(A_q)$, where inv(K) denotes the group of invertible elements of K. Let $inv_0(\cdot)$ denote the principle component in $inv(\cdot)$. We use the following.

Lemma 5.1. Let B be a Frechet Q-algebra or a normed Q-algebra. Then $inv_0(B)$ is the subgroup generated by the range exp B of the exponential function.

The Frechet *Q*-algebra case follows by adapting the proof of the corresponding Banach algebra result in Theorem 1.4.10 of [13]. If $(B, \|\cdot\|)$ is a *Q*-normed algebra, then $(B, \|\cdot\|)$ is advertably complete in the sense that if a Cauchy sequence (x_n) converges to an element $x \in inv(B^{\sim})$ (B^{\sim} being the completion of *B*), then $x \in B$. Hence the exponential function is defined on *B*; and then the Banach algebra proof can be adapted.

We use the above lemma to verify the following:

Claim. $j_n(inv_0(M_n(A))) = inv_0(M_n(A_q)).$

Take n = 1. It is clear that $j(inv_0(A)) \subseteq inv_0(A_q)$. Let $y \in inv_0(A_q)$. Hence $y = \prod \exp(z_i)$ for finitely many $z_i = [x_i] = x_i + \operatorname{rad}(A)$ for some x_i in A. Then $y = [\prod \exp(x_i)]$. Hence $y \in j(inv_0(A))$. Thus $j(inv_0(A)) = inv_0(A_q)$. Now take n > 1. As A is spectrally invariant in A_q , it follows from Theorem 2.1 of [16] that the Frechet Q-algebra $M_n(A)$ is spectrally invariant in $M_n(A_q)$ via j_n . Also, $M_n(A_q) = (M_n(A))_q$ is a Q-algebra in both the quotient topology as well as the C^* -norm induced from $M_n(E(A)) = E(M_nA)$. Applying arguments analogous to above, it follows that $j_n(inv_0(M_n(A))) = inv_0(M_n(A_q))$.

Now consider the surjective group homomorphisms

$$\operatorname{inv}(M_n(A)) \xrightarrow{j_n} \operatorname{inv}(M_n(A_q)) \xrightarrow{J} \operatorname{inv}(M_n(A_q))/\operatorname{inv}_0(M_n(A_q)).$$

It follows that $\ker(J \circ j_n) = \operatorname{inv}_0(M_n(A))$, with the result, the group $\operatorname{inv}(M_n(A))/\operatorname{inv}_0(M_n(A))$ is isomorphic to the group $\operatorname{inv}(M_n(A_q))/\operatorname{inv}_0(M_n(A_q))$. Hence by the definition of the *K*-theory group K_1 ,

$$K_1(A) = \lim_{\to} (\operatorname{inv}(M_n(A))/\operatorname{inv}_0(M_n(A)))$$
$$= \lim_{\to} (\operatorname{inv}(M_n(A_q))/\operatorname{inv}_0(M_n(A_q))) = K_1(A_q).$$

For B to be A or A_q , let the suspension of B be

$$SB = \{f \in C([0, 1], B) : f(0) = f(1) = 0\} \cong C_0(\mathbb{R}, B)$$

We use the Bott periodicity theorem $K_0(B) = K_1(SB)$ to show that $K_0(A) = K_0(A_q)$. It is standard that $rad(SA) = rad(C_0(\mathbb{R}, A)) \cong C_0(\mathbb{R}, rad(A))$. Hence

$$SA_q = C_0(\mathbb{R}, A_q) = C_0(\mathbb{R}, A/\operatorname{rad}(A)) \cong C_0(\mathbb{R}, A)/C_0(\mathbb{R}, \operatorname{rad}(A))$$
$$= C_0(\mathbb{R}, A)/\operatorname{rad}(C_0(\mathbb{R}, A)) = SA/\operatorname{rad}(A)).$$

Hence

$$K_0(A_q) = K_1(SA_q) = K_1(SA/rad(SA)) = K_0(A).$$

Thus we have

$$K_*(A) = K_*(A_q) = K_*(E(A)) = RK_*(A) = RK_*(A_q).$$

Now A^{∞} is spectrally invariant in A (Theorem 2.2 of [15]); and the action α on A^{∞} is smooth (Theorem A.2 of [14]). Then applying the Phillips–Schweitzer analogue of Thom isomorphism for smooth Frechet algebra crossed product (Theorem 1.2 of [11]) and Connes analogue of Thom isomorphism for *C**-algebra crossed product [7], it follows that

$$RK_*(S(\mathbb{R}, A^{\infty}, \alpha)) = RK_{*+1}(A^{\infty}) = RK_{*+1}(A) = RK_{*+1}(E(A))$$
$$= RK_*(C^*(\mathbb{R}, E(A), \alpha)) = K_*(C^*(\mathbb{R}, E(A), \alpha)).$$

When α is isometric, Theorem 1.3.4 of [11] implies that $RK_*(S(\mathbb{R}, A^{\infty}, \alpha)) = RK_*(L^1(\mathbb{R}, A, \alpha))$. This completes the proof.

6. An application to the differential structure in C*-algebras

Let \mathcal{U} be a unital *-algebra. Let $\|\cdot\|$ be a C^* -norm on \mathcal{U} . Let $(A, \|\cdot\|)$ be the completion of $(\mathcal{U}, \|\cdot\|)$. Following [5], a map $T: \mathcal{U} \to l^1(\mathbb{N})$ is a *differential seminorm* if $T(x) = (T_k(x))_0^\infty \in l^1(\mathbb{N})$ satisfies the following:

- (i) $T_k(x) \ge 0$ for all k and for all x.
- (ii) For all x, y in U and scalars λ , $T(x + y) \le T(x) + T(y)$, $T(\lambda x) = |\lambda|T(x)$.
- (iii) For all x, y in \mathcal{U} , for all k,

$$T_k(xy) \le \sum_{i+j=k} T_i(x)T_j(y).$$

(iv) There exists a constant c > 0 such that $T_0(x) \le c ||x|| \quad \forall x \in \mathcal{U}$.

By (ii), each T_k is a seminorm. We say that T is a *differential* *-*seminorm* if additionally;

(v) $T_k(x^*) = T_k(x)$ for all x and for all k.

Further *T* is a *differential norm* if T(x) = 0 implies x = 0. Throughout we assume that $T_0(x) = ||x||, x \in \mathcal{U}$. The *total norm* of *T* is $T_{\text{tot}}(x) = \sum_{k=0}^{\infty} T_k(x), x \in \mathcal{U}$. Given *T*,

the differential Frechet *-algebra defined by *T* is constructed as follows. For each *k*, let $p_k(x) = \sum_{i=0}^k T_i(x), x \in \mathcal{U}$. Then each p_k is a submultiplicative *-norm; and on \mathcal{U} , we have

$$p_0 \leq p_1 \leq p_2 \leq \cdots \leq p_k \leq p_{k+1} \leq \cdots$$

and $(p_k)_0^\infty$ is a separating family of submultiplicative *-norms on \mathcal{U} . Let τ be the locally convex *-algebra topology on \mathcal{U} defined by $(p_k)_0^\infty$. Let $\mathcal{U}_{\tau} = (\mathcal{U}, \tau)^\sim$ the completion of \mathcal{U} in τ and let $\mathcal{U}_{(k)} = (\mathcal{U}, p_k)^\sim$ the completion of \mathcal{U} in p_k . Then \mathcal{U}_{τ} is a Frechet locally *m*convex *-algebra, $\mathcal{U}_{(k)}$ is a Banach *-algebra. Let \mathcal{U}_T be the completion of (\mathcal{U}, T_{tot}) . Then the Banach *-algebra $\mathcal{U}_T = \{x \in \mathcal{U}_{\tau} : \sup_n p_n(x) < \infty\}$, the bounded part of \mathcal{U}_{τ} . By the definitions, there exists continuous surjective *-homomorphisms $\phi_k : \mathcal{U}_{(k)} \to A, \phi : \mathcal{U}_{\tau} \to$ *A*. The identity map $\mathcal{U} \to \mathcal{U}$ extends uniquely as continuous surjective *-homomorphisms $\varphi_k : \mathcal{U}_{(k+1)} \to \mathcal{U}_{(k)}$ such that

$$\mathcal{U}_{(0)} \xleftarrow{\varphi_0} \mathcal{U}_{(1)} \xleftarrow{\varphi_1} \mathcal{U}_{(2)} \xleftarrow{\varphi_2} \mathcal{U}_{(3)} \xleftarrow{\varphi_2} \cdots$$

is a dense inverse limit sequence of Banach *-algebras and $\mathcal{U}_{\tau} = \lim_{k \to \infty} \mathcal{U}_{(k)}$.

Lemma 6.1 [4]. *Let* $(\mathcal{U}, \|\cdot\|)$ *be a* C^* *-normed algebra. Let* A *be the completion of* \mathcal{U} *. Let* B *denote* $\mathcal{U}_{(k)}$ *or* \mathcal{U}_{τ} *with respective topologies. Then the following hold:*

(i) B is a hermitian Q-algebra.

(ii)
$$E(B) = A$$

(iii) $K_*(B) = K_*(A) = RK_*(B)$.

The K-theory result follows from the following.

Lemma 6.2 [4]. Let A be a Frechet algebra in which each element is bounded. Let A be spectrally invariant in E(A). Then $K_*(A) = K_*(E(A))$.

Now let α be an action of \mathbb{R} on A leaving \mathcal{U} invariant. Let T be α -invariant, i.e., $T_k(\alpha(x)) = T_k(x)$ for all k and for all x. Then α induces isometric actions of \mathbb{R} on each of $\mathcal{U}_{(k)}, \mathcal{U}_{\tau}$ and \mathcal{U}_T . Let B be as above. Hence the crossed product Frechet *-algebras $L^1(\mathbb{R}, B^\infty, \alpha), L^1(\mathbb{R}, B, \alpha), S(\mathbb{R}, B, \alpha)$ and $S(\mathbb{R}, B^\infty, \alpha)$ are defined. Theorem 2 and Lemma 6.1 give the following, which is Theorem 3(a).

COROLLARY 6.3

$$RK_*(S(\mathbb{R}, B^{\infty}, \alpha)) = RK_*(S(\mathbb{R}, B, \alpha)) = RK_*(C^*(\mathbb{R}, A, \alpha)) = K_{*+1}(A).$$

Now let $\tilde{\mathcal{U}}$ be the completion of \mathcal{U} in the family \mathcal{F} of all α -invariant differential *-norms on \mathcal{U} . Then $\tilde{\mathcal{U}}$ is a complete locally *m*-convex *-algebra admitting a continuous surjective *-homomorphism $\Psi: \tilde{\mathcal{U}} \to A$. This α -invariant smooth envelope $\tilde{\mathcal{U}}$ is different from the smooth envelope defined in [5], and it need not be a subalgebra of A.

Lemma 6.4. Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $\tilde{\mathcal{U}}$ is a hermitian Q-algebra, $E(\tilde{\mathcal{U}}) = A$, and $K_*(\tilde{\mathcal{U}}) = K_*(A)$.

This supplements a comment in p. 279 of [5] that $K_*(A) = \dot{K}_*(\mathcal{U}_1)$ where \mathcal{U}_1 is the completion of \mathcal{U} in all, not necessarily α -invariant nor closable, differential semi-norms.

Proof. Since $\tilde{\mathcal{U}} = \lim_{\leftarrow} \mathcal{U}_{\tau}$, we have $E(\tilde{\mathcal{U}}) = \lim_{\leftarrow} E(\mathcal{U}_{\tau}) = A$; and $\tilde{\mathcal{U}}$ admits greatest continuous C^* -seminorm, say $p_{\infty}(\cdot)$ [1]. It is easily seen that for any $x \in \tilde{\mathcal{U}}$, the spectral radius in $\tilde{\mathcal{U}}r(x) \leq p_{\infty}(x)$; and $\tilde{\mathcal{U}}$ is a hermitian Q-algebra. This implies, in view of $\tilde{E}(\tilde{\mathcal{U}}) = A$, that the spectrum in $\tilde{\mathcal{U}}sp(x) = sp_A(j(x))$ for all x in $\tilde{\mathcal{U}}$, where $j(x) = x + srad \tilde{\mathcal{U}}$.

It follows from Lemma 6.2 that $K_*(A) = K_*(E(A))$. Hence Lemma 6.4 follows. \Box

Now the action α induces an isometric action of \mathbb{R} on $\tilde{\mathcal{U}}$, with the result that the crossed product algebras $S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)$ and $L^1(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)$ are defined and are complete locally *m*-convex *-algebras with a *C**-enveloping algebras satisfying

$$E(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)) = E(L^{1}(\mathbb{R}, \tilde{\mathcal{U}}, \alpha))$$
$$= C^{*}(\mathbb{R}, E(\tilde{\mathcal{U}}), \alpha)$$
$$= C^{*}(\mathbb{R}, A, \alpha).$$

Theorem 2 quickly gives the following which is Theorem 3(b).

COROLLARY 6.5

Assume that $\tilde{\mathcal{U}}$ is metrizable. Then $RK_*(S(\mathbb{R}, \tilde{\mathcal{U}}, \alpha)) = K_{*+1}(A)$.

References

- Bhatt S J, Karia D J, Topological algebras with C*-enveloping algebras, Proc. Indian Acad. Sci. (Math. Sci.) 102 (1992) 201–215
- Bhatt S J, Toplogical *-algebras with C*-enveloping algebras II, Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001) 65–94
- [3] Bhatt S J, Inoue A and Ogi H, Unbounded *C**-seminorms and unbounded *C**-spectral algebras, *J. Operator Theory* **45** (2001) 53–80
- [4] Bhatt S J, Inoue A and Ogi H, Spectral invariance, K-theory isomorphism and an application to the differential structure of C*-algebras, J. Operator Theory 49 (2003) 389–405
- [5] Blackadar B and Cuntz J, Differential Banach algebra norms and smooth subalgebras of C*-algebras, J. Operator Theory 26 (1991) 255–282
- [6] Brooks R M, On representing F*-algebras, Pacific J. Math. 39 (1971) 51-69
- [7] Connes A, An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of *R*, *Adv. Math.* **39** (1981) 31–55
- [8] Fragoulopoulou M, Symmetric topological *-algebras: Applications, Schriften Math. Inst. Uni. Munster, 3 Ser., Heft 9 (1993)
- [9] Phillips N C, Inverse limits of C*-algebras, J. Operator Theory 19 (1988) 159–195
- [10] Phillips N C, K-theory for Frechet algebras, Int. J. Math. 2(1) (1991) 77-129
- [11] Phillips N C and Schweitzer L B, Representable *K*-theory for smooth crossed products by *R* and *Z*, *Trans. Am. Math. Soc.* **344** (1994) 173–201
- [12] Pedersen G K, C*-algebras and their automorphism groups, London Math. Soc. Monograph No. 14 (London, New York, San Francisco: Academic Press) (1979)
- [13] Rickart C E, General theory of Banach algebras (D. Van Nostrand Publ. Co.) (1960)
- [14] Schweitzer L B, Dense *m*-convex Frechet algebras of operator algebra crossed products by Lie groups, *Int. J. Math.* 4 (1993) 601–673
- [15] Schweitzer L B, Special invariance of dense subalgebras of operator algebras, *Int. J. Math.* 4 (1993) 289–317
- [16] Schweitzer L B, A short proof that $M_n(A)$ is local if A is local and Frechet, *Int. J. Math.* **3** (1992) 581–589