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Abstract. The paper aims at developing a theory of nuclear (in the topological algebraic
sense) pro-C*-algebras (which are inverse limits of C*-algebras) by investigating completely
positive maps and tensor products. By using the structure of matrix algebras over a
pro-C*-algebra, it is shown that a unital continuous linear map between pro-C*-algebras
A and B is completely positive iff by restriction, it defines a completely positive map between
the C*-algebras b(4) and b(B) consisting of all bounded elements of 4 and B. In the metrizable
case, A and B are homeomorphically isomorphic iff they are matricially order isomorphic.
The injective pro-C*-topology « and the projective pro-C*-topology v on A® B are shown
to be minimal and maximal pro-C*-topologies; and « coincides with the topology of
biequicontinous convergence iff either 4 or B is abelian. A nuclear pro-C *.algebra A4 is one
that satisfies, for any pro-C*-algebra (or a C*-algebra) B, any of the equivalent requirements;
(i) = von A® B(ii) 4 is inverse limit of nuclear C*-algebras (iii) there is only one admissible
pro-C*-topology on A® B (iv) the bounded part b(A4) of 4 is a nuclear C*-algebra (v) any
continuous complete state map 4 — B* can be approximated in simple weak* convergence
by certain finite rank complete state maps. This is used to investigate permanence properties
of nuclear pro-C*-algebras pertaining to subalgebras, quotients and projective and inductive
limits. A nuclearity criterion for multiplier alggbras (in particular, the multiplier algebra of
Pedersen ideal of a C*-algebra) is developed and the connection of this C*-algebraic nuclearity
with Grothendieck’s linear topological nuclearity is examined. A g-C*-algebra A is a nuclear
space iff it is an inverse limit of finite dimensional C*-algebras; and if abelian, then 4 is
isomorphic to the algebra (pointwise operations) of all scalar sequences.

Keywords. Inverse limits of C*-algebras; completely positive maps; tensor products; nuclear
C*- and nuclear pro-C*-algebras; multiplier algebras; nuclear space.

1. Introduction and Preliminaries

A topological *algebra A is an involutive linear associative algebra (with identity 1)
over complex scalars admitting a Hausdorff topology such that A is a topological
vector space in which the multiplication and the involution are continuous. ‘A
pro-C*-algebra is a complete topological *algebra A the topology on which is
determined by the collection S(4) of ail continuous C*-seminorms on it; equivalently,
A is homeomorphically *isomorphic to an inverse limit of C*-algebras. A o-C*-algebra
is a metrizable pro-C*-algebra. Besides an intrinsic interest in pro-C*-algebras as
topological algebras ([1],[11], [13], [14], [19],[20] and references therein), it has been
shown recently that they provide an important tool in investigation of certain aspects
of C*-algebras (like multipliers of the Pedersen ideal, tangent algebra of a C*-algebra,
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cross-product and K-theory, as well as non-commutative algebraic topology) [23],
[24], pseudodifferential operators [8] and quantum field theory [9]. In the literature,
inverse limits of C*-algebras have been given different names such as b*-algebras,
m-convex-C*-algebras or LM C*-algebras; the more appropriate pro(jective limits of)
C*-algebras is a recent suggestion [23], [24] following [28]. N

The present paper aims at developing a theory of nuclear pro-C*-algebras; and
this requires investigating tensor products of such algebras and complete positivity
of linear maps. The significance of this has been noted in [23, p. 175]. Unlike
C*-algebras and locally convex spaces, there are at least two concepts of nuclearity
for pro-C*-algebras, viz. nuclearity in topological algebraic sense (an extension of
C*-nuclearity [S], [6], [17]), and Grothendieck’s linear topological nuclearity
[26, Chapter II1, § 7]. Except for a final remark, we mean the former.

Given a pro-C*-algebra 4, each peS(A4) determines a C*-algebra 4, = A/N, (N, =
{xeA|x, =0}, a *ideal in A), with C*-norm ||x, ||, = p(x) where x,=x+ N,. The
point is that (4,,[]],) is complete [1], [27]; and 4 admits an inverse limit
decomposition 4 = ljm ., 4,, A being a confinal subset of S(4). The bounded part of
A is the *subalgebra b(4)= {xeA|sup, s, p(x) < oo}, a C*-algebra with norm
x|l = SUPes(4yP(x) continuously embedded in 4 [23]. A crucial fact about a
pro-C*-algebra is that b(A4) is dense in A [1], [23]; and this, in fact, characterizes
pro-C*-algebras [2]. Let M, (C) be the C*-algebra of all n x n matrices. Given
pro-C*-algebras A and B, a linear map ¢:4 — B is completely positive if for each n,
$,=¢®id:AQM ,(C)=M,(4) B M,(C) = M,(B) is positive. In § 2, by obtaining
a pro-C*-analogue of Stinespring’s Theorem, it is shown that a continuous ¢ is
completely positive iff ¢ (b(4)) = b(B) and ¢:b(A4) — b(B) is a completely positive map
between C*-algebras. This is used to show that o-C*-algebras 4 and B are homeomor-
phically *isomorphic iff they are matricially order isomorphic. In §3, the tensor
product of pro-C*-algebras 4 and B is investigated. Two standard pro-C*-topologies
on A®B are introduced in [13], viz. the injective tensorial pro-C*-topology o
and the projective tensorial pro-C*-topology v, whieh correspond respectively to the
least C*-norm |‘|lm, and the greatest C*-norm ||-|.., in case of C*-algebras
[27, Chapter IV]. It is shown in Theorem 3.2 that any admissible pro-C*-topology
7 (in the sense of [13, Definition 2.1]) on 4 ® B satisfies o < 7 < v; and if either 4 or
Bis abelian, then o =1 = v = ¢, £being the topology of biequicontinuous convergence.
(In fact, a slightly stronger result is proved, see Remark 3.3). This improves
[13, Proposition 3.1], wherein the conclusion 7 <v has been obtained under the
additional assumptions that both 4 and B are metrizable and the completion A ®.B
is a Q-algebra (ie., the invertible elements form an open set). The other half of our
Theorem also improves [13, Theorem 3.1] wherein the conclusion « = ¢ is obtained
under the assumptions that 4 and B are Q-algebras one being barreled and the
other commutative. In fact, a pro-C*-algebra that is a Q-algebra is a C*-algebra
[23, Proposition 1.14]; and hence the relevant results in [13] dealing with Q-pro-
C*-algebras are just the usual C*-algebra results. Thus our result provides a complete
analogue of [27, Chapter IV, Theorem 4.19] modulo the problem whether any
pro-C*-topology on A ® B is necessarily admissible. Further, it is shown in Theorem 3.4
that the above conclusion & = « = v = v characterizes commutativity of either 4 or B.
This extends [27, Chapter IV, Theorem 4.14]. Continuous states on A ®,B are shown
to correspond to continuous completely positive maps A — B*(= the dual). The
machinery developed in § 2 and § 3 is used to develop a theory of nuclear pro-C*-algebras
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in §4. Following [23, p. 175], a pro-C*-algebra A is called nuclear if for each peS(A),
the C*-algebra A, is nuclear in the sense [17] that for any C*-algebra B, ||| min = || max
on A,® B. It is shown that 4 is nuclear iff 4 is an inverse limit of nuclear C*-algebras
(with the maps of the inverse system assumed surjective) iff for any pro-C*-algebra
(respectively, C*-algebra) B, there is only one admissible pro-C*-topology on A ® B.
A basic result in C*-theory is that a C*-algebra A is nuclear iff A** (the second dual)
is semidiscrete. Using this via the universal representation, it is shown in the main
Theorem 4.5 that a pro-C*-algebra A 1s nuclear iff 5(A4) is a nuclear C*-algebra. This
is used to investigate permanence properties of nuclear pro-C*-algebras pertaining
to hereditary subalgebras, quotients and products, as well as projective and inductive
limits. By using the structure of continuous state space of an m-convex *algebra [4],
it is shown in Theorem 4.11 that if A is nuclear, then for any pro-C*-algebra B, any
continuous complete state map 4 —B* can be approximated in simple weak*

- convergence by continuous complete state maps of finite ranks; and a weaker converse

holds. This is a pro-C*-analogue of a basic result of Lance [16]. To illustrate an
application, in § 5 a nuclearity criterion for the multiplier algebra of the Pedersen
ideal of a C*-algebra [[18] is obtained. For this, it is shown that for a pro-C*-algebra 4,
its multiplier algebra M (A) [23] is nuclear pro-C*-algebra iff b(A4) and the generalized
Calkin algebra M (b(A4))/b(A) are nuclear C*-algebras. Finally, we examine the
interrelation between Grothendieck’s linear topological nuclearity and nuclearity in
the sense of the present paper. In fact, a o-C*-algebra A is linear topologically nuclear
iff it is an inverse limit of finite dimensional C*-algebras; and further, if abelian, it is
isomorphic to the algebra of all scalar sequences with pointwise operations and
pointwise convergence.

2. Completely positive maps

Let A be a pro-C*-algebra. Let M,(A) denote the *algebra of all n x n matrices over
A, with the usual algebraic operations and the topology obtained by regarding it as
a direct sum of n? copies of 4. Since A =lm A, as p runs through S(4), we have
M, (A) =1im .54y M,(A,). Thus M,(4) is a pro-C*-algebra. Algebraically, M,(4)=
A® M, (C); and since M,,(C) s finite dimensional, all tensor topologies on M, (A4) agree.

Lemma 2.1. b(M,(A)) = M, (b(A4)) =b(4)® M ,(C) as C*-algebras.

Proof. We only have to prove the first equality. If 4 is a C*-algebra, and
a=[a;1e M, (A), it is easily seen that max; ;[la;|l < |a| < Z;la;|. Therefore, this
inequality holds for any continuous C*-seminorm p on a pro-C*-algebra A. Taking
supremum over all p yields max; ;sup,p(a;;) <sup,p(a) < Z; jsup,p(a;;). Thus a is
bounded iff each g;; is bounded. The norms on M,(b(4)) and b(M,(4)) must now
agree by the uniqueness of C*-norms. This completes the proof.

It is easily seen that for a = [a;;]e M ,(A),a > 0 iff a is a sum of matrices of the form
[a¥a;]for a;,a;in Aiffforall x,,...,x,in 4, Z; ;xF a;;x; > 0in A. Alinear map ¢:4 — B
between pro-C*-algebras is completely positive if for all n=1,2,3,..., the linear
maps ¢,:M,(A)— M,(B), $,[a;;] = [$(a;;)] are positive. Thus ¢ is completely positive
iff for each qeS(B), ¢,:A— B, ¢,(x)=¢(x)+ N, is completely positive. If ¢ is a
continuous positive linear map, then it is easily seen that ¢ is completely positive if
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either A or B is abelian. Following is an analogue of Stinespring’s Theorem
[27, Chapter 1V, Theorem 3.6].

Theorem 2.2. Let A be a pro-C*-algebra. Let B(H) denote the C*-algebra of all bounded
linear operators on H.

(i) If n:A > B(K) is a continuous representation of A, V:H— K (a Hilbert space) is a
bounded linear operator, then ¢: A — B(H), ¢(x) = V*r(x) V is a continuous completely
positive map. ~ '

(ii) If ¢:4 — B(H) is a continuous completely positive map, then there exists a Hilbert
spacg K, a. continuous representation n:A - B(K), a normal representation p:¢(A) —
B(K) (¢(A) = commutant of ¢(A)) and a bounded linear operator V:H — K such that
dl@)= V*n(a) V, p(x) V= Vx(xep(A)), p(¢(4)) = n(A) and K = [n(A) VH], closed
linear span of n(A4) VH.

(i) is a straightforward verification. For (ii), continuity of ¢ implies that there exists
peS(A) such that ||¢(a)]| < Mp(a) for all acA4, for some M >0. Thus ¢,:4,— B(H),
¢p(x,) = ¢(x), x,=x+N, is a well defined completely positive map between
C*-algebras to which the C*-algebras Stinespring’s Theorem applies.

- COROLLARY 2.3
Let A and B be pro-C*—algebrds.

(i) A unital continuous linear map ¢:A — B is completely pos?tive (respectively positive)
iff ¢(b(A)) <b(B) and ¢(b(A))—b(B) is a completely positive (respectively positive)
map between C*-algebras. If ¢ is completely positive, then ¢(a)* ¢(a) < d(a*a) for all
acA.

(i) A is homeomorphically *isomorphic to B iff there exits a unital continuous bijective
completely positive map ¢:A— B such that ¢~ is continuous and completely positive.
In particular, if A and B are g-C*-algebras, then A is homeomorphically *isomorphic
to B iff A and B are matricially order isomorphic.

Proof. (i) Let ¢:4— B be positive (in particular, completely positive). We show that
¢(b(A)) = b(B). Let aeb(A) be positive,and so0<a< |al,1. Hence 0 < ¢p(a) < |l all »
¢(1)=||lall,. Thus ¢(a)eb(B). Now ¢(b(4)) = b(B) follows by writing an arbitrary
element as a linear combination of positive ones. Conversely, let given ¢: 4 — B be
such that ¢(b(A4)) =b(B) and ¢:b(A)—b(B) is completely positive. In view of
Lemma 3.4, for all n, ¢,(b(M,(A)))= ¢,.(M,(b(A4))) = M,(b(B))=b(M,(B)) and ¢,:
b(M,(A))— b(M,(B)) are positive linear maps, continuous in the relative topologies
from M,(A) and M,(B). Now b(4) is dense in A, in fact any h>0 in 4 can be
approximated by the sequence h, = h(1 + (1/k)h?)™* = 0 in b(A4). Applying this to each
M, (A) and using b(M,(A4)) = M,(b(4)), each ¢,:M,(A4) - M,(B) is positive.

Let ¢:A — B be completely positive. For each geS(B), ¢, =n,0¢:4— B,(n,:B— B,
being 7, (y) = (y + N,)) is a continuous completely positive map. Identifying B, with
C*-subalgebra of B(H) for some Hilbert space H, Theorem 2.2 implies that
¢, = V¥o,(a) V, (acA) for some continuous *homomorphism ¢,:4 — B(K) (for some
Hilbert space K) and some bounded linear map V,:H — K. Since ¢,(1) = 1, it is seen
as in [27, Chapter IV, Remark 3.7] that V, is an isometry. Thus 7 (¢(a)*¢(a)) =
(m(D@)* (1,(§(a))) = bo(a)* dy(a) = VEo,(a) ¥, VEo,(a) V, < | V,|> VEo,a*a) V, <

-
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: ¢q(a*a) < ¢(a*a) for all g in S(B). It follows that ¢(a)* ¢(a) < ¢(a*a) for all ac 4. This

completes the proof of (i).
For the proof of (ii), we shall need the following. A self adjoint unital linear map
¢:A— B is a C*-homomorphism if ¢(h*) = ¢(h)? for all h = h* in A.

Lemma 2.4. Let ¢:A— B be a continuous bijective C*-homomorphism between pro-
C*-algebras such that for each n 22, ¢,:M,(A)— M,(B) is also a C*-homomorphism.
Then ¢ is a *isomorphism (not necessarily a homeomorphism).

Proof of lemma. A C*-homomorphism ¢:A4 — B being a positive map, Corollary 2.3
(i) implies that ¢(b(A)) = b(B). Applying this to ¢ and ¢ ™1, it follows that ¢(b(4)) = b(B)
and ¢:b(4)—b(B) is bijective C*-isomorphism between C*-algebras. The same
arguments show, in view of Lemma 2.1, that for each n, ¢,:b(M,(4)) = M,(b(4))—
M, (b(B))=b(M,(B)) is also C*-isomorphism. Thus by [27, Example 1, p. 202],
¢:b(A)—~b(B) is a *isomorphism. Now density of b(4) in A, joint continuity of
multiplication in a pro-C*-algebra and continuity of ¢ implies that ¢:4— B is a
*isomorphism.

Proof of part (ii) of Corollary 2.3. The inequality in part (i) applied to the completely

_positive maps ¢ and ¢ ~* shows that ¢(a)* ¢(a) = ¢(a*a) for all acA. In particular,

¢ is a C*-isomorphism. By the same arguments, each ¢, is a C*-isomorphism; and

hence ¢ is a *isomorphism by above Lemma. The remaining assertions are trivial.
We note the following consequence of the fact that a positive linear functional on

a complete locally m-convex *algebra with 1 maps a bounded set to a bounded set [7].

PROPOSITION 2.5

A positive linear map ¢:A— B from pro-C*-algebra A to pro-C*-algebra B maps a
bounded set to a bounded set. If A is a a-C*-algebra, then ¢ is continuous.

3. Tensor products

Given pro-C*-algebras A and B, we are concerned with the following four topologies

on the tensor product A® B. For a locally convex topology t on A®B, A®.B

denotes the completion of (A® B, 7).

(i) [26] projective tensorial topology n: For peS(4), geS(B), (p ® g)(z) = inf {Z;p(x;)q(y;)!
z=2X;x;®y;in A® B with x;e A4, y;eB}; and = is the locally convex topology defined
by the seminorms {p ® g|peS(A4), geS(B)}. Each p ® g is a submultiplicative seminorm
satisfying (p ® g)(z*) = (p ® q)(z). Thus A&, B is a locally m-convex *algebra, though
not a pro-C*-algebra in general.

(ii) [26] topology & of biequicontinuous convergence: For peS(4), geS(B), let US(1) =
{feA*||f(x)| <1 for all x such that p(x) < 1}, Ug(1) = {geB*||g(y)| < 1 for all y such
that g(y) <1}, A* and B* denoting topological duals of 4 and B respectively. For
z=Zx;®y; in A®B, define ¢, ,(z)=sup{|Zf(x;)g(y)I|feUs(1), geU(1)}. The
family of seminorms {¢, |peS(4), geS(B)} (called the natural e-calibration) defines
the biprojective tensorial topology ¢, also called the topology of biequicontinuous
convergence, i.., the topology of uniform convergence on sets of form S® T where -
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S < A* T < B* are equicontinuous. The seminorms ¢, need not be submultiplicative,
and A®,B need not be an algebra. -

(i) [13] projective tensorial pro-C*-topology v: Bya boul}ded representation (m, H,,)
of a *algebra K is meant to be a *homomorphism 7 of K into th'e C*-algebra B(H )
Let R(K) be the collection of all continuous bounded representations of a topological
*algebra K. Then R(K) = U {R(K)|seS(K)}, Ri(K) = {neR(K)| linl(x)ll < s(x) for all
xeK}. Now for peS(A), geS(B), let R, 4(4®.B)={seR(4 ®.B)llle(2) | <(P®@g)(2)
for all zeA® B}. Define a C*-seminorm v, ,(z) = sup{ ||<r.(z) lloeR, (A4 ®,CB)'}. The
projective tensorial pro-C*-topology v is the topology defined by the C*-seminorms
{v,.4lPES(A), qeS(B)}. _

(iv) [13] injective tensorial pro-C*-topology o: In the above notations let tp,q(z)-.—-
sup{ [z ®c(2) || |neR,(4), ceR,(B)}, a C*-seminorm on A® B. The topology « is
defined by the C*-seminorms {t, ,|peS(4), geS(B)}.

Note that ¢ <o < v < 7 and for C*-algebras 4 and B, the topologies ¢, &, v and 7
reduce to the topologies respectively due to the injective cross norm |1l 1, the minimal
C*-norm ||, the maximal C*-norm ||, and the projective cross norm 01,
[27, Chapter IV].

Lemma 3.1. For pro-C*-algebras A and B, the following hold
() AQ,B= %Ap@‘)mxzsq (i) AQ,B= %?Ap@mmz;q
(i) A®,B= %APQ@},B,I (iv) AQ,B= %AP@B‘].

Given pro-C*-algebras 4 and B, a Hausdorff topology © on A ® B is an admissible

topology [13] if:(i) (4 ® B, 1) is a locally m-convex *algebra; i.e., there exists a family -

I = {r,|aeA} of submultiplicative seminorms satisfying r,(z*) = r,(z) for all z such that
I" determines . (ii) for each aeA, there exist peS(4), geS(B) such that r (x ® y) < p(x)g(y)
for all xe A, yeB; and (iii) given equicontinuous subsets M = A*, N < B¥*, M ® N is an
equicontinuous subset of (4 ® . B). A topology 7 on a *algebra K is a pro-C*-topology
if the completion of (K, 7) is a pro-C*-algebra. It is shown in [ 13, Proposition 3.1] that
if A and B are g-C*-algebras and if 7 is an admissible pro-C*-topology on 4 ® B such
that (A ® B, 7) is a Q-algebra, then © < v. The following substantially improves this. It
can also be regarded as an analogue of the C*-algebra result [27, Chapter IV,
Theorem 4.19] that if § is a C*-norm on A ® B for C*-algebras 4 and B, then fis a
cross norm satisfying |||l nin < () < |I'llmax; and if either A or B is abelian, then
BOY=1I1:=1"llmin = II'llmax [27, Chapter IV, Lemma 4.18]. The other half of the
following also improves [13, Theorem 3.1] wherein it is shown that for Q-pro-
C*-algebras A and B one being barrelled and the other abelian, e=a on A® B. In
fact, Proposition 3.1 and Theorem 3.1, both of [13] referred to above, reduce to be

the usual C*-algebra results, because, by [23, Proposition 1.14], a Q-pro-C*-algebra
is a C*-algebra. '

Theorem 3.2. Let A and B be pro-C*-algebras. Let t be an admissible pro-C*-topology
on AQB. Then a <t <v. If either A or B is abelian, then ¢ =a =1 = .

Proof. Let K. = A®,B. Let (z,) be a net in A® B, z,—0 in 7. By [26, Chapter IV,
p. 127], the topology of a locally convex space is the topology of uniform convergence
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on equlcontmuous subsets of its dual. Hence z, — 0 uniformly on every equicontinuous
subset of (4®.B)*. In view of adrn1ss1b1hty of 7, z,—0 uniformly on M®N for
equicontinuous sets M = A*, N = B*. Hence z,— 01in & by [26, Chapter III, p. 96], and

£<T. )

Now given yeS(4 ®.B), choose peS(4), geS(B) such that for all x, y, y(x ® y) <
p(x)q(y). Henceforz =Zx;® y,in A® B, y(z) < Zy(x; ® ;) < Zp(x;)q(y;). By definition

of p®gq, y(2) < (p® q)(2); and 7 < . Thus

e TLE . (2)

Again for a net (z,) in A®B, let z,—0 in v, so that for each peS(4), geS(B),
Vp.a(Z,) = 0. Let yeS(A®.B). Then there exist p and g as in (2) above satisfying
7(2) < (p® g)(2) for all z. Since y is a t-continuous C*-seminorm, a faithful representation
of the C*-algebra (4®, B), =((A®,B)/kery with C*-norm induced by ) as an
operator algebra gives a t-continuous bounded representation (o, H,) of AR®.B
satisfying ||o(2)| =7(2) < p®q(z) for all z. Thus oeR,, q(A® B). Hence y(z,) < v, 4(z,)—0
'showing

<. (3)

Finally, we show that « < 7. For given peS(A), geS(B), the sets P,(4) = { feA*||f(x) <

p(x) for all x in A} = A* and P, (B) = {geB*||g(y)| < q(y) for all y in B} < B* being

equxcontlnuous P,(A)® P,(B) is an equicontinuous subset of (A®.B)*. Hence there
exist 2 yeS(4A ®, B) such that

P,(A)®P,(B) = P,(A&.B) = {he(A&.B)*||h(z) < y(2) for all z}. @

Now for a neR,(4), £eH,, the linear functional FE(x) =<{n(x)&, &>/ £||* satisfies
|f3(x)| < p(x) for all x€4; and the equicontinuous set M defined as M = {f|neR(4),
{eH,} satisfies M < P,(A). Similarly, N = {g710eR (B),neK,} = P,(B) where g (y) =
LeWMnnd/linll? Tt follows from (4) that for all (=, H,)eR,(A), (6,K,)eR,(B), (cH,,
nek,, |f:®g;(2)| < y(z) for all zeAQ®.B. Taking z=Zx,;® y; in A® B, this implies
that

3 {r®a)(x;®y)ERM),(E® 11)>l _ lz {n(x;)6, E><a (), 1
; IE@n|* 1EN2 il

= f1®g57(2) < 7(2).

Thus, for all ze AQ B, |[{(t®0)(2)(E®n),E@n>| <y(2) || E@n|> It follows by the
polarization identity, that for any &, & in H,and , 7' in K, |<n® a(2) E® 1), & @7’ >| <
Y(2)I<E@n, & @7 >|. Now taking 6 = X,¢,®n,eH,® K, and taking without loss of
generality, (17;) to be an orthonormal set in K, we obtain

Km®0)2)8,6)] < T (x @) @)(E@ny), & @1,
<YDLKE®NE®n)|

=@ 1&012 =r(118]> (5)
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Since 7 ® o(z) is a bounded operator on the completed Hilbert space tensor product
H.®K,, it follows that (5) holds for all 8 in H,® K. Thus, for meR,(A4), c€R,(B),
zeA®B 0eH, ®K,,

I2®a(2)0? = {(n®0)(z*2)6,0)
<yE*2) |01 =) 1617 (6)

Hence for all zeA ® B (and so for all ze A ®.B), I1®a(2)| <7(z), 1®0ceR,(A4 Q:B)-
Summarizing, we have shown that given peS(4), geS(B), there exists a yeS(4 ®.B)
sucl/ that R (A)® R,(B) = R,(A® B).

Now if z,—0 in , it follows from above that for all peS(A), geS(B), t, 4(z,)—0.
Hence .

a<T. ' (7

Finally, assume that either 4 or B, say 4, is abelian. Then for peS(A), geS(B), by
standard C*-algebra result [27, p. 212], 2= [|*[lmin = I lmex 00 A, ® By. Lemma 3.1
implies that A ®,B = A®,B= A®,B witha = ¢ = v;infact, ¢, , = £, ;. This completes
the proof.

Remarks 3.3. (a) A closer examination of the proof reveals that we have, in fact,
proved the following stronger assertions.

(i) Any admissible topology © on A ® B satisfies e <t <. W
(i) In the derivation of inequality (6), if y is not a C*-seminorm but a submultiplicative
*seminorm only, then too [r®a(z)8]1 < y(z*2)10]1> <y(z*)y@101*> <y 01|
holds. Thus, for any admissible (not necessarily pro-C*) topology z on A® B, a < 1;
and a (respectively 7) is the smallest (respectively finest) admissible locally m-convex
*algebra topology on A® B.

(iii) In general, v <m, since A®,B is, under certain circumstances, the enveloping
‘pro-C*-algebra [11] of the complete locally m-convex *algebra A ®,B [13].

(b) Tt is easily seen from [27] that for C*-algebras A4 and B, any C*-topology on
A® B is automatically an admissible topology. This suggests: Let 7 be any pro-C*-
topology on the tensor product A ® B of pro-C*-algebras 4 and B. Is t necessarily
an admissible topology?

Our next result shows that the conclusion & = « in abelian case of above theorem,
in fact, characterizes commutativity of either A or B. It gives a complete pro-C*-
analogue of [27, Chapter IV, Theorem 4.14] and a recent result of Blecher [3]; viz.
for C*-algebras 4 and B, if 4 ®,B is a Banach algebra with norm J, then either 4
or B is abelian. We call the natural e-calibration I' = {g, ,|peS(4), qeS(B)} an
m*-calibration if each ¢, , satisfies &, ,(uv) < &,,(W)e, 4(v), &, 4(u*) =¢,,(u) for all u,v
in A®B. The given pro-C*-topologies on 4 and B are denoted by t, and 14
respectively; and b(4) and b(B) carry C*-topologies unless stated otherwise.

Theorem 3.4. Let A and B be pro-C*-algebras. The following are equivalent.

(1) Either A or B is abelian.

(2) Any continuous pure state w on A@aB is of form w=w,; @ w,, w; and w, being
continuous pure states on A and B respectively.

IR L .
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(3) A® B=4 ® Bwithe=aand zhe natural e-calibration on A ® Bisan m*—calzbratlon
(3") The natural e-calibration on A ®,B is an m*-calibration.

(4) B(A)® ;b(B) = b(A4) @ in b(B) and 4= ||" | mia-

4) b(A)® ,b(B) is a Banach algebra.

(5) A®,b(B)=A®,b(B) with e =0 and the natural e-calibration on A® b(B) is an
m*-calibration.

(5') The natural e-calibration on A & b(B) is an m*-calibration.

(6) b(4)®,B =b(A)®,B with ¢ =0 and the natural e-calibration on b(A)®,B is an
m*-calibration. ‘

(6') The natural e-calibration on b(A)®,B is an m*-calibration.

Lemma 3.5. Let R be a pro-C*-algebra. Let E be *subalgebra of R containing the
identity of R such that E is a Banach *algebra with some norm |-|. Then E < b(A) and
on Ea “Hoo < H‘

Proof. By contmulty of involution in (R, ||), we assume |x*|=|x| for all xeE. Let
B={xeE|x|<1}. Then B is an absolutely convex *idempotent containing the
identity 1 of R. By standard Banach *algebra arguments, every positive linear
functional f on R, restricted to E, is |"|-continuous satisfying |f(x)| < f(1)|x|. Since
the dual R* of R is a complex linear span of continuous positive functionals, B turns
out to be o(R, R*) bounded, hence bounded in the topology of R. Now, in R, it is
easy to verify that K = {xeR|| /x|, <1} is the largest (under inclusion) bounded
absolutely convex *idempotent. Thus B< K, E = b(R) and |||, <|| on E.

Proof of theorem. (1)=(2). First of all, for any 4 and B, not necessarily abelian, let
K(A®,B) be the set of all continuous states on A ®.B. Foreachj= =(p,q)eS(A) x S(B),
LetU;={zeA4 ®,B| L, q(z) < 1}, R; be the C*-algebra 4 ® «Blkert, , with the C*-norm
1nduced by, .- Then R;is *1somorphlc to the C*-algebra A ®mmB Let K;(A ®,B) =
(feK(A®,B l f is bounded on U;}. Then from [4], the followmg hold.

(a) K(4®,B)=U;K;(4®,B).

(b) For the sets of extreme points, E(K(A ®.B)=U; GE(K (A® B)).

(© K (A ®,B) is in bijective correspondence with K(R ]) under the map feK;(4 ®,B)—
i fiz J( = f(z) where for zeA®B, z;eR; is z;=z + kert, ;; and this correspondence
preserves the weak* topologies.

Now assume (1) say B is abelian. For all ¢ in S(B), the C*-algebras B, are abelian.
Let w be a continuous pure state on A®,B, so that, by [4, Corollary 4 3], w is an
extreme point of K(A ®,B). By above, there exists a j = (p, g)eS(4) x S(B) such that
w; is a pure state on R;= A4 ®mmB The C*-algebra result [27, p. 211] gives pure
states w; of A, and ) of B, satisfying ;=) ® ©,. Again from above and
[4, Theorem 4. 3] w,(x) = (x ) w,(y) = wz(yq) define continuous pure states on 4
and B satisfying o = w; ® ;.

(2)=>(1). This can be shown exactly as in [27, Chapter IV, Theorem 4.14] by using
the facts [11] that a pro-C*-algebra R admits sufficiently many bounded continuous
irreducible representations. In fact, for each s€S(R), an irreducible representation m’
of the C*-algebra R, gives an irreducible representation = of R as n(z) = 7'(z;).

(1)=(3). This is already shown in Theorem 3.2 wherein ¢, ,=t,, has been observed,
ie., the natural e-calibration consists of C*-seminorms. Also, (3)=>(3'), 4)=4"),
(5)=(5') and (6)=-(6') are trivial. Assume (3'). In view of Lemma 3.1, for each (p,q)
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in S(4) x S(B), A ® B, becomes a Banach algebra with the injective cross-norm A.
Hence by [3, Corollary 4, p. 123] either A, or B, is abelian; and so C*-algebra
arguments [27, Theorem 4.14,p. 211] gives 4, ® B,=A ®mmB with 4 = ||| - This
gives (3). Similarly it follows that (4)=>(4), (5')=(5) and (6’)=>(6)
(3)=(1). Observe the following.
(i) b(A®,B) is a C*-algebra with C*-norm | z| .= sup{tl, ,(2)lpeS(4), geS(B)}.
(ii) Since the e-calibration is an m*-calibration, A ® Bisa complete locally m- convex
*algebra; and its bounded part, defined as b(4 ®,B) = {ze4 ®,B|sSup, ,&,4(2) < 00}
is a Banach *algebra with norm | z||, , = sup {8,, a z)lpeS(A), qeS(B)} = [z* || .- Now
assume A ®,B = A® B. We assert that b(4 ®,B) = b(A®,B). Indeed, for all p,q in
S(A) x S(B), ¢, ,<t,, and $0 |'lc.<|'llo,. With the result b(A®,B) < b(A@ B).
Further, above (ii) 1 m the light of Lemma 3.5, applied to the pro-C*-algebra A ®.B,
implies that b(4 ®,B) = b(A® By and |[*]lo.e = "l oo -
Further, b(4) ® b(B) = b(4 ®,B) and the norm ||| ;, on b(4) ® b(B) is [27 p. 207]
12l min =sup {7 @3 (2) || IneR(b(A)), s€R(b(B))} = [ 2]l 5, bY definition of [} .- But

||| mis is the smallest among all C*-norms on b(4) ® b(B) [27, Proposition 4.19, p. 216].-

~ Hence |llmin= I luoe= I l0.c 00 b(4)®b(B) and 50 on b(4) ® s, b(B). Finally, the
J-norm on b(4)®b(B) is [27, p. 188], with z=2x;®y;, A(z) =sup{|Zf(x;)g(¥,)|
Feb(A), 1f(X)| < [xIw, geb(B)*, 190) < 1)} < 121, by defimition of ||,

Thus, on b(A)®b(B), |“llw.. <AC) < I lmin < Il w0.a= lI'llo,c With the result that
A() = | llmin- It follows [27, Theorem 4.14, p. 2117 that either b(4) or b(B) is abelian.
But b(A) is dense in A, b(B) is dense in B and the multiplication in a pro-C*-algebra
is jointly continuous. It follows that either A or B is abelian. (1)<(4) is a consequence
of C*-algebra theory together with density arguments as above. Similarly one gets
(1)<>(5) and (1)<>(6) from (1)<>(3). This completes the proof.

Remark 3.6. In the above theorem, to conclude (3)=>(1) and similar other implications,
the hypothesis that the ¢-calibration is an m*-calibration cannot be omitted, even for
C*-algebras. Take A4 to be a non-abelian finite dimensional C*-algebra. Then for all
C*-algebras B, AQ ,B=A®,B and ¢=m, ie.,, A and y, and so A and ||, are
equivalent. On the other hand A= ||-|,,;, forces A or B to be abelian.

PROPOSITION 3.7

Let ¢,:A,—B,, ¢,:A,— B, be continuous completely positive maps between pro-
C*-algebras. Then

P1®¢,:4;®A,~B,, (01 ®¢,)(x; ®%,)=0,(x;)® P2(x;)

- is an a.—a continuous (respectively v—v continuous) completely positive map that
extends as a completely positive map ¢, ®¢,:A4, ® A, B, ®,B, (respectively,
1@ ¢y:4, ® vAz— By @ vB2)-

Proof. We shall prove for the topology o. The other assertion can be similarly
established. In view of Lemma 3.1, it is sufficient to find coherent continuous
completely positive maps ¥, ,:4; ®,4; = (B;);, ®min(B2),, for (q;,9,)eS(B;) x
S(B3). By continuity of ¢, and ¢,, there exist p,eS(4,), p,eS(4,) such that
[(my001)0x1)llp, < Mpy(x1), || (my0P2)(x;) | < Mp,(x,) for x;e 4; where 7 B; = (By),g,»
i=1,2 are the natural quotient maps. It follows that the maps n;0¢,; factor through
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the quotient C*-algebras (Ai)p; = (By)y,. By the corresponding property of C *-algebras
[27,p. 218], there is a completely positivemap 6:(4,),, ® in(A45),, = (B, ),, @ omin (B3)
~ £/D2 1 min % g3

The desired map s, , is the composite map 4; ® ,4, > (4,),, ®...(4,),. = (B
(B3),,- This completes the proof. Urt OninA2)p = (B )oy O

PROPOSITION 3.8

Let A and B be pro-C*-algebras. Let B° (respectively B*) denote the algebraic dual
(respectively topological dual) of B. For a linear functional w on A® B, let T, A—B°
be defined by {y, T, x> = <{x® y, ). '

(1) wis astate on AQ B iff T, is a complete state map (i.e., T, is a completely positive
map such that T,(1) is a state on B).

(2) Further, o is continuous in the topology v (so that we(4 ® ,B)*) iff T,(4)< B*
and T,:A— B* is continuous, where B* carries the topology t, of uniform convergence
on all bounded subsets of B.

Proof. (1) is exactly as in [27, Chapter IV, Proposition 4:6]. Further, let w be
v-continuous. There exist (p,g)eS(4) x S(B) and a scalar k>0 such that for all
zeA® B, |w(z)| <kv,,(2). Hence for all xed, yeB, |y, T,(x)>|=|{x®y, wd| <
kv, (x®y) <kp® q(x®y) < kp(x)q(y). Hence for K = B bounded with g(y) < M, ,(yeK),
Ky, T,x)| < kM, p(x)(xeA) showing T,4 < B* and T, is continuous in t,. Conversely,
let T,:A—B* be 1, continuous. By general theory of topological tensor products
[26], we(4®,B)*. By the GNS construction [11, Theorem 3.4] on the complete
locally m-convex *algebra A®, B, there exists a continuous bounded representation
T, A®.B— B(H,) on a Hilbert space H, having a cyclic vector &, such that
w(z) =<n,(2)¢0,&o> and [7,(2) [ < (p® g)(z)(ze A @ B) for some (p, g)eS(A) x S(B).
Thus n,eR,,(A®.B); and for all z, [{z,w}|=[{n,(2)¢0, oD | < Imu(@ &0 117 <
V,.4(2) 1€, 11* showing that w is a continuous in the topology v.

4. Nuclear pro-C*-algebras

Following a suggestion in [23], a pro-C*-algebra is called nuclear if for each peS(A),
the C*-algebra (4, [*||,) is a nuclear C*-algebra [16], [17] in the sense that for any
C*-algebra B, |‘llmin=l"lmax o0 A,®B. Thus a nuclear C*-algebra is a nuclear
pro-C*-algebra; and a nuclear pro-C*-algebra is an inverse limit of nuclear C*-algebras.
Commutative pro-C*-algebras, the matrix algebra M, (4) over a nuclear pro-C*-algebra
A and a pro-C*-algebra of type I (in the sense that all continuous bounded
representations are of type I) are ali nuclear pro-C*-algebras.

PROPOSITION 4.1

Let a pro-C*-algebra A =1lim ., B,, an inverse limit of C*-algebras with the maps
7,:A— B, of the inverse system assumed surjective. Then A is a nutlear pro-C*-algebra
iff each B, is a nuclear C*-algebra.

Proof. One way is obvious, since A =lm ,.544, Conversely, let A=lim B,
where each B, is a nuclear C*-algebra. Then the family {p,/xeA} of continuous
C*-seminorms determines the topology of A, where p,(x) = 7 (x)|l4» 7, being the
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*homomorphism from 4 to the C*-algebra (B, ||,). The B, is *isomorphic to the
C*-algebra A, = A/kerp, with C*-norm |x +kerp,|, pm(x) [1, Theorem 2.4].
Thus A4, 1s nuclear Given peS(A), by contlnulty, there ex1sts an €A such that p <p,.
Thus qb A~ Ay, d)(x+ker p,)=x+kerp is a well defined continuous surjective
*homomorphism, and 4, is *isomorphic to the quotient C*-algebra A,/ker @, Wthh
is nuclear, since 4, is nucledr [6], [17]. This completes the proof.

For pro- C*-algebras A and B, the identity map A®B—-A®B extends to a
continuous surjective *homomorphism /: A ®,B— A ®,B. The following shows that
A is nuclear iff y is a homeomorphism for all B.

Theorem 4.2. For a pro-C*-algebra A, the following are equivalent.

(1) A is nuclear.

(2) For all pro-C*-algebras B, A®,B=A®, B with =v.

(3) For all C*-algebras B, AQ®,B=A® B with o=v. '

(4) For all pro-C*-algebras B (respectively C*-algebras B), there is only one admzsszble
pro-C*-topology on A® B.

Further, if A is a 6-C*-algebra, then above are equivalent to any of the following.

(5) For all 6-C*-algebras B, AQ ,B=A®,B.
(6) For all C*-algebras B, AQ,B=A®,B. ,
(7) For all o-C*-algebras B (respectively C*-algebras B), the topology v on A® B is
faithful.

An admissible topology t on AQ B is falthful [12] if the map i, AQ®.B—~AQ Bc
B(A*,B*), i.(z2) =(x'®y')(z), x'€A*,y' eB* is one—one. The following improvess [12,
Proposition 3.3].

Lemma 4.3. The injective tensorial pro-C*-topology o on A® B is faithful.

Proof. The map i,:A®,B— A®,B is the unique continuous linear extension of the
identity map i:A® B—+A® B, i(z) = z. Let ze A ®,B with i,(z) =0. Let (z,) be a net
in A®B, z;=Z3 x?®y*—,z. Then for all fed* geB*, lim, i(z,)(f,9)=
lim; f ®g(z;) = f ®g(z) =0. To show z =0, we show thatt, ,(z) =0 for all (p, g9)eS(4) x

S(B). Let meR,(A), ceR,(B), ¢, eH,, n,eH,, ¢,eH,, n,eH,. Define f and g by

F)={m(x)€1,110, g(0) = (o6 (¥)¢,,15 ). Then
(@0 (2)(¢; ®E,),m @12

ki
= liin(<;7r(x(i“)®a(y§")€1 ®¢&z.m, ®’72>)

= lim LIP)g0P) =limf ®g(z;) =0.

Hence 7 ® o(z) = 0 on the completed Hilbert space tensor product H, ® H - It follows
that ¢, (z) =0

Lemma 4.4. The following are equivalent for pro-C*-algebras A and B.
(a) A® B=A® B witha=v.

i



T T e T e T e m A st i i A Bt i Tt i st o m

Complete positivity, tensor products, ... 161

(b) For all (p,q)eS(A) x S(B), Ap®pminBy; = A, Ppnax B,
(c) For all (p,q)eS(A4) x S(B), ,,,q() Vp,q() on A® B.

Proof. (c)<>(b)=>(a) is a consequence of uniqueness of C*-norm and Lemma 3.1.
We show (a)=>(b). Let peS(A), qeS(B) and n,:A > A4,, n,:B— B, be the quotient
maps. Then 7, ®n,:A®,B— A, @i, B, defines a continuous *homomozphism. By
[27, Proposition 4.7, p. 207], the continuous *homomorphisms ¢: 4 — A, ® B, = C
(say), ¥:B—C, ¢(x)=x,®1,, ¥(y)=1,®y, give continuous *homomorphlsm
n:A®,B— C satisfying n(z) (1, ®nq)(z) on A®B. By the assumption (a), n =1, ®7T.
and 7, and n, being surjective, 4 ®mmB =(n, ®nq)(A® B)=n(4A®, B)c 4, ®mx
The contlnuous *homomorphlsm k:A,®minB,— A ®maxB so defined is the extensmn
. of the identity map. It follows that for all zeA ®Bq, 112l max < 112 | min < 112l max»> and
(b) follows.

Proof of theorem 4.2. Lemma 3.1 gives (1)=(2)=>(3). (2)<>(4) is a consequence of
Theorem 3.2. (3)=(1) follows from (2)=>(1), which is a consequence of Lemma 4.4.
The remaining assertions on o-C*-algebras follow from the open mapping theorem
and Lemma 4.3.

It is shown in [23] that the functor b("):4A—b(A4) from pro-C*-algebras to
C*-algebras is not well behaved with respect to tensor products. Still, the following
main result of this section holds giving an aesthetically pleasing nuclearity criterion.

Theorem 4.5. A pro-C*-algebras A is nuclear iff b(A) is a nuclear C*-algebra.

Lemma 4.6. Let A be a pro-C*-algebra. Let peS(A), I,=b(A)Nkerp. The quotient
C*-algebra b(A)/I, with the quotient C*-norm |-|, , mduced by the C*-norm on b(A)
is isometrically *isomorphic to the C*-algebra A,.

Proof. Let n,:A— A, be m,(x) = x +kerp so that n,(4) = A,. Since b(A4) is dense in
A, [23, Proposition 1.117] implies that m,(b(4)) = A,. The *ideal I, in b(A) is closed
in |||, due to continuity of embedding b(4) — A. Since I, =kery, where y, = T by
b(A)/I, is *isomorphic to 4,,.

Proof of theorem 4.5. Nuclearity of the C*-algebra b(A) implies [6, Corollary 4] that
(U5 I'lo) and (b(A)/I,, |- 1l ,) are nuclear C*-algebras for each peS(A). By Lemma 4.6,
A, is nuclear for all p, and hence A is nuclear. Conversely, let 4 be a nuclear
pro-C*-algebra. For each peS(4), the C*-algebra A, can be regarded as a C*-algebra
of operators on some Hilbert space H, by taking a faithful representation o,. Then
6, = 0,0V, gives a representation of b(4) on H, such that 6,(b(4)) = g,(4,) is 2 nuclear
C*-algebra. By [6], [17], the von Neumann algebra [6,(b(A4))]* (second commutant,
identified with the bidual [0,(b(A4)]**) is semidiscrete. By [27, Chapter IV, Lemma 2.2],
0, extends as a surjective normal homomorphism 6 :b(Ay** > [0,(b(A4))]. Thus
{0,1peS(A)} is a faithful family of normal representatlons of the von Neumann algebra
b(A)** such that § (b (A)**) = 8,(b(A))* is semidiscrete. Hence by [10, Corollary 3.3],
_ b(A)** is semldlscrete and so b(A) is a nuclear C*-algebra [10, Theorem 6. 4].

Remark 4.7. Lemma 4.6 depends only on the fact that b(A) is dense in A and is
continuously embedded in A. Thus, in above theorem, we have a slightly stronger
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Lemma 4.9 Let A be a pro-C*-algebra, Let xeA. For each n=1,2,..., Let x,=
x(1+(1/n)x*x)~1. Then each x,eb(A) and x,—x in A.

We claim that u,b(B,) is dense in A. Take xeA. Choose a sequence (x,) in U, B,,
say x,eB,, so that x;, - x. We can assume (n, ) to be non-decreasing. By above lemma,
for each k and each n=1,2,..., x, , = x,(1 + (1/n)x¥x;) "' e€b(B,,), x, = lim,_ ., X,
in B, . Then x = lim; x, = lim, lim, x, (1 + (1/n)x} x;) "' in 4 and x, (1 + (1/n)xFx,) " ‘e
u,b(B,) for all k, n. Hence u,b(B,) is dense in A. Now for each n, b(B,) < b(A),
U,b(B,) = b(4). Let K be the closure of U,b(B,) in the C*-algebra b(A). Then the
C*-algebra K is continuously embedded in 4 with dense range. By Theorem 4.5, each
b(B,) is a nuclear C*-algebra, with the result, [15, Proposition 11.3.12, p. 859] implies
that K is nuclear C*-algebra. The conclusion follows from Remark 4.7.

Remark 4.10. We could not establish a more general result involving arbitrary
pro-C*-algebras with arbitrary inductive limit. However, the following particular case
can be similarly established.

PROPOSITION

Let A be a pro-C*-algebra. Suppose there exists a family {B,laeA} of C*-algebras
such that

(i) each B, is a closed *subalgebra of A containing the identity of A,
(ii) each B, is a nuclear C*-algebra,

(iii) given o, B in A, there exists a yeA such that B,uB;cB,,

(iv) U,B, is dense in A.

Then A is a nuclear pro-C*-algebra.

Finally, we aim to discuss the analog of a basic result of Lance [16, Theoreni 34]
using Proposition 3.8.

Theorem 4.11. Let A be a pro-C*-algebra. If A is nuclear, then for any pro-C*-algebra
B, every continuous complete state map from A to the strong dual B* can be approximated
in simple weak* convergence by continuous complete state maps from A to B* of finite
rank.

Lemma 4.12. Let A and B be pro-C*-algebras. Let f be a continuous state on A ®,B.
Then the complete state map T,:A— B*, (y, T;x) ={x®y,f can be approximated
in simple weak™® convergence by complete state maps of finite rank. ,

Proof. Let (p,q)eS(A4) x S(B). Letting the C*-algebras 4, and B, act faithfully on
Hilbert spaces H, and K, respectively, A ®mmB acts falthfully on H,® K; and by
C*-theory, the state space K(A4, @mmBq) is the weak* closed convex hull of D;(0),
J=(p,q), where D;(0) = {w,|¢ = £&; @, unit vectors in H,® K, } and w,(z) = <7¢,£>
Letn;:A®, B—A Q@ B/kert, ;= A, @ B, be the quotlent map. Let D; = {w;om;|w.E
D; (O)} D= v;{D;|jeS(4) x S(B )} Then in the light of statement (g ) (b), (c) based
on [4] in the proof of (1)=(2) of Theorem 3.4, K;(4®,B) is the weak* closed
convex-hull of D;; and coD = co L;{D;|jeS(A) x S(B)} = co U{coD;|jeS(4) x S(B)} =
coU{K(A®,B)} =coK(A®,B) = K(4®,B), being weak* closed and convex [6].
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The lemma follows from this, since for feD, T, is a continuous complete state map
of finite rank as in Proposition 3.8.

Proof of theorem 4.11. Let T:A—B* be a continuous complete state map. By
Proposition 3.8, there is an f eK(A®,B) such that T= T,. By Theorem 42, 0=v
and feco D so that f is a weak™® limit of convex combinations of members of D. The
assertion follows from Lemma 4.12.
It would be interesting to examine the converse of Theorem 4.11. Arguments in
[16, Theorem 3.4] fail essentially because K(A®,B) need not be equicontinuous, nor
- does the equality A® ,B=A ®,B seem to imply v = o automatically. However, it is
possible to obtain a version of Thecrem 4.11 that admits a converse, and that too
can be regarded as a generalization of [16, Theorem 3.4].

Theorem 4.13. For pro-C*-algebra A, the following are equivalent.

(1) A is nuclear.

(2) For every C*-algebra B, for every continuous complete state map ¢:A—B* and
for every p in S(A4, )= {peS(A)| there exists K>0 such that || ¢(x)|| < Kp(x) for
all x}, there exists a net (¢;) of continuous complete state maps ¢;:A—B* of finite
ranks such that

(a) ¢ =lim;¢; in simple weak* convergence,

(b) peS(A, ¢;) for all j.

This can be proved by passing to the C*-algebra quotient 4, and applying
corresponding result for C*-algebras.

5. An application: Multipliers of the Pedersen ideal of a C*-algebra

A multiplier on a *algebra 4 without identity is a pair (I,r) consisting of linear maps
l,r:A — A such that for all x, y in 4; I(xy) = [(x)y, r(xy) = xr(y) and xI(y) =r(x)y. The
collection I'(A) of all multipliers on A4 is a *algebra with operations: (I,,7) + (I5,7,) =
(I + L1y 13 ALY =LA, (y,r)(a,r2) = 15,7,ry) and (Lr)* = (r*,I*) where
r*(a) = r(a*)*, I*(a) = [(a*)*. A is embedded as a two-sided *ideal in I'(4) via the
*isomorphism u:aed—(l,,r,)el'(4), ,x=ax, r,x=xa, and u is onto iff A has
identity. For a topological *algebra A4, let M (4) = {(l,)eI'(4)|] and r are continuous}.
If A is a pro-C*-algebra, then M(A) = I'(4)[30]; and then M(A) is a pro-C*-algebra
with seminorm topology t© defined by the calibration {|-[,lpeS(4)}, |nl,=
sup{p(l(a))|p(a) < 1} [23]. (M (A)isa C*-algebra iff A is a C*-algebra) Corollary 4.8 (2)
implies that if M (A) is nuclear, then A is nuclear; but the converse does not hold even
if A is a C*-algebra. Take A = K(H), the C*-algebra of all compact operators on a
Hilbert space H. Being a C*-algebra of type I, K(H) is nuclear; but M(A4)= B(H),
(the C*-algebra of all bounded operators on H) is not nuclear, for the Calkin algebra
B(H)/K (H) is known not to be nuclear. - '

T.heorem 5.1. Let A be a pro-C*-algebra. The C*-algebra b(M(A)) is isometrically
*isomorphic to the C*-algebra M (b(A)). Thus M(A) is a nuclear pro-C*-algebra iff
b(A) and the generalized Calkin algebra M(b(A))/b(A) are nuclear C*-algebras.
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Proof. In view of Corollary 4.8 (2), it is sufficient to show that b(M(4)) =M (b(A))
up to isomorphism. Let (e;,), |le; || <1 be an approximate identity for the C*-algebra
b(A). Then (e,) is also an approximate identity for 4 [23]. We show that b(M(A)) <
M(b(A)). Let (I eM(A4) with | ()|, =sup {II(L7) I,|peS(A4)} < co. It is sufficient to
show that I(b(4)) < b(A), r(b(4)) = b(A). For xeb(A), peS(A), p(l(x)) = p(I(lim, .e X)) =
p(lim, (I(e;x))) = lim, p(I(e;x)) = lim, p(l(e;)x) < lim, p(I(e;))p () < [| (LM} [ P(X) <
(L) | 1% ]| o showing I(x)eb(A). Similarly r(x)eb(A). This-defines a *homomorphism
¢:b(M(A)) = M(B(A)), d(L,7) =y Tipa)- SinCE b(A) is dense in A4, ¢ is one—one. We
show that ¢ is surjective by establishing M (b(4)) = b(M(4)) in the sense that given
(I, eM(b(A)) each of | and r extends uniquely as continuous linear maps L, R:A— A4
such that (L, R)eM(A), ||(L, R) ||, < 0. It is sufficient to show that each [, r:(b(A4),7)—~
(b(A),7) is continuous, where 1 is the relativization of the pro-C*-topology from A.
Since Lr are continuous in the C*-topology on b(A), M;=sup|l(es)ll,. M,=
sup|r(e;) o < 0. Take M = {M,,M,}. Let peS(A), aeb(A). Then |ae; — alle,—0,
le,a—all,—0;and p(l(a)) = lim p(I(e;a)) as ||| ,-convergence implies T-convergence.
Thus p(l(a)) = lim p(l(e;)a) < lim p(I(e,))p(a) < supp(l(e ))p(a) < Mp(a) giving the desired
continuity of ! (and of r, by a similar argument). This gives existence of continuous
linear extensions L, R:4 — A. That (L, R)eM(4) is a consequence of density of b{A)
in A and joint continuity of multiplication in (4, 1), which also implies that for each
xeA, p(L(x)) < Mp(), p(R(x)) < Mp(x) for all peS(4). Hence (L, R) |l = SUPpes(a)
I(L,R)||, < oo giving (L, R)eb(M(A)). This completes the proof.

Now let 4 be a C*-algebra. Let A4, denote the Pedersen ideal of 4 [22, p. 175],
[21]. Let X be the primitive ideal space of A. Let & be the collection of all compact
closed subsets of X. For an open subset U of X, let I(U) be the closed ideal corres-
ponding to U. It is shown in [25, Theorem 7] that (A 4)is a pro-C*-algebra realized
as the multiplier algebra M (B) of the pro-C*-algebra B=ljim .., A/I(X — C); and
b(I'(A)) = M(A) [25, Theorem 2]. Theorem 4.1 gives the following.

COROLLARY 5.2

For a C*-algebra A, T'(A ) is a nuclear pro-C*-algebraiff M(A)isa nuclear C*-algebra
iff A and M(A)/A are nuclear C*-algebra.

Thus nuclearity of A is not sufficient to guarantee nuclearity of T'(A",). In the case
of A= K(H), one has: %", = all finite rank operators in B(H) and T'(A",) = M(A)=
B(H) [18, p. 30].

6. Nuclear pro-C*-algebras and linear topological nuclearity

If a pro-C*-algebra is nuclear as a locally convex space in the sense of [26, Chapter IV],
then we call A linearly nuclear, in which case, for every locally convex space
B,A®,B=A®,B and ¢=m. Thus a linearly nuclear pro-C*-algebra is a nuclear
pro-C*-algebra. An infinite dimensional nuclear C*-algebra fails to be linearly nuclear
in view of Dvoretzky-Roger Theorem [26, Corollary 3, p. 184].

Theorem 6.1. Let A be a cr—C*-algebra. The following are equivalent.

(1) A is linearly nuclear.



.

Complete positivity, tensor products,... 167

[12] Fragoulopoulou M, *-semisimplicity of tensor product LMC* algebras, J. Math. Anal. Appl. 90 (1982)
431-439

[13] Fragoulopoulou M, Representations of tensor product L.m.c. *-algebras, Manuscripta Math. 42 (1983)
115-145

[14] Giles J R and Koehler D O, Numerical ranges of elements of locally m-convex algebra, Pacific J.
Math. 49 (1973) 79-91

[15] Kadison R V and Ringrose J, Fundamentals of the theory operator algebras, Vol. I, (Academic Press)
1986

[16] Lance E C, On nuclear C*-algebras, J. Funct. Anal. 12 (1973) 157-176

[17] Lance E C, Tensor product and nuclear C*-algebras, in Operator Algebras and Applications (ed)
R V Kadison, Proc. Symp. Pure Math. Vol 38, part 1, Am. Math. Soc. 1982

[18] Lazar A J and Taylor D C, Multipliers of Pedersen’s ideal, Mem. Am. Math. Soc. No 169, 1976

[19] Mallios A, Hermitian K-theory over topological *algebras, J. Math. Anal. Appl. 106 (1985) 459539

[20] Maltios A, Topological Algebras: Selected Topics, (Amsterdam: North Holland) 1986

[21] Michael E A, Locally multiplicatively convex topological algebras Mem. Am. Math. Soc. No. 11, 1952

[22] Pedersen G K, C*-algebras and their automorphism groups (Academic Press) 1979 '

[23] Phillips N C, Inverse limits of C*-algebras, J. Operator Theory 19 (1988) 159-195

[24] Phillips N C, Inverse limits of C*-algebras and applications, pp. 127-185 in Operator Algebras and
Applications Vol I (ed) D E Evans and M Takesaki London Math. Soc. Lecture Notes No 135, 1988

* [25] Phillips N C, A new approach to the multipliers of Pedersen’s ideal, Proc. Am. Math. Soc. 104 (1988)

861-867

[26] Schaeffer H H, Topological Vector Spaces (London: MacMillan) 1966

[27] Takesaki M, Theory of Operator Algebras I (New York: Springer—-Verlag) 1979

[28] Voiculescu D, Dual algebraic structures on operator algebras related to free product, J. Operator
Theory 17 (1987) 85-98

[29] Weinder J, KK-theory for generalized operator algebras II, K-Theory 3 (1989) 79-98

[30] Weinder J, Topological invariants for generalized operator algebras PhD Thesis Heidelberg, 1987



