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Abstract. Nuclear Kéthe sequence space A(P), its crossdual A(P)* and their non-nuclear
variants are examined as topological algebras. Modelling on them, a general theory of nuclear
topological algebras with orthogonal basis is developed. As a by-product, abstract charac-
terizations of sequence algebras £ and ¢, are obtained. In a topological algebra set-up, an
abstract Grothendieck-Pietsch nuclearity criterion is developed.
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1. Introduction

Let o denote the vector space of all sequences of complex numbers, 4 subset Pcw
is a power set [15, Ch. 6] if (i) for each a=(a,)eP, a,> 0, (ii) for each a =(a,), each
b=(b,) in P, there exists a c=(c,) in P satisfying a,<c, b, <c, for all n, (iii) for
each neN, there exists aeP such that a,>0. Further, P satisfies G,-property
(respectively G-property) [12] if (iv) for each aeP, a, ., < a, (respectively a, < a,+1)
for all m; (v) for each aeP, there exists a deP satisfying a, < d? (respectively a? < d,)
for all n. Given a power set P, Kéthe sequence space A(P)= {b=(b,)ew|p.(b)=
Z,.11bsla, < o for all aeP} is a complete locally convex space with the Kothe
topology p, defined by seminorms I'p= {p,;aeP} and having Schauder basis
e, = (0,m)» Oum being the Kronecker delta [12], [13]. For a G, (respectively G,,) power
set P, J(P) is denoted by A, (P) (respectively 1, (P)). Note that A(P) is a very general
construction that includes very many standard sequence spaces as particular cases
[16]. The space A(P) occupies a central position in the theory of locally convex space
with basis ([14], [12], [15]); in fact, a complete locally convex space with an absolute
basis has to be A(P) [15, Th. 10.1.4].

Now consider o as a unital *algebra with pointwise multiplication and pointwise
complex conjugation as the involution. It happens that each of A,(P) and Aw(P)
(assumed nuclear) is a *subalgebra of w which, with topology 5, is a locally convex
algebra. The present paper is aimed at understanding these topological algebras and
examining their relevance in (and impact on) the general axiomatics of functional
analysis. It so turns out that A(P) also occupies a central position in the theory of
topological algebras with orthogonal basis initiated by Husain and his colleagues

[71-{10].
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~ In §2, after discussing the basic properties of the topological algebra (4, (P), tp), it
is shown in Theorem 2.4 that a sequentially complete nuclear (as a locally convex
space) lopological algebra A with jointly continuous multiplication and having an
equicontinuous orthogonal basis is homeomorphically isomorphic to a (semi)
G,-Kéthe algebra A(P). This provides a topological algebra analogue of [15, Th.
10.1.4] which implies that the space A(P) comprise all complete nuclear spaces with
equicontinuous basis. This also generalizes a characterization, due to Husain and
Watson [8], of the algebra w (pointwise convergence) as the only complete unital
locally m-convex algebra with orthogonal basis. The relation between nuclearity of
A and existence of identity in A is examined in Corollary 2.6, as well as the relevance
of identity in above quoted result of Husain and Watson is also discussed. Even in
the absence of validity of open mapping theorem, it turns out that an orthogonal
basis in a topological algebra is Schauder. In fact, in Proposition 2.1, we prove a
much stronger assertion improving [5, Th. 1.1]. This leads to a characterization of
isomorphisms of By-algebras with bases. It is shown, in Theorem 2.13, that under
fairly general conditions, a sequentially complete topological algebra with an
orthogonal basis is a countable direct sum of simple algebras, each homeomorphically
isomorphic to the field ¢ of complex numbers. This improves a structure theorem
for Banach algebras with basis proved in [10].

Section 3 contains abstract characterizations of Banach algebras /® and ¢,. A
unital dual Banach algebra 4, with predual 4, which, for the topology a(4, A4,), (i) is
sequentially complete, and (i) admits an equicontinuous orthogonal basis, is dual
algebra isomorphic to ¢%. Further, such an A4 is a uniform (Banach) algebra iff this
isomorphism is an isometry. On the other hand, a uniform Banach algebra with an
orthogonal basis is isometrically isomorphic to «.

In §4, nuclearity of a topological algebra with basis is characterized in terms of
ring theoretic structure. Recall the Grothendieck-Pietsch nuclearity criteria [12], [15]
viz (A(P), 1p) is nuclear iff for each aeP, there exists abeP and aues! such that
a, < uy b, for all n ifl 7 is determined by the family of seminorms {g,|ae P}, g,(x) = sup,
|xqla,. Further, (4;(p), tp) is nuclear iff P =¢*; and (1, (P), 5) is nuclear iff there
is a ue P such that (1/u,)e/*. With a view of obtaining an abstract version of this for
a topological algebra A with an orthogonal basis (e,), we consider, for 1 <p < oo,
K, (A)= {xeAl(e}(xy))er? for all yed} and J(4) = {xeA|(e}(xy))ez, for all yed}
with natural topologies % defined by the seminorms py(x)= llex(xy)ll,, yeA. Note
that J(A4) = K,(4) and J(A) carries the relative topology. As in [9], each K »(4) and
J(A) are dense ideals in A satisfying, for 1 <p< o0, K,(A)c K HA) = J(4) = K (A4).
We show that if 4 is a B,-algebra with identity having (e,) unconditional, then 4 is
nuclear iff K, (4) = J(A) = K ,(4) topologically as well.

In §5, we have briefly discussed a number of examples of topological algebras with
orthogonal basis, to impress upon the usefulness of algebra point of view in the theory
of sequence spaces and to illustr#te the general theory. The paper ends with concluding
remarks, wherein we discuss three aspects of topological algebras with basis viz the
problem of automatic continuity of multiplicative functionals, uniqueness of topology
and non-existence of orthogonal basis in an abstract nuclear B,-algebra.

By a (locally convex) topological algebra A is meant a Hausdorff (locally convex)
topological vector space with topology ¢ which is also a linear associative algebra
over complex scalars such that the multiplication is separately continuous, i.e. for
each x, the linear maps L,y=xy R y=yx are continuous. A basis (e,) in A is
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orthogonal if e,e,, = 8,,e,, for all n, m. For xeA, the expansion x = ZPa,e, leads to
coefficient functionals e (x) = «, which are multiplicative if (¢,) is orthogonal. A nuclear
algebra is a topological algebra that is a nuclear locally convex space. A topological
algebra with an orthogonal basis is always commutative [8]. We refer to [14], [21]
for topological algebras; [15], [19] for locally convex spaces; [121, [13], [16] for
sequence spaces; [15] for linear topological aspects of basis theory; and [7], [8], [9],
[10] for orthogonal basis. £7(1 < p< @), ¢,¢, denote the usual Banach sequence
spaces.

2. 1,(P) and topological algebras with basis

Defining property (v) of G,-condition implies that A,(P) is closed under pointwise
multiplication and (4,(P), 7,) is a locally convex *algebra with jointly continuous
multiplication having (8,,,)%o as an orthogonal Schauder basis. Further, it is easily
seen that A, (P) admits identity (which has to be constant sequence {1} denoted by 1)
iff (1,(P), tp) is nuclear; in which case, it is a generalized B*-algebra in the sense
of [1], [3] containing the C*-sequence algebra (£, ||,) continuously and densely
embedded in it. In this section, we aim to incorporate this observation in general
theory of topological algebras with basis.

We begin with the following ‘automatic continuity’ result that improves [8, Prop. 3.1]
and [5, Th. 1.1] pushing them in the final form leading to a variant in a more general
framework. Our arguments are modifications of those in [5] wherein part (i) of the
following is proved under the additional assumption that multiplication in A
is jointly continuous. This is a strong requirement for non-m-convex non-metrizable
algebras.

Theorem 2.1. [f A is a topological vectorspace that is an algebra,

() If A is a topological algebra, then every orthogonal basis in A is Schauder.

(i) If multiplication in A is sequentially separately continuous (i.e. for a sequence (x,)
in A, x,—0 implies x,y—0, yx,—0 for all y), then every orthogonal basis (e,) in
A is b-Schauder (i.e. each coefficient functional e} is bounded in the sense that it
maps a bounded set to a bounded set).

Proof. Let (e,) be an orthogonal basis in 4. Let neN be fixed orthogonality of (e,)
applied to the expansion x = ZF ef(x)e, implies that e,x = eX(x)e, = xe, for all xeA.
Choose a balanced o-neighbourhood U such that e,¢U. Let r=inf{d > 0fe,edU}.
Then r> 1.

(i) Let (x,) be a net in A4 such that lim,x,=0. Hence lim,x,e, =0. Given 6 >0,
there exists an o, such that e¥(x,)e, = x,e,edU for all a>0,. As U is balanced,
|e*(x,)|e,edU for a0y Hence by definition of r,|e*(x,)|"*d=r>1, and so
e (x,)] < 6 for all &> ay. Thus lim,éej(x,) =0.

(ii) It is sufficient to show that ej maps a bounded sequence (x,) to a bounded
sequence. For any sequence ry—»c0, ry> 0, x./r,—0. Hence e,x;/r,—0. Thus
(e*(x,)e, ), is bounded and for all k, e*(x,)e,eAU for some A=A(n, U)>0. Again
by definition of r,|ef (x,)| <r/A for all k. This completes the proof.

Tt follows, from the continuity of the injective map xeA - (e (x))ew (pointwise
convergence) that a topological algebra 4 with an orthogonal basis carries an lme
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topology coarser than the given topology. This makes spectral theory of A tractable;
e.g. (e¥) constitute the Gelfand space x(4) of 4 viz, the space of all continuous
multiplicative functionals on 4 with weak *topology exactly as in [5, Corollary 1.3]
in view of Theorem 2.1; and if A is also a division algebra, then A4 is isomorphic to
scalar field € (Gelfand-Mazur Theorem). The following consequence of Theorem 2.1
can be regarded as a first step towards classifying topological algebras with orthogonal
basis.

COROLLARY 2.2.
Let A and B be topological algebras with orthogonal bases (e,) and (f,) respectively.

(a) If ¢:A— B is a homeomorphic isomorphism of A onto B, then there exists a
permutation o of N (the set of natural numbers) satisfying

(C1): “(en) and (f,-1,)) are equivalent (in the sense that for any sequence of
scalars (x,), Zx,e, converges in A iff £x,f,-, convergences in B’,

and ¢ is of the form ¢ = T, where T, (Xx,e,) =Z X, u

(b) For any permutation o of N satisfying (C,), T, defines an isomorphism of A onto
B. Further, if A and B are F-algebras (i.e. complete metric algebras), then T, is a
homeomorphism.

Proof. (a) By Theorem 2.1, (e,) and (f,) are Schauder bases, and as noted above
1(A)~ N = x(B). The conjugate map between the topological duals ¢*: B*— 4%,
¢*f = fo¢ is a bijective linear map that is g(4*, A) — o(B*, B) continuous. Further,
¢ being an isomorphism, ¢*(x(B)) < x(A4). Hence there is a permutation o:N—N
such that ¢*(f¥)=e¥,. Thus for all x in 4, f¥(P(x))=eF,(x)=X,4u; and so
d)(zxnen) = ana(n)fn = anfa"(n] gIVIng (a)

(b) Let ¢ be a permutation of N satisfying (C,). Then for any x = Xx,e, in 4,
ZX, fym1y = L X,y fn converges in B, thus defining ¢(x) in B. This defines a linear
map ¢: A— B which preserves the ring structure, as (e,) and (f,) are orthogonal.
Condition (C,) also implies that ¢ is bijective. By Theorem 2.1, the linear maps

Tn: A- B5 Tn(x) = kzl e;f (x)fc"(k)

are continuons, and ¢(x) =lim, , , T,x (pointwise) for all xe 4. Hence if A and B are

F-algebras, then ¢ is continuous; and hence is 2 homeomorphism by open mapping
theorem.

Remarks 2.3. (a) In the absence of metrizability, condition (C,) is not sufficient to
make T, a homeomorphism. Thisis seen in the case of A = (£, || ||, ), B = (¢, n(£*,£%));
both are topological algebras with e, =(,,,) as orthogonal basis. Here the normal
topology n(£*,£*) on £' is defined by seminorms p,(y) = Z|y,x;|, xe/*.

(b) Now suppose 4 and B are locally convex. Let S(A) (resp. S(B)) be a family of
continuous seminorms determining the topology of A (resp. B). Given a homeomorphic
isomorphism ¢: A - B, let ¢ be the permutation of N defined by Corollary 2.2 (a) so

- **<~mrm=aﬁxmﬁ -

o
<1



Koéthe spaces and topological algebra with bases 263

that ¢ = T,. A consequence of continuity of ¢ and that of ¢! is that o satisfies

(C,):() Given qeS(B), there exists apeS(4) and ak>0 such that
q(fa“(n])< kp(en) for all n.
(ii) Given apeS(4), there exists ageS(B) and ak' >0 such that
ple,) <k'q(f,-,) for all n. :

The following shows that this suffices in the nuclear case. Note that in a B,-space, a
Schauder basis is equicontinuous [15, Th. 10.1.2].

PROPOSITION.

Let A and B be nuclear locally convex algebras with equicontinuous orthogonal bases
(e,) and (f,) respectively. The isomorphism T,: A— B defined by a permutation o of
N satisfying (C,) and (C,) is a homeomorphism.

Indeed, due to nuclearity, (e,) is an absolute basis [15, Theorem 10.2.1] so that
given peS(A), there is a p'eS(A4) such that Ze}(x)p(e,) <p'(x) for all x. Hence for
aqeS(B), (C,) (i) gives, for xe4,

AT 3, e 00qf ) S kY eF(Ip(e) kP ().
1<l
Thus (T,) is an equicontinuous family. This makes ¢ continuous. Similarly C, (ii)
gives continuity of ¢ '

Now it is well known [15, Th. 10.1.4] that a complete locally convex space with
an absolute basis is linearly homeomorphic to a Kéthe space (4(P), 7p). Further, by
the Basis Theorem [15, Th. 10.2.1], an equicontinuous basis in a nuclear space is
absolute, with the result, a complete nuclear space with an equicontinuous basis has
to be a Kothe space. The following supplements this by exploiting the added ring
theoretic structure on A,(P). We shall call a power set P with property (v) of §1
semi-G,-set and AJ(P) denotes a semi-G,-Kthe space.

Theorem 2.4. Let (4,1 be a topological algebra satisfying the following

(i) A is locally convex
(i) A has jointly continuous multiplication

(iti) A admits an orthogonal absolute basis (e,). Then there exists a homeomorphic
isomorphism ¢ : (4,1)—=(A3(P),tp) from A onto a dense subalgebra of some A3(P).
Further, (a) if A is a *algebra with continuous involution and (e,) is hermitian (i) (i.e.
each e, a hermitian element), then ¢ (A) is a * subalgebra of A9(P)and ¢ is a * isomorphism;
(b) if A is sequentially complete, then ¢ is onto.

Proof. By (ii), given a o-neighbourhood U, there exists a o-neighbourhood ¥ such
that VV < U. Additionally using (i), the topology of 4 is determined by a family
I = {p,lueA} of seminorms satisfying: For each aeA, there exists a feA such that

po(xy) € pp(X)pp(y)  (x,yin A). (1)

Let (¢,) be an orthogonal absolute basis. For each aeA, let a® = (a®)ew, a® = p,(e,).
By (2) and Hausdorff property of 4, P = {a®|aeA} is a power set. The K&the topology
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1p on A(P) is determined by I'p={g,JaeA}, g, (b)=Z7|b,|a® <oo for all aeA.
Expanding each xe 4 as x = ¥ ef(x)e,, orthogonality of (e,) implies that each e} is
a multiplicative linear functional, which is continuous by Theorem 2.1. As (e,) is
absolute, for each o, there is a § satisfying, for all x,

Z lex (x)ipalen) < py(x) )

This with continuity of p,, implies that p,(x) <Z|e}(x)|a® < py(x) < oo showing
(e*(x))eA(P). Thus, there is defined linear map ¢: 4 — A(P), ¢(x) = (ejf(x)) satisfying:
Given ae, there is a feA such that p,(x) < 4,(¢(x)) < ps(x). Thus ¢ is one-one and
is a homeomorphism into. Orthogonality of (e,) has the following consequences;

1° Taking x = y = ¢, in (1), given o, there is a § such that a® = p,(e,) = p,(e2) < (pyle,))* =
(@2, Thus, P satisfies semi-G,-property and (A(P),tp) is a complete locally convex
topological algebra.

2° For x =Z7 e¥(X)e,, y =ZT ef(y)es; xy = I, ver (x)ef (Vene, = Zyef (x)ey (y)e, giving
¢ (xy) = ¢(x)p(y).

(a) If x—x* is the continuous involution of A with each e, hermitian, then for an
xed, x* =(Zef(x)e,)* =Zef(x)e,, o(x*)= o(x)*.

(b) Let A be sequentially complete. Let u = (u,)eA(P) so that for each o, X p,(u,e,) =
I7|u,|a® < co. Hence taking xP = Z?u,e,, for n>m and for each a, p,(x™ — x™)
< I8, lugp(e.) = 0. Thus (x™) is Cauchy, hence x™ - xeA and x = Zu,e, showing
that ¢ is onto. This completes the proof.

The following is immediate from [18, Th. 2.17] and [15, Th. 10.1.2]. A B,-algebra
is a complete metrizable locally convex algebra. A locally m-convex algebra [14] is a
topological algebra whose topology is determined by a separating family of submulti-
plicative seminorms.

COROLLARY 2.5.

A nuclear By-algebra with an orthogonal basis is homeomorphically isomorphic to a
semi-G,Kathe algebra (13(P),tp) for a countable P.

It is shown in [8, p. 246] that an infinite dimensional normed algebra with
orthogonal basis cannot have identity. The following describes some connections
between the existence of identity and nuclearity.

COROLLARY 2.6.

Let A be a locally convex algebra having an orthogonal baszs (e,). Let multiplication
in A be jointly continuous.

(1) Let (e,) be an absolute basis. If A has identity, then A is nuclear.

(2) If A has identity, then (e,) is bounded.

(3) If A is sequentially complete and (e,) is bounded and equicontinuous, then A has
identity.

Proof. (1) Let e be the identity of A. Then e=X%e,, ¢(e)eA(P) and for each
0, Za = q,($(e)) < 0. Thus P = £, £° < 19(P). This also implies ¢(e) = 1 (constant
sequence 1) and by the proof of Theorem 2.4; for each a, there is a such that

R
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a®/a® < a®, (a")es*. Hence (A2(P), tp) is nuclear. Therefore ¢(4), and hence 4, is
nuclear.

(2) e = Le, implies e, — 0, hence (p,(e,)) is bounded for each continuous seminorm
Pgon A

(3) In the notations of proof of Theorem 2.4, for each « there is a scalar M, >0
satisfying p,(e,) < M, for all n. Now 4 is nuclear, (e,) is equicontinuous, hence (e,)
is absolute. Thus A%(P) is nuclear. Hence for each o, there is a f such that

pa(en)/Mp’ < pa(en)/pﬂ(en) and {pa(en)/pﬁ(en)}ezl' Then Pc /1’ = )“?(P)s hence ]?(P)a
and so A has identity.

Example 2.7. Converse of Corollary 2.6 (1) does not hold. Consider the G,-Kothe
space (4., (P), 7p) assumed nuclear. There is a de P such that {1/d,}e/*. Given x,y in
Ao(P), Palxy) = ZF|x, Vula, < | 1/d]l 1 pa(x)Pa(y) showing ,,(P) to be a locally convex
algebra having absolute basis e, = (J,,,) and with jointly continuous multiplication.
Now if 1€A_,(P), then P < #*, hence for all aeP, a,~0 contradicting a, < a,, for all
n. Thus A (P) cannot have identity. In fact, 1, (P) =¢*. Taking P countable 1.,(P)
can be chosen a B,-algebra. Thus, in view of Corollary 2.6. (3), in a nuclear By-algebra,
(e,) need not be automatically bounded, though it is equicontinuous [15, Th. 10.1.2];
and nuclear B,-algebra with an orthogonal basis need not be unital.

Example 2.8. In Corollary 2.6 (1), the hypothesis that (e,) is absolute cannot be omitted
even if A is assumed metrizable. Let A4 ={x = (x,)eo[lim,x,n =0 for all
k=1,2,3,...}. A is a By-algebra with topology defined by the seminorms p,(x)=
sup,|x,/n" 1% having identity ! and admitting orthogonal unconditional basis
e, = (5,,). The algebra A is not nuclear (in view of Theorem 4.2, since K{4)#J(4)
as shown in [9]) and (e,) fails to be an absolute basis (because, otherwise Theorem
2.2 applies) though it is equicontinuous.

Similarly, the hypothesis that 4 has identity can also not be omitted. Consider for
a G,-power set P, the Kthe sequence algebra (4,(P), 7p). Thene, = (6,r,) is an absolute
basis, and A, (P) is nuclear iff 4,(P) has identity.

COROLLARY 29. [8].

Let A be a complete locally m-convex algebra with an orthogonal basis (e,). If A has
identity e, then A is metrizable and is homeomorphically isomorphic to (, 1), t being the
topology of pointwise convergence.

Proof. By [8, Th. 1.3], an Imc algebra with an orthogonal basis having identity is
metrizable. Thus (¢,) is equicontinuous. If T = (p, )i, is a sequence of submultiplicative
seminorms determine the topology on A, then pele,) < pile,)? gives pile,) =1 or
pile,) =0. But e= X e, implies py(e,) 0 as n— co. Thus, for each k, p,(e,) =0 for
all n> some N,. This makes (e,) an absolute basis. By Theorem 2.4, A = A9(P) and
P = ¢, the space of sequences with only finitely many non-zero terms. From this, the
assertion follows immediately.

The following two particular cases of K6the algebra A(P) reveal the importance of
the existence of identity in the above Corollary.

Example 2.10. Tn the absence of identity, an Imc algebra with an orthogonal basis
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need not be metrizable. Consider the sequence algebra ¢ = {xew|x,#0 only for
finitely many n}. Let @, = {xep|x,=0for k=m+ 1}, a finite dimensional ideal in
o for eachm,and ¢ = Up'=1 @p- Let 1 be the strongest locally convex linear topology
on ¢ making each of the embeddings ¢,,~ ¢ continuous. It follows from [20, pp.
195-196] that (p,) is an Imc algebra and 7 is the finest Imc topology making each
of above embeddings continuous. Also, e, = (J,n) is an orthogonal basis. A similar
phenomena is also exhibited by the algebra A = U, , ", each 7 carries the relative
to topology from /%. The topology  is not metrizable.

Example 2.11. An Imc algebra with an orthogonal basis, even if non-normed Frechet,
need not be the whole of w. This is exhibited by the sequence algebra B= 0, /7
with the topology defined by |-[|,:p = 1,2,3,...,c0. It is shown in [5, Th. 2.1] that
an Imc algebra with orthogonal basis and having identity carries via the mapping ¢
of Theorem 2.3, the topology of pointwise convergence. This example, as well as the
algebra L°(T) discussed in §5.5 show that this need not be the case in the absence
of identity.

Remark 2.12. There is another interesting characterization of @. A o-C*-algebra is
complete metrizable Imc algebra that is an inverse limit of C*-algebras.

PROPOSITION (2]

A commutative 6-C*-algebra with identity that is a nuclear space admits an orthogonal
basis and is homeomorphically isomorphic to .

The following was proved for Banach algebras in [9]. It reveals ‘sequential nature’
of a topological algebra with an orthogonal basis.

Theorem 2.13. Let (A,t) be a locally convex algebra with an orthogonal basis (e,).
Consider the following

(i) A is sequentially complete with jointly continuous multiplication and (e,) is absolute
and bounded
(i) A is locally m-convex
(ifi) A is a By-algebra.

Let A satisfy at least one of the above conditions. Then A is a countable direct sum
of simple topological algebras Ae,, each of which is homeomorphically isomorphic

to C.

Proof. As in [9, Th. 4.4, Prop. 4.5], each Ae; is a closed minimal ideal, A = X7 Ae;,
each M, =kere* is a closed maximal ideal and for each n, Y (4/M,,t,)-(Ae,, 1),
W(x + M,) = xe, is a continuous isomorphism from 4/M, onto Ae,. Here t, = quotient
topology on A/M, and ¢ =relative topology from 4 on Ae,.

(a) Assume (i). In notations of proof of Theorem 2.4, consider the homeomorphic
isomorphism ¢: (4, ) > (12(P), t). Since (e,) is bounded, P < £, hence ¢* < A3(P), in
fact, " is sequentially dense in AJ(P). Then the subalgebra B=¢~*(¢") of 4, which
is a Banach algebra with norm ||x|| =] ¢(x)[l;, is sequentially dense in (4,?). By
Theorem 2.1, ¢*/B #0. Being a multiplicative functional, e} is |-|| continuous on B,
hence ker (¢*/B) = M, n B is a normclosed maximal regular ideal. By Gelfand-Mazur
Theorem B/(M,nB) is isomorphic to €. Since B is sequentially dense in (4, 1),

7
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B/(M,n B) is sequentially ¢,-dense in A/M,. Thus A/M, is ¢; t,=t via y and the
conclusion follows.

(b) Assume (i) or (iii). (4/M,, t,) is a division algebra that is either a B,-algebra or
is Imc. Since Gelfand-Mazur Theorem holds in those two classes of algebras ([14],
[21]); (4/M,,t,), hence (4e,, 1), is €. This completes the proof.

3. Abstract characterizations of 7 and ¢,

A dual Banach algebra (A, ||*|) is a Banach algebra that is dual, as 2 Banach space,
of some Banach space (4, ||*||) called its predual. A dual algebra isomorphism i: A —> B
from a dual Banach algebra A to a dual Banach algebra B is an algebra isomorphism
that is ||']| - | -|| homeomorphism as well as ¢(4, 4,) — o(B, B,) homeomorphism.
The Banach algebra £*(= A(P) with P = {ae'/a, >0 for all n}) is a dual Banach
algebra with 1 having predual (¢', ||};). Further, (¢=,a(¢™,¢")) is a sequentially
complete topological algebra having orthogonal basis e, = (Opm)T -

Theorem 3.1. Let A be a dual Banach algebra with identity e and predual A,. If
(i) (4, 0(4, A,)) is sequentially complete, and (ii) (A,0(4, A,)) admits an equicontinuous
orthogonal basis (e,), then there exists a dual algebra isomorphism ¢ from A onto £°.

Proof. Define ¢:A—w as ¢(x)=(e¥(x)). Each e* being multiplicative, it is |-
continuous, and for all x, [e*(x)! < [|x [|. Thus ¢(x)e ™, p(A)c ™ and () [ < [ x].-
As in the proof of Theorem 2.4, ¢ is one—one, linear and is homeomorphism.

We show that ¢ is 6(4, 4,) — 6(£®,¢') continuous. Let g = (g,)ef*, regarded as a
linear functional on 7. Thus g ¢€A,. Indeed, for all xe 4 l(ged)(X) =1Z < (¢ (x))ns
g,>|<Zlg,| le*(x)|. By equicontinuity of (e,) in o(A,A,), given ¢>0, there is a
o-neighbourhood U in o(4, A,) satisfying, for all n, |e*(x)| <& Thus for all xeU,
l(god)(x) <ellgl,, giving gopeA,. Thusifx —01in (4, 4,) (so that f(x)—0 for all
feA,), g(@(x)—0 for all ges* giving $(x)—>0 in a(¢*,£%).

Now e=X%¢,in ¢(4, 4,). Hence for all fed,, (f(e,)et* and f(1) = Z9 f(e,). This
we use to show that ¢ is onto 7. Let ye£®, y= (). Let €, = (6m); yo =Ty, e
Then for all feA,, k>m, |f(x® — x| <|Z2, 11y )l <1yle 1201 /()] -0
as k, m— 0. Thus (x®) is o(4, 4,) Cauchy, hence x® - x in 4 in a(4, A,). Therefore
d(x) = limgp(x¥) (in o, £1)) = y.

It follows, by the open mapping theorem, that éis || - Ill,, homeomorphism.
To show that ¢ is (¢, £')—0(4,4,) continuous, it suffices to show ¢*(£') =
A,,@*:(/)* — A* being the conjugate of ¢ between the respective norm duals,
$*(g) = g o ¢. We have already shown P*(L') < A,. Let fed,, let y,= f(e,). Then
y=(y)et and for all n, {f,e,) =y, = s €> = 0 d(e)) = <P* W) 0D, and so,
for all xed, <f,x) = (f,20x,0, = ZLX,< [ €9 = ZP X, pp = {($*(y), x). Thus f =
d*(y)ed*(/') implying ¢*(£') = A,,. This completes the proof.

A uB-algebra (uniform Banach algebra) is a Banach algebra (4, [|]) with
[x2] = ||x||* for all xeA.

COROLLARY 3.2.

Let A be a dual uB-algebra with identity e satisfying (i) and (ii) of Theorem 3.1. Then
A is isometrically dual algebra isomorphic to £%.

[ S
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Proof. If () denotes spectral radius of an element, then for all xe A4, | x| =limsup, .,
[[x"|*" = r(x) = r(¢(x)) (by Theorem 3.1) = [ (x)[|,,,£* being a C*-algebra.

Theorem 3.3. A uB-algebra (A,|-||) with an orthogonal basis (e,) is isometrically
isomorphic to the Banach algebra ¢,.

Proof. A cannot have identity by [8, p. 346], and it is well known that the uniform
condition on A4 forces 4 to be commutative. Gelfand theory provides a homomorphism
¢ A—Cy(x(A4)) of 4 into a subalgebra of the supnorm Banach algebra Cy(y(4)) of
continuous functions on the (locally compact) Gelfand space y(A4) vanishing at infinity.
Further, by the uniform condition, the Gelfand map ¢ is an isometry. Thus ¢ is a
closed subalgebra of Cy(x(A4)). But by [8], x(4) = N. Hence Cy(x(4)) = ¢o. As A has
an orthogonal basis, the sequence algebra ¢ (sequences with only finitely many
non-zero terms), which is already dense in ¢, is dense in ¢(4). Thus ¢(4) = ¢4, and
the proof is complete.

A Hilbert aigebra A with a biorthonormal basis (e,) is a Hilbert space A which is
also a Banach algebra with orthogonal basis (e,) such that (e,) is an orthonormal
family. It can be shown, as above, that a Hilbert algebra with a biorthonormal basis
is isometrically isomorphic to £2.

4. A characterization of nuclearity: Abstract Grothendieck-Pietsch criterion

DEFINITION 4.1,
Let 4 be a topological algebra with an orthogonal basis (e,).

(@) () For L<p<oo, let K (4) = {xeA|(e}(xy)el” for all yeA}; (ii) J(A) = {xeA|e(xy)~0
as n—> oo for all ye A} (iii) J.(A) = {xe A| e} (xy) is convergent for all yeA}.
(b) The natural topologies on these subsets of A are defined as follows (i) For
I<p<oo,tf is the locally convex topology on K,(A4) defined by semi-norms
{phlyeA}, pio) = (Slef(xy)lr) .

On K (4), the topology ¥ is defined by seminorms p{°(x) = sup|e¥(xy)|, ye4;
(ii) On J(A) and J (A), we consider the relative topology from (K, (A), T).

The sets K, (A4) and J(4) are considered in [9] wherein the problem of equality
K (A)=J(A) is discussed. The following is essentially due to [9]. Our presentation
clarifies configurations of K ,(A), J.(4) and J(A) in 4; also part (e) refines [9, Prop. 6].

PROPOSITION 4.1.
Let A be a topological algebra with an orthogonal basis (e,,).

(2) Each of K, (4), 1 <p< oo, J(A) and K ,(A) is an ideal in A.

(b) K(A) is the intersection of dense maximal ideals in A if (e,) is unconditional

(c) For 1<p< oo, K,(A) =J(A) = J,(A) = A

(d) Let A have identity e and (e,) be unconditional. Via the mapping ¢: xe A —(e*(x))ew
which is one-one, K () is a subalgebra of £°(1 < p < o0), J(A) is a subalgebra of «,
and J(A) is a subalgebra of £. The horizontal and vertical single arrows in the
Jollowing define continuous embedding when the spaces involved carry their natural
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topologies.

i
£l Py — 6 — 7

IR TR S SR
Ki(A)= Ky(A) > T(A) > T(A) = Ko (A).oo oA

(¢) Let A have identity e.

(i) If there exists an invertible element x in A such that (e¥ (x))e£?(1 < p < o), then
K, (4)=J(4) = J (4) = K ,(A). '
(ii) If there exists an invertible element x in A such that e¥(x)—0, then J(A4)= !
J(A)= K, (A). |

(f) Let A be a By-algebra. Then its dual A* is linearly homeomorphic to K, (A).

The algebra A of Example 2.8, as shown in [9], is such that K, (4) # J(4). Incidentally,
this 4 is not nuclear. On the other hand, it is also noted in [9] that for the Frechet
algebras @ and H(D) (holomorphic functions on open unit disc with Hadamard
product—see Example 5.7) [8], K (4) = J(A); and both w and H(D) are nuclear. The
following explains this.

Theorem 4.2. Let A be a By-algebra with identity e and having an orthogonal basis (e,).
(@) If A is nuclear, then for 1<p< o, K (A) =K (A)=J(A)=J(4)=K,(4)
algebraically as well as topologically.
(b) Let (e,) be unconditional, if K,(A)=J(A) algebraically as well as topologically,
then A is nuclear.

Proof. Abeing B,, multiplication in 4 is jointly continuous and (e,) is equicontinuous.
The nuclearity implies [15, Th. 10.21] that (e,) is absolute. By Theorem 2.4, !
¢(x) = (e¥(x)) establishes a homeomorphic isomorphism from 4 onto the semi-G, - K
Kéthe algebra A2(P) (denoted by 4, (P) only) with P = {(p,(e,))|eeN}, I' = {p,lae N}
being a countable family of seminorms determining the topology on 4. Further, since
A has 1dent1ty, Pc/tandso 4, (P)* c ¢ ¢ < A,(P). Since each ef is multiplicative,

{xeA[Ele*(x)] le*(y)| < oo for all ye 4}. This, with ¢(4) = A, (P) implies that
K 1(A) < ¢~ 1(1,(P)). We claim that ¢(K,(4))=4,(P)". Indeed, let b= (b,)e4; (P )",
%|b,| |e*(y)| < co for all yeA. Then bes* = £®. As (e,) is absolute, it is unconditional,
hence a bounded multiplier basis, with the result, as noted in [17, Lemma 1], given
¢ =(c,)e¢™, there exists an xeA such that x=X7¢,X,, hence e*(x)=¢, for all n.
Thus, b= ¢(x) for some xeA. This implies xeK (A) and (K, (A), t}) is homeomor-
phically isomorphic to (4,(P)*, 15 ).

Now as 4 is nuclear and By, (Al( ), Tp) is also nuclear and B, But then, as is well
known, (4,(P)*, 75), and hence (K;(4), t}) is also nuclear. Therefore by the
Grothendieck-Pietsch nuclearity criteria the topology t} on K (4) is also determined .
by the scmmorms py ®(x) =sup {|e*(x) e*(y)|}, yeA. Thusvia g and ¢ 7, K, (A) = {u= ?
(u,)ew|(JualeX(x))ef®} o K ,(4) > J(4) > K (A). This proves (a).

(b) Assume that K,(4)=/J (A) topologically also. Since A has identity e =X7e,, we
have (p,(e,))€xo for all a. As (e,) is unconditional, there is a ze A such that eX(z) = p,(e,) ;

o A e
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Further for any xeA, x =L ¢¥(x)e, implies that |e}(xz)| = eF (x)] Poe,) = PoeF(x)e,) 0
as n— 0. Thus (p,(e,)) = (e¥(z))eJ (4) = K (4) ¢! via ¢ by Proposition 4.1, Now
since (e,) is equicontinuous, given o, there is a f and a constant k =k, such that
|e*(x)| pa(ea) < kpy(x) for all xe A [15, p. 172]. This gives, for all xe 4, Z|e¥(x)|p,(e,) <
kpg(x)Ep,(e,) = kMpy(x) (say) showing that (e,) is absolute. It follows, by Theorem
2.1, that ¢ establishes a homeomorphic isomorphism between A and A,(P), P=
{(p.(e,)leN}. But then (K (4), 71) is homeomorphically isomorphic to (4,(P))™, 75 ).
Now the assumption implies that 7} is also determined by the seminorms {prlyed}.
It follows that (K, (A), t4) and so (4; (P)*, 17), is nuclear. Metrizability of ,(P)
implies that (4, (P), p), and so 4, is nuclear. This completes the proof.

5. Examples

In this section, we point out several examples of topological algebras with basis. Our
point of view is that almost all sequence spaces discussed in the literature are sequence
algebras, which via Theorem 2.4, provide framework for various convolution algebras
of functions and distributions. Throughout, P denotes a power set. We omit easy
proofs.

(5.1) Consider the cross-dual A(P)* = {xew|(x,y,)e/* for all yeA(P)} with the
cross-dual topology 75 determined by seminorms {p,|xeA(P)}, p.(y) = llxy ;- 1f 4, (P)
is nuclear, then (4, (P)*, 7, )is a topological *algebra without identity with orthogonal
basis e, = (6,,) and A, (P)* £ If A,(P) is nuclear, then (A,(P)*, t5) is also a
topological *algebra with identity containing #* as a dense *subalgebra—in fact, it
is a GB*-algebra. By [4, p. 91], for a barrelled A(P), the dual A(P)* = A(P)* = {xew|
there exists aeP and 0<p, < with |x,| < p,a, for all n} = U{N,laeP}, where
N, = {xeA(P)* |sup(|x,|/a,) < o0}, is a Banach space with norm p,(x) = inf{4 >0
|x,| < 4a, for all n}. Let p be the strongest locally convex linear topology making
each embedding id,:(N,, p,)— A(P)* continuous. For a nuclear 4,(P), N, turns out
to be an ideal; and for a with a,< 1 for all n, (N,, p,) is a Banach *algebra. Using
[207, other useful topologies can also be defined on A(P)*.

(5.2) We consider non-nuclear variants of Kdthe sequence algebras. For 1 <p < o,
let £7(P)={xew|(x,a,)ef? for all acP} with topology } defined by semi-norms
{p2laeP}, p2(x)=|xall,. Then (£*(P), 75) is a complete topological *algebra with
jointly continuous multiplication; and for 1 < p < o0, ¢, =(9,,) is an equicontinuous
orthogongl basis for /7(P). If P = /%, then £?(P) contains #? as a dense *subalgebra,
¢P(P) has identity iff P = ¢£7 iff £?(P) = £ (P), and £*(P) is a GB*-algebra. In general,
£?(P)is not a GB*-algebra, though it is symmetric, Two important closed subalgebras
of ;‘;(P) are ¢o(P) = {xewl(x,a,)€z, for all aeP} and +(P) = {xew|(x,a,)ec for all
aeP}.

In [5], a topological algebra A with orthogonal basis (e,) is called a ¢-algebra if
there exists a family F of sequences with non-negative entries defining a topology on
@(4)={(e}(x))|xeA} by seminorms p,((e*(x))) = sup,|a,eX(x)|, aeF, such that the
map ¢: x — ¢(x) = (ef(x))ed(A) is a homeomorphism. It follows from Grothendieck-
Pietsch nuclearity criteria that nuclear K6the algebras 4, (P) and A, (P) supply large
classes of ¢-algebras. As shown in Example 2.8, nuclear 1,,(P) is a ¢-algebra without
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identity, and A,(P) is nuclear iff it has identity in which case, it is a ¢-algebra. It

follows from previous paragraph, that for p#1 and for P countable, if £#(P) has
identity, then it is a ¢-algebra.

(5.3) Let P satisfy G,-condition. For 1< p < oo, let A7(P) = {xew|(x,a,"")e¢* for all
aeP} with topology t? defined by seminorms {p, ,la€P},p, ,(x) = | xa*’?{,. Then
(A7(P), 1%) too is a topological algebra with e,=(J,,) as an orthogonal basis.
Similarly the sequence spaces A4(P)={xew|sup,|x,a,|'" <o for all aeP} and
J3(P) = {xew|(x,a,)""" -0 for all ae P} are topological algebras with topology defined
by seminorms {p, 4/a€P}, P, 4(x) = Sup,|x,a,| "

(5.4) Thespaces = {xew|(n*x,)e/ forall k=1,2,...} of rapidly decreasing sequences
and its cross-dual s* =5 = {xew|sup,|x,/n ™ < co for some m} of all tempered
sequences are subalgebras of o with s = £ < ¢ < ¢'. In fact, with P = {(n + Dk > 1}
a G,-power set, A(P)=s [12, p. 291], and A(P)" =s". By [12, Pro. 7.20], for an
arbitrary G,-power set P, (4,(P), tp) is nuclear iff P < s. Thus a nuclear A, (P) always
contains s’ as a subalgebra. In particular, s’ is a nuclear algebra with an orthogonal
basis.

(5.5) For the unit circle T, the Lebesgue space L*(T), 1 <p< oo is a convolution
Banach algebra with orthogonal basis e,() =t",n>1 [8]. Hence the space L*(T)=
Nygpew LT =01 peo LP(T)# L®(T) is a convolution Imc B,-algebra without
identity in the topology of LP-convergence for each p=2,3,4,... having orthogonal
basis (). The algebra L°(T) is not nuclear; otherwise, the basis (e,), which is already

equicontinuous, will be absolute; and Corollary 2.6 (1) would imply that L°(T) has

identity.

(5.6) The Frechet space C*(T) of all infinitely differentiable functions on T with the
n | fP)
p

K=o k!

*algebra with involution f — f*, f*(z)= f(@). (C®(T),7) is a nuclear Imc By-algebra
without identity having orthogonal basis (e,), e,(x) = ¢ and is homeomorphically
isomorphic to the sequence algebra (s, 7p). Its dual D(T) consisting of all distributions
of Tis a convolution *algebra haivng Dirac delta § as identity and involution u — u*,
u*, Y =u, f*) (feC®(T)). With the weak topology ¢ = a(D(T),C®(T)), D(T) is
alocally convex GB*-algebra with orthogonal basis (e,), e,(x) = €™, and is homeomor-
phically isomorphic to the sequence algebra s'.

topology t defined by the seminorms p,(f)=sup :l is a convolution

teT

(5.7) Let D be open unit disc. The F-space H (D) of homomorphic functions on D
with compact open topology is a nuclear Bo-algebra with Hadamard product

f*g(x)= %Lhrf(z)g(xz' Yz 1dz,xeD,|x|<r <1,

with identity e(z) = (1 —z)~* having orthogonal basis e,(z)=z",n>1[8]; and hence
is isomorphic to some (43 (P), 7p). Its subalgebra H°(D)= Ny, H'D)# H (D) [17,
Ch. 17, Ex. 10] is a Frechet algebra with topology defined by seminorms f = f1,,
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2 < p < 0. It has orthogonal basis (z"), since each H?(D), 1 < p < oo is known to be
a Banach algebra with basis (z") [8]. The F-space E of entire functions with compact
open topology is, with Hadamard product, a nuclear By-algebra having orthogonal
basis (z") and is isomorphic to A(P) with P={(k")|k=1,2,...} [16]. Similarly the
algebra A, of complex functions holomorphic at 0 is isomorphic to the cross-dual
A(P)*.

6. Concluding remarks

(6.1) Theorem 2.1 suggests the problem: Is a By-topological algebra A with an
orthogonal basis (e,) functionally continuous in the sense that every multiplicative
linear functional on A is continuous (and hence of the form e¥)? There exists
non-metrizable topological algebras with orthogonal basis admitting discontinuous
multiplicative functionals; e.g. (£%°,a(¢%®,¢*)). This problem is a variant of Michael
problem [14]. Note that if such 4 is an lmc By-algebra, then A is functionally
continuous [22]. If 4 is a sequentially complete nuclear algebra with 1 and with
jointly continuous multiplication, then by Theorem 2.4 and the first paragraph in §2,
there is an involution on 4 making A a GB*-algebra, so that every multiplicative
functional f is positive. Then by [3, §8], f is bounded. Thus if 4 is a nuclear B,-algebra
with identity, then 4 is functionally continuous. Another large class of functionally
continuous topological algebras with basis is supplied by the following.

For a countable G,-power set P satisfying 0+ a, < 1 for all n, assume A,(P) to be
B, and nuclear. Let 7’ be the algebraic inductive limit topology on A,(P)*, in the
sense of [20], defined by the embedding id,: (N,.|'[lo) =4 (P)*, ||'|» being the
I®-norm on N, (defined in Example 5.1). Then (N,, |'|,) is a Q-algebra (ie.
quasi-regular elements form an open set). It follows from [20, Prop. 1] that (4, (P)*, ")
is a functionally continuous Imc algebra. Since 7' <17, (A;(P)*, 75 ) is functionally
continuous.

(6.2} A problem closely related with above is: let (4, t) be a By-algebra with orthogonal
basis (e,). Let t" be a topology on 4 making (4, t') a B,-algebra. Is T = 7'? Note that
a topological algebra with orthogonal basis is semi-simple [8]. Hence by standard
Banach algebra theory, if both t and 7’ are normable, then ¢ = 7. More generally, if
7 is also Imc, then (4, 7) is functionally continuous; and “ence by [14, Th. 14.2], 1 =7
if7'is also Ime. Also, assume that each ¢ is t'-continuous; in particular, 7’ is functionally
continuous, or (e,) is a basis for (4, ') also. Then via the map ¢(x) = (e*(x)) which

is one-one, 7 and 7’ are FK-topologies on (the sequence space) A. It follows from
[18, Ch. 3, Th. 2.1], that 1 =17

(6.3) A commutative separable semisimple nuclear B-algebra A need not necessarily
admit an orthogonal basis, even if A is Imc and having identity element. Consider
the nuclear F-space H(D) of all holomorphic functions on open unit disc D with
compact open topology. With pointwise multiplication, H(D) is an lmc B,-algebra
with identity. It is separable by Example (5.7), and is known to be semisimple. If it
admits an orthogonal basis (e,), then by [5, Cor. 1.3] its Gelfand space is (¢}), with
the result by [14], each feH (D) must have a countable spectrum o (f )={e¥(f)}. On
the other hand, o(f) is, in general, uncountable; since it contains range of f. Thus it
would be interesting to characterize topological algebras that admit orthogonal basis.
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