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Abstract. Let A be a complete topological *algebra which is an inverse limit of Banach
*algebras. The (unique) enveloping algebra &(A) of A, providing a solution of the universal
problem for continuous representations of 4 into bounded Hilbert space operators, is known
to be an inverse limit of C*-algebras. It is shown that &(4) is a C*-algebra iffl A admits
greatest continuous C*-seminorm iff the continuous states (respectively, continuous extreme
states) constitute an equicontinuous set. A Q-algebra (i.e., one whose quasiregular elements
form an open set) A has C*-enveloping algebra. There exists (i) a Frechet algebra with
C*-enveloping algebra that is not a Q-algebra under any topology and (ii) a non-Q spectrally
bounded algebra with C*-enveloping algebra. 4 hermitian algebra with C*-enveloping
algebra turns out to be a Q-algebra. The property of having C*-enveloping algebra is
preserved by projective tensor products and completed quotients, but not by taking closed
subalgebras. Several examples of topological algebras with C*-enveloping algebras are
discussed. These include several pointwise algebras of functions including well-known test
function spaces of distribution theory, abstract Segal algebras and concrete convolution
algebras of harmonic analysis, certain algebras of analytic functions (with Hadamard product)
and K&the sequence algebras of infinite type. The enveloping C*-algebra of a hermitian
topological algebra with an orthogonal basis is isomorphic to the C*-algebra ¢, of all null
sequences. '

Keywords. C*-enveloping algebra; Q-algebra; hermitian algebra; Segal algebra; Kothe
sequence space.

1. Introduction

A complete locally m-convex *algebra A is a topological *algebra that is an inverse
limit of Banach* algebras. In representation theory of such algebras, the enveloping
algebra (£(A), 7) of 4 has been introduced in [10], [21], [16] which provides a solution
of the universal problem for continuous *representations of A into bounded Hilbert
space operators. This corresponds to the construction of the enveloping C*-algebra
of a Banach* algebra [13, §2.7.2, p. 48]. The algebra (&(A),7) is a pro-C*-algebra
[27] in the sense that it is an inverse limit of C*-algebras. This paper is concerned
with those A4 for which (€(4),7) is a C*-algebra. In fact, in [16], [17], A is called a
bQ-algebra if (£(A),7) is a barreled space that is a Q-algebra (a topological algebra
A is a Q-algebra [26] if the set A _, of all quasiregular elements of 4 is an open set).
The barreled assumption turned out to be redundant; for a pro-C*-algebra, which
is a Q-algebra, is a C*-algebra [18, Corollary 2.2], [27, Proposition 1.14].
Topological *algebras with C*-enveloping algebras are important for a couple of
reasons. Though non-normed, they are well-behaved. In the literature, bQ-condition
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has been assumed in several aspects like tensor products [17], hermitian K-theory
[24] and representation theory [16]. In fact, the representation theory of such algebras
is quite similar to that of Banach* algebras. Further, as exhibited in the present paper,
there are several classes of examples of such algebras arising in function theory,
Fourier series, abstract harmonic analysis, complex analysis and nuclear spaces, in
particular, sequence spaces. In what follows, we briefly describe the contents of the
present paper.

In [17], the question of completely specifying the class of bQ-algebras was discussed.
We show that a complete Imc-*algebra 4 has C*-enveloping algebra (ie., A4 is a
bQ-algebra) iff A admits greatest continuous C*-seminorm p(-) iff the continuous
states (respectively, continuous extreme states) constitute an equicontinuous set. This
is used to show that the enveloping algebra of a Q Ime-*algebra is a C*-algebra, but
the converse does not hold. An Imc-*algebra A is spectrally bounded (sb) (respectively,
*spectrally bounded (*sb)) if the spectrum of each xeA (respectively, the spectrum
of each element of the form x*x) is bounded. We discuss the examples exhibiting:
(i) a Frechet algebra with C*-enveloping algebra, which is not sb, and which fails to
be a Q-algebra under any topology and (ii) 2 non-Q sb algebra with C*-enveloping
algebra. However, if 4 is hermitian and having C*-enveloping algebra, then 4 is a
Q-algebra. Further, it is also shown that if 4 is *sb, then 4 admits greatest
C*-seminorm |-| (not necessarily continuous); and such an A is hermitian iff || = s()
iff s(-) is a C*-seminorm. Here s(x) = r(x*x)!/* (xe 4), r(') denoting the spectral radius.
Thus if 4 is *sb, then A4 is hermitian and has C*-enveloping algebra iff s(-) is a
continuous C*-seminorm (in which case, s(*) = p,()). We also show that if A is
Frechet, then (i) A is sb iff A is a Q-algebra and (ii) if 4 is *sb, then 4 has C*-enveloping
algebra. Projective tensor products and complete quotients of algebras with
C*-enveloping algebras are algebras with C*-enveloping algebras; but the enveloping
algebra of a closed *subalgebra of an algebra with C*-enveloping algebra need not be a
C*-algebra. We have also discussed several classes of algebras with C*-enveloping
algebras. Notable among these, besides pointwise algebras of functions (including the
algebra C*(X) of smooth functions on a compact manifold) are the various test
function spaces of distribution theory, topological Segal algebras [11] of harmonic
‘analysis (in particular, certain convolution group algebras of locally compact groups)
and Kothe G -sequence algebras [22] (of significance in the theory of nuclear and
Schwartz spaces). This also incorporates certain topological algebras with orthogonal
bases [15], [20]; and via Fourier expansion and Taylor expansion, algebras of smooth
periodic functions (convolution product) and of analytic functions (Hadamard
product). The enveloping algebra, of an lmc-*algebra with hermitian orthogonal basis
and having C*-enveloping algebra, is *isomorphic to the C*-algebra ¢, of all null
scalar sequences. Let us note that the class of topological *algebras with
C*-enveloping algebras also include the Frechet algebra of C%-elements of
automorphic action of Lie group on a C*-algebra, certain W*-algebras of pseudo-
differential operators and the algebra of local observables of quantum field theory.
These will be discussed in a subsequent paper.

Preliminaries and notations

A locally m-convex *algebra (Imc-*algebra) [25], [26], [9], [10] is a linear associative
involutive algebra A with complex scalars and with a Hausdorff locally convex
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topology t on it which is determined by a separating directed family P = (p,a€A) of
seminorms satisfying, for all & and for all x, y; p,(xy) < p,(x)p,(y) (submultiplicativity)
and p,(x*) = p,(x) (*-invariance). Let (e,) be a bounded approximate identity (bai)
for 4, ie. (e,)= A is a net such that (a) for each xe4, e, x—x, xe,—X and (b) for
each a, p,(e,) < 1 for all y. One can take P to be the collection K(A) of all continuous
*invariant submultiplicative seminorms p satisfying p(e,)<1 for all y. A
pro-C*-algebra [27], [28], [6], [7] (also called an Lm.c. C*-algebra [16] or a locally
C*-algebra [21]) is a complete Imc-*algebra 4 in which each p, is a C*-seminorm,
i.e., each p, additionally satisfies p,(x*x) = p.(x)? for all xeA. Given an Imc-*algebra
A and peK(A), let N, = {xeA:p(x) =0}, and 4, be the Banach *algebra obtained
by completing the quotient *algebra A/N, in the norm |x, i, =p(x) x,=x+ N,.
Forap,cP,let A, = A, .If Ais complete, then A = lim,, A, =1m ., A4, an inverse
limit of Banach* algebras [26, Theorem 5.1]. Similarly, a pro-C*-algebra is an inverse
limit of C*-algebras. An lmc-*algebra A4 is hermitian if for each h=h* in A, the
spectrum sp(h) = R.

Let A4 be a complete Imc-*algebra with a bai (e,)- In representation theory of such
algebras [10], [21], [18], the enveloping algebra (&(A4), ) of a has been introduced
as follows. Let R(A) (respectively, R'(4)) be the set of all continuous (respectively,
continuous topologically irreducible) *representations n:A4— B(H,) of A into the
C*-algebras B(H,) of all bounded linear operators on Hilbert spaces H,. For a
peK(A), let R,(4) = {neR(A): there exists k> 0 such that ||z(x)|| < kp(x) for all x},
R;(A):RP(A)r\R’(A), R,(4) =R, (A), R (A)= R, (A). Then R(A)=uU,R,(4)=
U{R,(4):peK(A)}, R(A)= U, R.(A)= U{R’p(A):peK(A)}. For peK(A4), r,(x)=
sup { || n(x) | :meR,(4)} = sup{lin(x) |:neR;(A)} [16, Lemma 4.1] (xeA) defines a
continuous C*-seminorm on A. Let r ()=r,,(). The *radical of A4 is the *ideal
srad A = N, N(r,) = N {N(r,):peK(4)}, where N(r;)= {xeA:r,(x)=0}. The algebra
(6(A), ) is the Hausdorff completion of (4, {r.}) (equivalently, of (4, {r,:peK(A)})),
ie. the completion of A/sradA4 in the topology t defined by C *.gseminorms
q,(x + stad A) = inf {r,(x +i):i€s rad A} =r,(x) (xe A). The pro-C*-algebra (£(4),7) =
im £(4,) = lim £(4,), where &(A4,) is the enveloping C*-algebra of the Banach
*algebra A, [13, §2.7.2, p. 487. Let ¢p:A—&E(A) be p(x)=x + srad A. The algebra
(€(A),7) satisfies the universal property that, given meR(4) (respectively, neR'(4))
there exists a unique ceR(&(4)) (respectively, ceR'(£(A))) such that m=0c0¢ [16,
p. 69-70]. Further, it is easily seen that (€(A4), 7) is a unique (up to a homeomorphic
*jsomorphism) pro-C*-algebra satisfying this universal property. Thus the following
unambiguously makes sense. '

DEFINITION

A complete Imc-*algebra A has C *_enveloping algebra if (6(A4),7) is a C*-algebra.
2. Basic theory of algebras with C*-enveloping algebras

Throughout the section, A denotes a complete Imc-*algebra with a bai. The following
corresponds to the fact that a Banach* algebra admits greatest C*-seminorm

(automatically continuous) viz the Gelfand-Naimark pseudonorm [8, §39].

Theorem 2.1. The algebra A has C*-enveloping algebra iff A admits greatest continuous
C*-seminorm. In this case, if p, () dentoes the greatest continuous C*-seminorm on A,



204 Subhash J Bhatt and Dinesh J Karia

then p, ()= sup,r.(x)=sup{||n(x)|:meR(4)} =sup{|n(x)|:meR(4)} (xeA);, and
(6(A),7) is the C*-algebra (A/N(p,)), the completion of A/N(p,) in the norm
1+ NP lw=Po(x) N(py) = {x€A:pg(x) =0}.

Proof. Observe that on A/srad A, q,(x + srad A) =r,(x) for each acA. Indeed, for
any xeA, q,(x+srad A)=inf{r,(x + i):iesrad A} =inf_ [sup { f((x + i)*(x + i))"'2:
feP(A)}] using r,(z)=sup{f(z*z)"/?:feP,(A)} [16, Lemma 4.1], where P,(A)
denotes the set of all continuous positive linear functionals f on A such that
|f ()| < p,(u) for all ue A. Since iesrad 4, r,(i) =0; and so f(i*i) =0 for all feP,(A).
Further, for all such f, by the Cauchy-Schwarz inequality, f (z*x) 0 = f(x*i) for all
xeA. Hence

q,(x + srad A) = inf [sup { f (x*x) + f(i*x) + f(x*i) + f{i*i):ie]}/*: fe P (4)]
=sup{f(x*x)!/%: feP (A)} =r,(x).

Now suppose that 4 has C*-enveloping algebra, so that (£(4), 1) is a C*-algebra,
the topology 7 being determined by a C*-norm |-||. By [27, p. 165], for any ze&(A),
sup,q.(z) < oo, and | z| =sup,q,(z). Thus p,(x) =[x+ srad 4| =sup,r,(x) (xeA)
defines a C*-seminorm on A; and there exists k > 0 and aeA such that for all xeA,
Po(X)=llx+srad 4| < kq,(x + srad A) = kr,(x) < kp,(x) using [16, p. 69]. Let
p be any continuous C*-seminorm on A, so that, for some />0 and some feA,
p(x) < Ipy(x) (xe A). Then R,(4) = Ry(A) and for all x, r,(x) < r,(x). Identifying R,(A)
and R(A4,) canonically [16, Proposition 3.5] and using that 4, is a C*-algebra; it
follows that for each x, p(x)=lx+ NI, _sup{||n(x+N(p))| [:meR(A4,)} =
sup { [ m(x}[|: e R (A)} = r,(x) < 7p(x) < po (X). Thus P, () is the greatest continuous
C*-seminorm on A.

Conversely, let 4 admit greatest continuous C*-seminorm, say p, (). There exist
peA, k>0 such that for all xeA, p,(x) < kpy(x). Hence, as above p,(x) <rz(x) and
S0 p,(x)=r(x) for all x. Since each r,() satisfies r,(x) < p,(x) (xed) [16, p. 69],
(%) < po(x) for all «, for all x. Thus p (x) = sup,r,(x) (xe ), srad A = N(p,,), and
for any x, [|x+srad A, = po(x) =sup,q,(x + srad 4) =ry(x) = g5(x + srad 4). It
follows that the topology = on &(A) is determined by ||, ; and then (&£(4),7) is a
C*-algebra. This completes the proof.

COROLLARY 2.2.
If A is a Q-algebra, then A has C*-enveloping algebra.

Proof. Let A be a Q-algebra. By [26, Lemma E.3] A is sb; and [26, Proposition 13.5]
implies that there exists an ageA and k> 0 such that r(x) < kpao(x) for all x. Let q be
any continuous C*-seminorm on A. There exists peK(4) and M >0 such that
q(x) < Mp(x)for all x. Then for any h = h*in A and forn=1,2,3,...,q(h) = q(h*")*" <
M*2"p(h®")}/?", By the spectral radius formula [26, p. 22], () < lim__ _sup MY/?"
pa(B*")?" <sup g o lim, | sup p(B")" = r(h) < kp.,(). Hence for any xe4, g(x) =
q(x* x)1/2<k”2p (x). Thus p,(x)=sup{q(x):q is a continuous C*-seminorm on
A} <k'? pao(x)(xeA) and p,, () is the greatest continuous C*-seminorm.

Let 4 be commutative. Let .#(4) be the Gelfand space (with weak* topology) of
A consisting of all continuous multiplicative linear functionals on 4. For ¢e.# (A),
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let ¢p*e.#(A) be defined as $*(x) = ¢(x*). The hermitian Gelfand space of A is
M*(A)={peM(A).¢ = ¢*}. The following can be shown, as in [8, Theorem 40.2,
p. 220] using the machinery in [16].

Lemma 2.3. Let A be commutative. Let neR’(A). Then 7 is one dimensional, and there
exists peM*(A) such that n(x) = ¢*(x)1 for all xeA.

Example 2.4. There exists a unital commutative Frechet *algebra B with
C*-enveloping algebra such that B is not sb and B fails to be a Q-algebra (under
any topology). Let U = {zeC: —1 <Rez< 1}.LetC (U) be the algebra, with pointwise
operations, of all continuous complex valued functions on U with compact open
topology t. Let B={f eC(0):f is analytic in U}. Then (B, t) is a Frechet *algebra
with involution f— f*, f*(z)=f(2) (zeU). The topology t is defined by the family of
seminorms P = (p,:n=0,1,2,...), where p,(f)= sup{|f(z)|:zeK,}, K,= (zeU:n<
Imz <n+ 1}. It is easily seen that pe#(B) iff ¢ =¢. for some zeU, ¢,(f)=f(2);
and A*(B)={¢,:z isreal; —1<z< 1}. In view of Theorem 2.1 and Lemma 2.3,
Po(f)=sup,r, (f)=sup{lf(@l:—1<z< 1} < oo (feB) defines greatest continuous
C*-seminorm; and (&(B),t) is the supnorm C*-algebra C[—1,1] of all continuous
functions on [—1,1]. By [26, Corollary 5.6], for any feB, the spectrum
sp(f)={f(z):z¢e U}. Thus B is not sb; hence it fails to be a Q-algebra under any
topology making it a topological algebra [26, Appendix E]. ‘

For xeA, let the hermitian spectral radius of x be defined as r*(x) = sup{r(n(x)):
neR'(A)}, r(n(x)) being the spectral radius of the operator n(x) in the C*-algebra
B(H,). :

COROLLARY 2.5.

The algebra A has C*-enveloping algebra iff there exists pe K(4) and k > 0 such that
r(x) < kp(x) for all xeA.

Proof. If A has C*-enveloping algebra, then there exists peK (4) and k >0 such that
P (%) < kp(x) for all x. It follows that r"(x) < kp(x) for all x. Conversely, suppose that
there exists pe K (4) and k > 0 such that r(x) < kp(x) for all x. Let g be any continuous
C*-seminorm on A. Let eR (A). Then, for any x€A, |a()|* = llo(x*x)|| < r(e(x*x)) <
h(x*x) < kp(x*x) < kp(x)* giving o€R (A). Thus R/ (4) < R,(4), with the result, for
each xeAd, q(x)=r,(x)<r,(x). It follows that r,() is the greatest continuous

C*-seminorm on A; and 4 has C*-enveloping algebra.

COROLLARY 2.6.

Let A be a hermitian algebra with C*-enveloping algebra. Then A is a Q-algebra.

Proof. By [26, Theorem 5.2], the hermiticity of A implies that, for each geK (A), the
Banach* algebra (4,, |-||,) is bermitian. Hence, by [8, Lemma 41.2], for each zeA,, the
spectral radiusin A,y (2) <7 4,(z*2)% = 2,1, where ||, denotes the Gelfand-Naimark
pseudonorm on A,. Then m,(x) = |x,l,(xe A) defines a continuous C*-seminorm on
A. By Theorem 2.1, there exists greatest continuous C*-seminorm p (") on 4. By [26,
Corollary 5.3], for each xe 4, the spectral radius in 4, r(x) = sup {ra,(x):qeK A} <
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sup {m,(x):geK(A)} < p,(x). By continuity of p,, (), there exists peK(4) and k>0
such that r(x) < p,(x) < kp(x) (xeA). It follows from [26, Proposition 13.5] (or [3,
Theorem 147) that A4 is a Q-algebra. '

Recall that P, (A4) is the set of all continuous positive linear functionals f on 4
such that | f(x)| < p,(x) for all x. Asin [16, Theorem 3.1], the bijective correspondence
f=fix,— f,(x,) = f(x) (xe ), identifies P,(A) with the set P(4,) of all positive linear
functionals (automatically continuous) on the Banach* algebra A4, (having bai ((e,),)).
Let P.(A4) = u,P,(A). The following identifies P (A) intrinsically.

Lemma 2.7. Let f be a continuous positive linear functzonal on A. Then feP (A) iff
I (x)]? < f(x*x) for all xeA.

Proof. Let there be an aeA such that feP,(A), so that | f(x)| < p,(x) (x€A). Then, for
any xe A, by the continuity of f and Cauchy-Schwarz inequality, | FX))? =lim|f(e,x)* <
(hm Sle,ef)) fx*x) <(11m Pa(e,e¥)) f(x*x) < (limp,(e, ) f(x*x) < f(x*x). Conversely,
assume that LF()|* < fx*x (xeA) Since f is continuous and P = (p,:axcA) is directed,
there exists k>0 and «eA such that |f(x)| <kp,(x) (x€A). Thus for any x,
|f(x)?| < f(x*x) < kp,(x*x) < kp,(x)?; hence by iterations, |f(x)| <k p,(x) (xeA,
neN). It follows that feP,(A4) = P (A).

For each a, let B,(A4) be the set of all nonzero extreme points of P,(4). Let B (4)
be the nonzero extreme points of P.(A4). Asin [16], B.(4) = u,B,(4). Let S.(A4) denote
the set of all continuous C*-seminorms on A. The following is immediate in view of
[16, Lemma 4.1] and Theorem 2.1.

COROLLARY 28.

Let A have C*-enveloping algebra. Then for each xe A, p,,(x) = sup{ f(x*x)**: feP (4)} =
sup{f(x*x)"?: feB.(A)} = sup{p(x):peS.(4)}.

COROLLARY 29.

The algebra A has C*-enueIOpzng algebra iff P.(A) is equlcontznuous iff B,(A) is
equicontinuous.

Proof. Let A have C*-enveloping algebra, so that by Theorem 2.1, the topology T on"

A/srad 4 is determined by the C*-norm ||x + srad 4|, = p,(x) (xeA); and there is
¢ >0 and peK(4) such that p,(x) < cp(x) (xe ). Since the quotient topology t, on
A/srad A induced by the topology t of A is finer than t, it follows that for a given
bai (e,) of 4, there exists k>0 such that p,(e,) = |le,+srad 4|, <k for all y. Let
feP( A) By Corollary 2.8 and the Cauchy- Schwarz 1nequa11ty, it follows that
forany xed, |f(x)|=1lim,|f(e,x)| <(lim,sup f(e¥e,)'*)(f(x*x))"’* < (lim,supp,,-
(€¥e,)?)po(x) S kp o, (x) < kcp(x) Thus P,(A) (hence B.(4)) is equicontinuous.
Conversely, let B.(A) (or P.(A4)) be equicontinuous, so that, there exists pe K(4) and
k>0 such that |f(x)|<kp(x) for all xeA, feB.,A). Then the quantity

g(x) =sup{f(x*x)/?: feB,(A)} < oo (xeA) defines greatest continuous C*-seminorm
on A. Thus Theorem 2.1 applies.

COROLLARY 2.10.

Let A be commutative. Then A has C*-enveloping algebra iff the hermitian Gelfand space

—
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Jh”*(A) is equicontinuous. In this case, for each xe A, p_,(x) = sup{|f(x)|: fe M*(A)} =
r'(x).

Remark 2.11. There is an analogy between Q Imc algebras and Imc-*algebras with
C*-enveloping algebras. Corollaries 2.5 and 2.9 correspond to the fact that B is a
Q-algebra iff there is a continuous submultiplicative seminorm p on B and k > 0 such
that r(x) <kp(x) (xeA) iff (in commutative case) .#(4) is equicontinuous [3].
Analogous to Theorem 2.1, it holds that a commutative B is a Q-algebra iff B admits
greatest continuous submultiplicative seminorm g with square property g(x*)=
q(x)*(xeA). The details will appear elsewhere.

Remark 2.12. Tt follows from [17, Theorem 4.1] that if A and B have C*-enveloping
algebras, then so does the completed projective tensor product A®_B; and
8(A®,.B)=&(4)®_, &(B), the maximal C*-tensor product. Also, if I is a closed
regular *ideal of A, then 4 has C*-enveloping algebra iff I and the completion of
A/I have C*-enveloping algebras.

Example 2.13. The purpose of this example is to exhibit that (a) there exists a
commutative Frechet *algebra B and a closed *subalgebra D such that B has
C*-enveloping algebra but D fails to have C*-enveloping algebra, (b) there exists a
commutative non-Q-algebra B with C*-enveloping algebra such that B is strongly
spectrally bounded (ssb) [17], i.e. for some family = (q5) = K(B) determining the
topology of B, sup;q,(x) < oo for all xe B. The example is a modification of [8, Example
16, p. 202]. Let C be a complete Imc-*algebra having identity with a P =(p,) = K(C)
determining its topology. Let B=C@® C with the product topology defined by the
seminorms g,((x,y)) = max(p,(x), p,(¥))- The involution (x, y)* = (y*,x*) makes B a
complete unital Imc-*algebra on which f(z*2z)=0 (zeB) for any positive linear
functional f on B. Thus R(B) = {0}, B=srad B and &(B) = (0), the trivial C*-algebra.

(i) Let D={(x,x)eB:xeC}, a closed *subalgebra of B, homeomorphic:ally
*jsomorphic to 4. Take C to be the Frechet *algebra C(R) of all continuous functions
on R with pointwise operations, complex conjugation and with the compact open
topology k. The resulting algebra D does not have C*-enveloping algebra.

(i) Note that A is ssb (respectively, Q-algebra) iff B is ssb (respectively, Q-algebra).
Take C to be the *algebra C[0,1] of all continuous functions of [0,1] with the
topology of uniform convergence on all countable compact subsets of [0, 1_]. The
resulting algebra B is non-Q, ssb and having C*-enveloping algebra.

Let f be a positive linear functional, not necessarily continuc?us, on A. The GNS
construction (%, D(n,), H) defines a *homomorphism 7, of 4 into linear operators
(not necessarily bounded) all defined on a dense invariant subspace p(n ._f) of a Hilbert
space H  as follows: Let N,={xeA:f (x*x) = 0}, D(my) = A/N, with inner product
{x+N HY+ N = f(y*x),H;=the Hilbert space obtained by completing D(x,),
and m (x)(y+ Ny)=xy + N . Further, each m (x)isa bounded operaior*(so that;b){
extension, T (x)eB(H ), it f is admissible i.e., for each x, sup {fy*x*xy)/fy y):

SO # 0, ye A}V/? (= ||m,(x)]) < c0. Also, f is extendible if f can be extended as a

positive linear functional on the *algebra A, obtained by .adjoining Fl?e identiFy to
A. As a consequence of the presence of a bai on 4; every continuous positive functional
f on A is extendible and hence admissible by Propositions 3.2 and 3.3 of [2]. Let
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P(A) be the set of all positive linear functionals f on 4 satisfying | f(x)|* < f(x*x) (xe A).
Let AP(4)={feP(A):f is admissible}, S(4) be the set of all C*-seminorms on A
(not necessarily continuous). For feAP(A), p(x) = | 7,(x) | gives a p,eS(A). For xe 4,
define I(x) = sup{p(x):peS(4)}, u(x)=sup{p(x): feAP(A)}, m(x)=sup{f(x*x)'/*:
feAP(A)}, s(x) = r(x*x)'2.

Theorem 2.14. (1) If the algebra A is *sb, then A admits greatest C*-seminorm || (say).
In this case, | x| = l(x) = u(x) = m(x) for all xe A.
(2) Let A be *sb. The following are equivalent.
(i) A is hermitian.
(i) s(x)=x| for all x.
(iil) x—s(x) is a C*-seminorm on A.
If, moreover, A is hermitian, then A is sb and r(x) < s(x) (xeA).
(3) Let A be *sb and have C*-enveloping algebra. The following are equivalent.
(i) A is hermitian.
(1) 8(x) = p(x) for all x.
(iii) x—s(x) is a continuous C*-seminorm on A.
If A is commutative and hermitian, then r(x) = p(x) for all x.

Lemma 2.15. (1) The algebra A is hermitian iff A is symmetric.
(2) Let a=a* in A with r(a)<1. There exists x=x* in A with r(x)<1 such that
2x—x%=a.
(3) Let feP(A), beA, fy(x)= f(b*xb) (xeA). Then the following hold.
() |fy(k)| < r(k)f(b*b) for all k=k* in A.
() |fp(@)] < s(a)f(b*d) for all ain A.
(4) Given peS(A), beA, there exists fe AP(A) such that | f(x)| < p(x) for all xeA and
f(b*b)=p(b*D).
(5) Let A be Frechet. Each peS(A) is continuous.
(6) Let A be *sb. For all peS(A), p(x) < s(x) for all xeA.
(7) Let A be *sb and hermitian. The following hold.
@) r(x) < s(x) for all xeA.
@) x—s(x) is @ C*-seminorm on A.

Proof of the lemma. We prove (2). Let 2,,(4) denote the collection of all families
0 =(q;) = K(A) such that Q determines the topology of A. Given such a @, the
*subalgebra By = {x€A:supsqs;(x) <co} is a Banach* algebra with the norm
g(x) = sup;g;s(x), xeB,. Now let a =a*eA and r(a) < 1. By [19, Theorem 4], there
exists a Qe2,,(4) such that ae B, and the spectral radius of a in By, rg,(a) < 1. Ford’s

square root lemma [8, Proposition 12.11] applied to (By, g) gives x = x* in B, with
2x —x*=a and r(x) =rp,(x) < 1. This gives (2). The assertion (5) is a consequence
of the automatic continuity of the homomorphism 7:4 — A4, from a Frechet *algebra
with a bai to a C*-algebra. The remaining assertions can be proved by using inverse
limit decomposition of 4 and using corresponding results for Banach* algebras from

(81

Proof of Theorem 2.14. Given peS(A), beA, there exists feAP(4) as in
Lemma 2.15(4). Then p(b)* = p(b*b) = | n-(b*b)|| =sup{f(x*b*bx): f(x*x) =1} >
f(b*b) = p(b)* showing I(b) <u(b). Thus u(x)=I(x) for all xeAd. Similarly,
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p(b)*> = f(b*Db) <m(b)?, so that I(x) <m(x) for all x. Let feAP(A) and £,€H, be a
topologically cyclic vector of norm 1 for n; so that f(x) =<z 1€, &> (x eA). Then
Fe*x) =7 ()&, 12 Spr(x)* < u(x)? implies m(x) < u(x). Thus, for all x, I(x) = m(x) =
u(x) = |x| (say), which is the greatest C*-seminorm, if it exists. Assuming 4 to be *sb,
one gets | x| < s(x) for all x, as follows: For fe AP(A), xe A, the boundedness of 7 (x)
implies that

il

_ I O+ N4 oo 0}
sup{ e lyeA, f(y*y) #

* 0%k ) /2
e PUPTI e sty o)

<r(x*x)? = s(x)

() = /()] =sup{lffzﬁi)ﬂ.“,m £0in H,}

by Lemma 2.15(3).

(2) follows from Lemma 2.15 and arguments similar to those in Banach* algebras
[18, Theorem 41.11]. :

(3) Let A be *sb and have a C *_enveloping algebra. Then (ii) implies (i) follows from
above (2). Conversely, if A is hermitian, then each A, is hermitian, hence symmetric by
the Shirali-Ford Theorem, and so by the Raikov symmetry criterion [29, Theorem 4.7.21],
for all xeA, r(x*x)=sup,rq(x¥x,)= sup, [sup{f(x*x,):feB(4,)}]1= sup,[sup-
{f(x*x):feB,(A)}]=sup {f(x*x):feB,(A)} = po(x)? by Corollary 2.8. This, with
Lemma 2.15(6), gives s(x) = po(x) for all x. That (ii) implies (iii) is immediate and (ii1)
implies (i) follows from (2). If A is commutative, then using [26, § 51, it is easily seen,
as in [8, Theorem 35.3], that 4 is hermitian iff .#(4) = #*(A); and if A 1s *s5b, then
this holds iff r(x*x) = r(x)* for all x. Thus x —7(x) = s(x) is a C*-seminorm dominated
by a peK(A), as A4 is also Q-algebra by Corollary 2.6. Thus r(x) = p(x) for all x.

Remarks 2.16. (1) The pro-C*-algebra C[0, 1] of continuous functions on [0,1] with
the topology of uniform convergence on all countable compact subsets of [0, 1] admits
greatest C*-seminorm, but fails to admit greatest continuous C*-seminorm.

(2) It follows from Theorem 715 that a *sb Frechet *algebra has C*-enveloping
algebra. This is analogous to the result that a sb Frechet algebra is a Q-algebra
[3, Theorem 1].

(3) The Frechet *algebra B of Example 2.4 has C*-enveloping algebra, it admits
greatest C*-seminorm, but is not *sb (as is exhibited by the function f(z) = z in B).

3. Examples: function algebras

Throughout this section, we consider *algebras of functions with pointwise operations
and complex conjugation as the involution (except in Example 3.5).

3.1 Let X be a compact, second countable C®.manifold. Let C®(X) be the *algebra of
all C®-functions on X with the topology of uniform convergence on X of functions and
all their derivatives. It is a Frechet sb hermitian Q-algebra, and &(C* (X)) = C(X), the -
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supnorm C*-algebra of all continuous functions on X. If 4 is a complete Imc-*algebra
with C*-enveloping algebra, then by [17, Corollary 4.3] &(C*(X)®,A)=
EC*(X)®,E(A)=C(X)®,E(A4) = C(X,&(A)), &(A)-valued continuous functions
on X.

3.2 Let (By) , be a sequence of commutative Frechet Imc-*algebras with identities.
Let A, = B, ® ---® B, with the product topology and the natural involution. Then
(A,)? is an m-compatible sequence, and A = U7 A4, is an involutive LF-algebra. It
is a Q-algebra (hence has C*-enveloping algebra), if each 4, is a Q-algebra (in
particular, each B, is a Banach* algebra) [26, Proposition 15.8]. In particular, the
algebra C,(R") of continuous function on R” with compact supports and with the
measure topology [26, Example 3.5], as well as the test function algebras C¥(R"),
1 < k < oo of C*-functions with compact supports and. with the Schwartz topologies
are Q-algebras. One has & (C(R")) = £(C¥(R")) = £(CZ(R")) = Cy(R"), the C*-algebra
of continuous functions on R” vanishing at infinity. The Frechet *algebra s(R") of
rapidly decreasing C*-functions on R"-with the Schwartz topology in an AE-algebra
[12, p. 89], hence is Imc [12, Proposition 1], and &(s(R")) = Co(R").

3.3 The constructions, analogous to the one due to Arens [1], also lead to several
algebras with C*-enveloping algebras. For 1< p < oo, let AC?[0,1]={feC[0,1]:
the derivative f’ exists ae. and f'eL”[0,1]}, a Banach* algebra with norm
Ifl, =1 lle+ (a1 (®)I1Pde)'?, |||, being the supnorm on C[0,1]. Let AC®[0,1]=
N <p<ACP[0, 1], a Frechet *algebra with topology defined by f—|f|,, 1 <p<o0;
and AC®[0,1] =lim ,4C?[0,1]. Since #(ACP[0,1])=[0,1] by [29, p. 303].
M(AC*[0,1])=[0,1] by [26, Proposition 7.5]. The algebra AC®[0, 1] is hermitian
Q-algebra, and £(AC®[0,1])= C[0,1]. One can also consider the Sobolev spaces
w,,[0,1]={feC* '[0,1]:f*" Ve AC[0,1] and f®eL?[0,1]}, which are Banach*
algebras with norms

0 1p
Ifl,.= sup Z‘f Ul (J |f‘k)(t)l”dt> ,

o=

and analogously construct the Sobolev-Arens algebras W, ,[0,1]1=n, ., W,,[0,1].

34 Let C,(R) be the C*-algebra of all bounded continuous functions on R. Let

BV, C,(R)={feC,(R):f is of bounded variation on [—n,n] for all n=1,2,3,...},
a Frechet Imc *algebra having seminorms p,(f) = | fllo + Va.(f), V.(f) denoting the
total variation of f on [—n,n]. One has &(BV,  C,(R)) = C;,(R).

3.5 Let U={zeCl||z] < l} H(U) be the algebra, with pointwise operations, of all
holomorphic functions on U. Let A"(U)= {feH(U):f" has continuous extension
on U for all k, 0 <k <n), a Banach* algebra with involution f*¥@)= f (2) and norm
I flln = sup..gZi_ o (1/k1)] f®(2)|. The Frechet *algebra A°(U) = n=_, A"(U), with the
topology defined by f—|fl,, n=0,1,2,..., is a non-hermitian Q-algebra with
E(A°U))=C[~-1,1].

4. Segal Algebras

The following is a modification of the definition in [11] tailored for the present set up.
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DEFINITION 4.1.

Let (4, ||-]) be a Banach* algebra with a bai. A *subalgebra B of A is an A-Segal
*algebra, if there exists a topology 7 on B satisfying the following: ‘

(a) B is a dense *ideal in A.

(b) (B,7) is a complete Imc *algebra with a bai.

(c) The inclusion (B,7)—(4, [I'll) is continuous.

(d) The multiplication (4, [I-]1) x (B, 7)— (B, t) is continuous.

PROPOSITION 4.2.

If B is an A-Segal *algebra, then B is a Q-algebra; and 6(B) = & (A), the enveloping
C*-algebra of A.

Proof. Bbeing anideal, B_,=A_, NB; which is open in (B, 7) by above (c). We show
that for continuous (with respective topologies) topologically irreducible *representa-
tions, R’(4) = R'(B) via restriction map. By (c), there exists poeK(B)(=K (B, 7)) such
that || x|| < kpo(x)(x€B), with the result, Te R’ (A) implies |z(x) || < [| x| < kpo(x) (xeB)
and m|zeR’(B) in view of (a). Let neR'(B). Let £eH, be any topologically cyclic vector
for n so that H, = closed span of {n(B)¢}. Let (e,) be a bai for B. Let xeA, yeB.
Then xyeB; and e,y —yin (B, 7). By (d), xe,y = xy in (B, 1); hence || n(xe,y) — n(xy)[| = 0.
Since (e,) is T-bounded, | m(xe,) | < M, < 0. Thus ||z(xy)¢ | = lim, | n(xe,)n(y) &l <
M, ||n(y)¢]l. Thus the bounded linear operator #(x):m(y)E » m(xy)& defines eR'(A),
|z =n. Thus R'(4)=R'(B). Let P = (p.) < K(B, 1) determine 7 on B. Then, for any
VEB, po(y) = SUDLTo(Y) = SUP, {SUD o 10 1} = 5UD{ 170} | :ER'(B)} = sup{ ()
neR'(A)} < [lyll < kpo(y); and the greatest continuous C*-seminorm p..(*) on (B,7) is
the restriction of the Gelfand-Naimark pseudonorm (denoted by p, () only). Finally,
we show that &(B) = [B/(N(p.) " B), -, 17 = (A/N(px)), lI-l,)) =& (A) The map
¢(x +(N(ps)NB))=x+ N(ps) is a well defined *isomorphism of B/(N (p.,) " B) into
A/N(py)- Thus &(B) is a C*-subalgebra of &(A). Let ze&(A). There exist sequences
(x,) in A4, (y,) in B such that

1 1
“xn"}'N(poo)—szx<§—ﬁa ”xn"—yn”<2n+1'
Then, »
1¥a+ N(p) = 21, < 1%+ N(po) = 20, + 19n = 2l

1
gi;':'*_ Hyn—xn“

1
<§——>0 as n— o0

showing that &(B) is dense in & (A).

Examples: Convolution al"gebras. For various group algebras on locally compact

O

groups, we take convolution multiplication and the involution f*(g)=A(g™ ") f(g™ "),
A being the modular function. Throughout, ||| , denotes the usual norm on L”-space.
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4.3 For a locally compact abelian group G, take A = L!(G), B= L®(G):= {fe L'(G):
fe LP(G) for all p, 1 < p < 0}, the topology 7 on B is determined by submultiplicative

seminorms po(f)=1fl;+ ! flx. k=2,3,4,.... Then &(B)=C*(G), the group
C*-algebra of G.

44 For A= L'(R), B= {feLl([R) feC=(R) and the derivative f™e L!(R) for all
n=1,2,...}. The topology t on B is defined by p,(f)=Ifll; + I f*Il., k=0,1,2,.

That p,( f +g) < po(f)pi(g) is a consequence of the identity (f+g)*® =¥ xg= f * g""
Then B is an A-Segal *algebra.

4.5 Let G be a compact group. Let (S, |-|) be a Banach* algebra with a bai. For 1 < p < oo,
B?(G, S) be the Banach* algebra of functions f:G — S with |f|, = [f1f(g)Pdu] 1P < o0.

Then B?(G, S) can be realized as a suitable completed tensor product LP(G )@ S, with
the norm 7,,(-) defined by taking a finite tensor f = Zx;® y;, as ,(f) = [[|Zx,(g) y,["du]””
By [23, Proposition 7.10], for all p, £(B?(G, S)) = C*(G)@ &(S). Taking 4 = B'(G, ),
B =B*(G,8)= N, ¢,.B"(G,S)=1lim,B?(G, S) with the topology of ||-|| ,-convergence
for each p, £(B“(G,S)) = C*(G)@ é(S).

min

4.6 Let (4, '|)) be a commutative hermitian Banach* algebra with a bai. Let u be a
positive regular Borel measure on 4 (A) = #*(A). For 1 <p < o0, let A,(y) = {xeA:
e LP(M(A), @)}, % denoting the Gelfand transform of x. It is a Banach* algebra with
norm || x4, = x| + | %], For the A-Segal *algebra B =, _, . 4,(1), €(B) = £ (A).
In partlcular for a locally compact abelian group G with dual group G and Haar

measure p on G, consider 4 = L'(G), B = { fe L*(G): Fourier transform f is in L” (G, ),
1<p< o0}

5. Topological algebrés with bases and Kothe sequence algebras

Let w denote the *algebra of all scalar sequences (a,)? with pointwise operations and
complex conjugation. Let Q —  be a K&the power set, i.e. Q satisfies (i) for each aeQ,
a, = 0 for all n; (i1) for each aeQ, beQ, there exists ceQ such that a,<¢,, b, < ¢, for
all n; and (iii) for each n, there exists aeQ satisfying a, > 0. We assume a, # 0 for all
aeQ. Further, let Q satisfy G -property, ie. (iv) for each aeQ, a,<aq,,, for all n
(v) for each aeQ, there exists deQ such that a? <d, for all n. Kthe space of infinite
type ([22], [32, p. 203]) is the complete locally convex space A (Q)= {x =

P.(X) =Z|x,|a, < co for all aeQ} with the locally convex Kothe topology ¢ defined
by the family I" =(p,:aeQ) of seminorms. It so turns out [4] that (A (Q),t) is
a complete Imc-*algebra which is a *subalgebra of (£, ||-||,) and which is a Q-algebra.
(Note that a complete commutative continuous inverse Q-algebra is Imc [31].) Further,
it is hermitian. For the present purpose, we note the following.

PROPOSITION 5.1.

(i) A,(Q) is an ¢/*-Segal *algebra.
(1)) €(A,(Q))=cy, the C*-algebra of all null sequences.

(i) can be easily checked; whereas-(ii) follows from a more general result to follow.
The following important particular case of A (Q) we shall need.
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52 (A,[0,]) For an increasing sequence (6,) of positive numbers, Q = {(K) k=
1,2,...} gives the algebra A, (Q) denoted by A,[6,] called power series space of
infinite type [32, p. 204]. The algebra s = {x:0:Z2 n*|x,| < oo for allk=1,2,...} of
rapidly decreasing sequences is A, [0,] taking 0, =logn, n= 1,2,... [32, p. 205].

Recall [5, §1] that an orthogonal basis on a topological algebra A is a basis (f,)
for A such that f,f,,=6,,f, for all n, m in N, 6__ being the Kronecker delta. The
algebra A (Q) admits f, = (0 )=y @s an orthogonal basis.

PROPOSITION 5.3.

Let A be a complete hermitian Imc-*algebra with C*-enveloping algebra. Let A admit
an orthogonal basis consisting of hermitian elements. Then A is a Q-algebra; and
&(A) is *isomorphic to the C *.algebra c,.

Proof. Let(f,)bean orthogonal basis for 4, f *=f,foralln Then (f,) is 2 Schauder
basis and A is commutative [5], [20]. Let ¢, be the coefficient functional defined by
f, viz expanding xeA as x =2, Xpfnr XnEC, PulX)=Xp. Then the Gelfand space
M(A) = {p,} = M*(A) bY hermiticity; and ¢:4—w, ¢(x)= (x,) is a *isomorphism
of A onto a *subalgebra K of w; which is continuous for the topology of pointwise
convergence on K [20, Corollary 1.3]. We identify A with K algebraically. By [26,
Corollary 5.6], for all xe 4, the spectrum sp(x) = {@(x)} = {x,}; and by Corollary 2.10
and Thorem 2.1, py(X) = sup,|X,| = | x|, =r(x)<co for all x. Thus A <¢%. By -
Corollary 2.6, A is a Q-algebra. Further, 4 contains the set of all finitely many nonzero
sequences. Also, A cannot have identity, otherwise A has to be w with pointwise
convergence [20, Theorem 2.11, which is not an algebra with C*-enveloping algebra.
It follows that &(A), which is the completion of (4, -1 0), contains ¢. On the other
hand, p.() being a continuous C*-seminorm on A (in the topology of A),
x® =2"x, f,—>x =L xS in A implies that |x, | < Sup, . 1%kl = P (X — x™) -0 as
n— 0. Thus x = (x,)€Co, €(A) = co With the result, &(4) = ¢o-

Example 5.4. Let A =C>(I'), the convolution algebra ofall C ©_functions on the circle
I" with involution u*(z) =u(z™*). By [14, p. 48], for any ueC*(I'), the Fourier series
expansion u= Z"_"wa(n)e‘“‘ gives a sequence (d(n))es(Z), = two sided rapidly
decreasing sequences. The map $:C* () —>s(@), ¢w= (2(n)) establishes a
*isomorphism of C*(I') onto s, which is a homeomorphism for the (usual) Frechet
C>-topology on C*(T') and Frechet Kothe topology on s(Z) [30, Theorem 5.1].
Now, s(Z) is a Q-algebra and &(s(Z)) = co. Thus, via $, C*() is a complete [0)
Imc-*algebra with £(C*(I") = {uePM(I'):(A(n))€co }, where PM(T') is the convolution
algebra of all pseudo measures on T, isomorphic to /% via Fourier expansion [14,
§12.11]. '

Example 5.5. For the open unit disc U, let H?(U) be the Hardy space, for 1 <p<oo.
The Banach space (H?(U), [-1l,) is a Banach* algebra with Hadamard product

(Frg)() = (1/2m) [y =, f (g (xz™ )z 2, x| <r <1,

having involution f* (z)=]_’(_z:). The sequence e,(z) =z" is an orthogonal basis for
HP(U) [20, Example 3]. Thus, the Hardy-Arens algebra H(U) =N, . p<°oHP(U) is a
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Frechet Imc-*algebra with basis (e,), the topology being the topology of
|- -convergence for each p, l<p<co. The coefficient functionals ¢, are
¢,(f) = f"(0)/n!, the nth Taylor coefficient of f(exactly as in [15, Example-3.2(ii)]
for the *algebra H(U)); and for any fe H*(U), sp(f) = {¢.(f)}. It is easily seen that
H®(U) is hermitian, and p(f)=sup,(If™©)I/n)<|fl, (p>1) is the greatest
continuous C*-seminorm.

Example 5.6. Let E be the Frechet space of all entire functions of one complex variable
with compact open topology. It is a topological *algebra with Hadamard product
and the involution f*(z) = f(Z), admitting orthogonal basis e, = z", neN. The mapping
¢:E—w, ¢(Zx,e,) =(x,) is a *isomorphism of E onto the sequence algebra A [n].
Also, ¢ is a homeomorphism for the respective topologies on E and A [n] [32,
p. 206]. Thus &(E) is *isomorphic to ¢,.
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