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Abstract. A minimal normal extension of unbounded subnormal operators is established
and characterized and spectral inclusion theorem is proved. An inverse Cayley transform is
constructed to obtain a closed unbounded subnormal operator from a bounded one. Two
classes of unbounded subnormals viz analytic Toeplitz operators and Bergman operators
are exhibited.
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1. Introduction

Recently there has been some interest in unbounded operators that admit normal
extensions viz unbounded subnormal operators defined as follows:

DEFINITION 1.1

Let § be a linear operator (not necessarily bounded) defined in D(S), a dense subspace
of a Hilbert space H. S is called a subnormal operator if it admits a normal extension
(N,D(N), K) in the sense that there exists a Hilbert space K, containing H as a closed
subspace (the norm induced by K on H is the given norm on H) and a normal
operator N with domain D(N) in K such that Sh= Nk for all heD(S).

These operators appear to have been introduced in [12] following Foias [4]. An
operator could be subnormal internally admitting a normal extension in H; or it
could admit a normal extension in a larger space. As is well known, a symmetric
operator always admits a self-adjoint extension in a larger space, contrarily a formally
normal operator may fail to be subnormal ([2], [11]). Recently Stochel and Szafraniec
([12],[13]) obtained a Halmos-Bram type characterization of unbounded subnormal
operators.

Here we discuss the existence and characterization of minimal normal extension
N of an unbounded subnormal S. This is followed by the spectral inclusion theorem
o(N) = o(8). In §3, we set up a Cayley transform between a bounded subnormal and
an unbounded one. We also exhibit two large classes of unbounded subnormals viz
Bergman operators and analytic Toeplitz operators.

Let us recall [16,Ex. 5.39 p. 127] that given an operator T with domain D(T) in
a Hilbert space H, a closed subspace M of H is invariant under T if T(D(T)n M) < M.
M is reducing under T if TIMND(T))cM, T(M*nD(T))c M* and D(T)=
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LM AD(T)] + [M*~D(T)]. Note that restriction of a normal operator to a reducing
subspace is normal.

2. Minimal normal extension

DEFINITION 2.1

A normal extension (N, D(N),K) of a subnormal operator (S, D(S), H) is a minimal
normal extension (MNE) if for any normal extension (N{,D(N),K;}of S,ScN, <N
and K, is reducing under N implies K 1=Kand N, =N,

In [13,p.51] a normal extension N in K of S (SD(S) = D(S)) is called ‘minimal’ if
D = {N*N':xeD(S), i, j=0, 1,2,...} is linearly dense in K. The second half of the
following theorem shows that it is in fact a MNE. The class of C®-vectors for an
operator T in H is C*(T) = (&, D(T").

Theorem 2.2. (a) A subnormai operator admits a minimal normal extension.

(b) Let S be a subnormal operator with dense domain D(S) in a Hilbert space H. Let
(N,D(N),K) be a normal extension of S. Let D be the linear span of {N*Nix:
Li=12,...;xeC®(S)}.

(i) If D is dense in K, then N is a MNE
(il) If N is a MNE and D(N) =D + (D(N)D"), then D is dense in K.

w

Proof. (a)Let & be the class of all normal extensions o = (N, D(NV ), K,) of a subnormal
operator S in a Hilbert space H with domain D(S). & is partially ordered by
< f=(NyD(Np),Ky) if N,cN g and K, is a reducing subspace for N 5. Note that
for a < B, the restriction N slk, of Ny on K, with domain D(N slx) =K,ND(Np)is a
normal operator in K, which is an extension in K, itself of the normal operator N,.
Since a normal operator is maximally normal [10,p.350], N,=N plk, so that
D(N,)=K,nD(N g We shall apply Zorn’s lemma to &.

Let € be a chain in &. Let K = N{K,lae¥}, D= {D(N,)jxc®). For ae¥, let
P%:K,~K and for y<a, P}:K,— K, be orthogonal projections. Now, let ae% be
fixed. Since € is a chain, K = N{K,ly<a,ye%} and D=n {D(N )|y < o, ye%}.

Claim. K is a reducing subspace for the normal operator N,. For this, note that
Pg=glb {Pi|ye%} =glb {P;lye®,y<a}, as in [15, p.124]. Now consider the weak
bounded commutant of N, viz {N.}'={SeB(K,)|SN, < N,S}, B(K,) denoting the set
of all bounded linear operators on K,. By Fuglede-Putnam theorem for un-
bounded normal operators [10, p. 365], {N.}'={SeB(K)ISN, = N,S, SN* = N*§ =
{N,, N*}. Let E be the spectral measure for the bounded normal operator
(1+N¥N)™*. For k=0,1,2,.... let wo(0), we=(1/k+1,1/k], and N, .= N E(wy)
which are bounded normal operators. Then as shown in the proof of Theorem 2-1
in [8], {N}' ={N,lk=0, L,2,....} (usual commutant in B(K,) of a collection of
bounded operators) which is a von Neumann algebra. Now by [16, p. 1283, reducing
subspaces of N, correspond (via usual way of range projections) to projections in
{N,}'. Hence for y < a, P3e{N,}'. Since projections in a von Neumann algebra form
a complete lattice [15, p. 124], P¢e{N,}; and hence K is a reducing subspace for N,,.

Now for y <o, PY(D(N,))= K~ D(N,) since D(N)=[KnD(N)]+[K*~D(N,)].
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Hence Pi(D(N,)) =« K,nD(N,) = D(N,). Thus P¥(D(N,)) = n {D(N MNye®,y<a}=D.
This implies that D is dense in K. For, given xeD* (LinK), for all yeD(N,),
{x,y) =(Pgx,y) ={x,Pty> =0, hence x=0. Define an operator N in K with
domain D(N)=D as Nx=N,x. Then N is a well defined closed operator. To show
that N is normal, consider an operator C in K with domain D(C)=D as Cx = N*x
(adjoint in K,). Then C = N* (adjoint in K). Now given xeD(N*N), the functional
yeD > N*x, N*y) = {(Cx,Cy) ={N¥x,N¥y>=(Nx,Ny)={Nx,Ny) is
continuous on D as NxeD(N*). Thus N*xeD(N*¥)=D(N) as N is closed. Thus
xeD(NN¥*) and D(N*N)c D(NN*). In fact, N*N c NN*; and so N*N = NN*
both being self-adjoint (as N is closed). (Note that normality of N also implies
N = NulK')

The normal extension (N, D(N),K) is a lower bound of ¢. Now Zorn’s lemma
completes the proof.

(b) (i) Let the linear span D of {N*/N'x|xeC>(S); i,j = 1,2,....} be dense in K. Let
(N, D(N,), Ko) be a normal extension of S such that (N4, D(N,), K,) < (N, D(N),K)
(partial order as in the proof of (a)). Let xeC*®(S). Then for all i=1,2,...,SC*(S) <
C*(S) gives that N'x = S'xeC*(S) = C*(N)n K,. Now for any positive integer k, by
the normality of N*, D(N*) = D((N*)*) = D((N*)") which implies that C*(N) = C*(N*).
Thus N*/N' are defined for all i, j=1,2,.... Further, since K, is invariant under
N*, N*NixeK,. Thus D c K,. Hence K, = K, N, = N showing that N is MNE.

(ii) Let (N,D(N),K) be a MNE of § satisfying the given condition. Let
Ko,=D (closure in K). By definition of D, N*D<D, ND<D. These give
N(D(N)nK3) = K5, N¥(D(N)n K§) < K§. Further, the given condition is equivalent
to D(N)=[D(N)nK,]+[D(N)nK}]. We show that N(D(N)nK,) <K, Let
xeD(N)nK,. Then for all yeD(N)Nn K5, {Nx,y)={x,N*y>=0. As D(N)nKj
is dense in K3, NxeK,. Thus K, is reducing for N. Then Ny, is a normal extension
of S contained in N. By the minimality of N, K, = K. This completes the proof of
the theorem.

The following is a spectral inclusion theorem analogous to the one for bounded
subnormal. Its proof is patterned along Halmos [5, p. 157].

Theorem 2.3. Let S be a subnormal operator in a Hilbert space H with domain D(S)
and a minimal normal extension N. Then o(N) < o(S).

Proof. Let A¢a(S). Then (1 — S)™* is a bounded operator on H. We can assume A =0
and |S7!|=1. Now for 0<e< 1, consider E,={xeC*(N)| |N"x| <e"||x| for
n=1,2,....}. For xeE,, yeH,

<%, y21=Kx,8"8 7"y

=[(N*"x,87"y)|

<&"||x| |yl for all n.

Ase<1,{x,y>=0.Thus H c E; (LinK). Let N = [zdE(z) be the spectral theorem
for N. Then E,=E(A)K where A,={ze(:|z|<¢}. Hence E,, and so E; is a
reducing subspace of N. Now N| £- being normal, the minimality of N implies that
E,=K. Hence E(A)K = E,={0}. Thus ¢ = A,nsupp E = A,na(N); and so 0¢a(N).

b
LY



88 Arvind B Patel and Subhash J Bhatt

Notice that, in above notations, bdry (S} = ¢, (S) = 6(N) = 6(N) (o, _dcno_tes the
approximate point spectrum) and component of €\o(N) is either contained in o(S)
or is disjoint from o(S).

COROLLARY 1

Let S be a subnormal operator. Then

(D) o(S) # ¢.

(ii) S is bounded iff o(S) is bounded.
(iii) S is essentially self-adjoint iff 6(S) is real.
COROLLARY 2

A symmetric operator has nonempty spectrum.

Remarks 2:4. (i) Let S be an operator in a Hilbert space H. A vector xeC™(S) is an
analytic vector for S if there exists a t > 0 such that

S hed b
Y < o0.
n=1 n!

Let A(S) be the collection of all analytic vectors for S. If § is subnormal admitting a
normal extension N such that D(S)=D(N)n H, then A(S) is dense in H. Indeed, in
this case, A(S) = A(N)~ H. Hence taking the orthogonal complement in K, A(S)* = H*
as A(N) is dense in K.

(i) A symmetric operator in H admitting a normal extension N in (possibly a larger
space) K satisfying D(S) = D(N)~ H is essentially self-adjoint. For, in view of (i), the
well-known Nelson theorem [16, p. 261] applies.

(iii) Normal extensions of an unbounded subnormal operator satisfying the above
spectral inclusion (distinguished normal extensions) have been discussed recently in
[6]. Thus a MNE is distinguished, though a distinguished extension need not be
minimal. For example let N, be a MNE of § in K 1- Let N, be a normal operator
in K, with a(Nz)co'(Nl).TakeN=N1 @ N, a normal extension of S in K, ®K, =K.
Then N = Ng 5k, (Where E is the spectral measure of N) is distinguished normal
extension as in [6] which is not minimal,

(tv) Ota [7] showed that if T is a densely defined closed operator in a Hilbert space
H such that TD(T) D(T*), then T is bounded. This has the following implication.

PROPOSITION

Let § be a closed subnormal operator in H with dense domain D(S) such that SD(S) < D(S).
Then S is bounded. \

This follows from D(S) = D(S*) [14].

We are thankful to Prof. Ota for bringing this to our notice.
(v) Ota [7] has also another interesting result, viz if T is a densely defined closed
operator in a Hilbert space H such that the range of T is contained in its domain
fmd ifT ig unbounded, then the numerica] range W(T) = {(Tx,x) [xeDX(T), ||x|| =1}
is the entire complex plane. The following is an analogous result for spect’rum.
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PROPOSITION

Let T be a densely defined closed operator in a Hilbert space H such that TD(T) c D(T).
If o(T) is not the whole of complex plane, then T is bounded.

Proof. 1f A¢0(T), then § =(T — A1)~ ! is a bounded operator satisfying S(T — A1) =
(T —A1)S =1. Thus (T — A1)D(T) = D(T) = H. Closed graph theorem shows that T
is bounded.

3. A Cayley transform

The problem of self-adjoint extension (within the space) of a symmetric operator is
discussed via Cayley transform [15, Ch. 8] which provides a correspondence between
certain partial isometries and symmetric operators that admit self-adjoint extensions.
We extend this so as to associate an unbounded subnormal operator with a bounded
one.

Theorem 3.1. Let S be a bounded subnormal operator on H with a bounded normal
extension N on K. If

(i) 1= N is one-to-one and
(i) 1ea(N), oN\{1) < {ze:|z| <1}

then W(N)|g is an unbounded closed subnormal operator where W(N) is the normal
operator in K defined via the spectral theorem by the function Y(z) = i(1 +z)(1—z)~*.

Proof. Define N’ in K with domain D(N') = R(1 — N) by N'x =i(1 + N)(1 = N) " !x.
Then N’ is densely defined.

Claim (a). N' = y(N).
For, given xeD(N'), (1 — N)y = x, and so

J (142)(1—2)"1? dEx,,=J|(1 +2)*(1-2)"2|(1 = 2)(1-2)dE, < o0,
and for all ueK

(N'xu) =i{(1+ N)y,uy =i f(l +2)(1 —2)"'dE,,

= (Y(N)x, u).

Hence N'cy(N). As Y(N) is closed, N c Y(N). Now let No=N"*|punwmn-
Then G(N,) is dense in G(N'*), G(-) denoting the graph of the operator. Indeed, note
that G(N'*) is closed in K x K. Let (u, N"*u)e G(N'*), (u, N'*u) L G(N ). Then for all

xeDY(N)*¥(N)),
0 = {(u, N"*u), (x, N'*x)>
= (ux) + {N*u, Y(N)*x) (asy(N)* = N™*)
= (U, x) + (u, YN (N)*x). (o)

e
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Here we have used the following that can be easily verified.

Lemma. Let A and B be densely defined linear operators in a Hilbert space with B
closed and D(B) = D(B*). If A < B, then for all ue D(A*), yeD(B), { A*u,y> = {u, By >.

Thus in («), since R(1 + Y(N)*(N)) is dense in K, u=0. Then G(N,) is dense in
G(N™). Now, let ye D(N'*). Then for some sequence (y;) in D(Y/(NY*Y(N)), y;—y and
Noy; = N"™*y = Ny, — N'*y 0. Since [Y(N)y; — p(N)y;]| = [W(NY*y; — y(NY*y; || =
I N"™*y; — N*y; |, (¥(N)y;) converges to some ucK. Since Y(N) is closed, (¥, u) e GY(N)),
y€D(Y(N)). Thus D(N"*) = D(Y(N)) = D(Y(N)*); hence D(N"*) = D(Y(N)*), N'* = ys(N)
and so N’ = y(N).

Claim (b). H is invariant under y(N) (and N'). For if, xeD(Y(N))nH, yeH*, then
since 1 is not an eigenvalue, E({1})=0; and so

Y(N)x,y) = lf (1 +2)(1-2)71dE,,

a(N)

i f (1+2)(1—2)"'dE,,
a(N)-{1}

= iZf(l +2)Z2¢dE,
T
= i;((l + N)N*x,y> =0

as (1+ N) N*xeH. Thus y(N)xeH. This establishes our claim ().

It is easy to see that Y(N)|H with domain D(Y(N)ly)=D((N))nH is a closed
operator.

Remark 32 N_olte _that if R(I—S) (range of (1—S)) is dense in H, then S’ =
{1+ 8)(1—8)"* with domain D(S)=R(1-S) and S, = N’'|y and hence are sub-
normals (not necessarily closed) in H.

4. Examples

4.1 Unbounded analytic Toeplitz operators
Let

U={ze¢:z|<1}, T= {ze€:|z|=1)}.

Let ¢ be a measurable function on I" and
: : D, = {feH*(U):¢feL¥I")}. Define T, i
3 s . Define n
i!r{hgl{g w1tl§1 domain D, as T,f=P(¢ f), where P:I? (I - H*(U) is the project}bon.
The ! oeplitz operator ?}, is an gnalytlc Toeplitz operator if ¢ is analytic. Such a T,
mits a normal extension M, with domain D(M,) = { feI(T):¢ feIX(I)}, M. of= ¢f?:

Thus. in thi . : .
us, in this case, if D, is dense in HX(U), then T, is subnormal. Note that it is
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(i) ¢(z)=(1—2)"". Then Dy=R(1—S) where S is the unilateral shift. Hence
D,=ker(1 — $*)* = H(U). Also T} is closed. For, if (f,, Ty f,) = (f, g), then (identify-
ing H*(U) with a closed subspace of L*(T)), there exists a subsequence (f,,) of (f,)
each of whose subsequence converges a.e. to f on I'. Since £, (2) (z — 1) "' > geL4T),
(z—1)g=f ae. Hence g=T,f in H*(U).

{ii) A similar argument can be applied for ¢(z) =(z — 4,) ™™ (z —A2) ™" - (z— A4,) ™™
with |4,| > 1, m=1,2,....

(iii) As discussed in [6], functions ¢ H?(U) define unbounded analytic Toeplitz
operators.

Unbounded Teoplitz operators also arise quite naturally in representation of certain
topological algebras by unbounded operators.

Consider Arens algebra [1] L) =();<p<o LX) #L™(I) with pointwise
operations. It is a Frechet * algebra with the topology of L’-convergence for
each p, 1<p< . The Hardy-Arens algebra H*(U)= ﬂlspm HP(U)# H*(U)
[9, Ch. 17, Ex. 10] can be regarded as a closed subalgebra of L*(I'). For a ¢e H*(U),
D, is dense in H*(U) since H*(U) = D, and H*(U) is dense in H*(U). In fact, as in
(i) above, T, is closed. It is easily seen that ¢ — T, is a representation of H*(U) by
unbounded subnormal operators in H*(U) which is the restriction of the unbounded
* representation ¢ —M, of L*(T') into normal operators in D).

4.2 Unbounded Bergman operators

Let G be a bounded domain in €, For 1<p< oo, consider the Bergman spaces
L2(G) = { feI?(G):fis analytic on G} with |- ||, norm. Let LY(G) = ()1 <<« L5(G). For
geL?(G), define S, in L2(g) with domain D(S,) = {feL(G):qfeL2(G)} as S,f =gf.
Again S, is densely defined if LX(G) is dense in LZ(G), in particular, if G is a
Caratheodory domain [3,Ch.3] in which case L%(G)= P*(G), the L%(G)-closure of
polynomials. In this way, one gets a large class of unbounded subnormals.
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