On unbounded subnormal operators

ARVIND B PATEL and SUBHASH J BHATT
Department of Mathematics Sardar Patel University, Vallabh Vidyaganar 388 120 India

MS received 28 May 1987; revised to April 1988

Abstract. A minimal normal extension of unbounded subnormal operators is established and characterized and spectral inclusion theorem is proved. An inverse Cayley transform is constructed to obtain a closed unbounded subnormal operator from a bounded one. Two classes of unbounded subnormals viz analytic Toeplitz operators and Bergman operators are exhibited.

Keywords. Unbounded subnormal operator; Cayley transform; Toeplitz and Bergman operators; minimal normal extension.

1. Introduction

Recently there has been some interest in unbounded operators that admit normal extensions viz unbounded subnormal operators defined as follows:

DEFINITION 1.1

Let S be a linear operator (not necessarily bounded) defined in D(S), a dense subspace of a Hilbert space H. S is called a subnormal operator if it admits a normal extension (N, D(N), K) in the sense that there exists a Hilbert space K, containing H as a closed subspace (the norm induced by K on H is the given norm on H) and a normal operator N with domain D(N) in K such that Sh = Nh for all h ∈ D(S).

These operators appear to have been introduced in [12] following Foias [4]. An operator could be subnormal internally admitting a normal extension in H; or it could admit a normal extension in a larger space. As is well known, a symmetric operator always admits a self-adjoint extension in a larger space, contrarily a formally normal operator may fail to be subnormal ([2], [11]). Recently Sjoest and Szafrawie ([12], [13]) obtained a Halmos–Bram type characterization of unbounded subnormal operators.

Here we discuss the existence and characterization of minimal normal extension N of an unbounded subnormal S. This is followed by the spectral inclusion theorem σ(N) ⊆ σ(S). In §3, we set up a Cayley transform between a bounded subnormal and an unbounded one. We also exhibit two large classes of unbounded subnormals viz Bergman operators and analytic Toeplitz operators.

Let us recall [16, Ex. 5.39 p. 127] that given an operator T with domain D(T) in a Hilbert space H, a closed subspace M of H is invariant under T if T(D(T) ∩ M) ⊂ M. M is reducing under T if T(M ∩ D(T)) ⊂ M, T(M⊥ ∩ D(T)) ⊂ M⊥ and D(T) =
2. Minimal normal extension

Definition 2.1

A normal extension \((N, D(N), K)\) of a subnormal operator \((S, D(S), H)\) is a **minimal normal extension** (MNE) if for any normal extension \((N_1, D(N_1), K_1)\) of \(S, S \subset N_1 \subset N\) and \(K_1\) is reducing under \(N\) implies \(K_1 = K\) and \(N_1 = N\).

In [13, p. 51] a normal extension \(N\) in \(K\) of \(S (SD(S) \subset D(S))\) is called 'minimal' if \(D = \{N^*N^jx : x \in D(S), i, j = 0, 1, 2, \ldots\}\) is linearly dense in \(K\). The second half of the following theorem shows that it is in fact a MNE. The class of \(C^\infty\)-**vectors** for an operator \(T\) in \(H\) is \(C^\infty(T) = \bigcap_{n=1}^\infty D(T^n)\).

Theorem 2.2. (a) A subnormal operator admits a minimal normal extension.

(b) Let \(S\) be a subnormal operator with dense domain \(D(S)\) in a Hilbert space \(H\). Let \((N, D(N), K)\) be a normal extension of \(S\). Let \(D\) be the linear span of \(\{N^*N^jx : i, j = 1, 2, \ldots; x \in C^\infty(S)\}\).

(i) If \(D\) is dense in \(K\), then \(N\) is a MNE

(ii) If \(N\) is a MNE and \(D(N) = D + (D(N) \cap D^-1)\), then \(D\) is dense in \(K\).

Proof. (a) Let \(\mathcal{E}\) be the class of all normal extensions \(\alpha = (N_\alpha, D(N_\alpha), K_\alpha)\) of a subnormal operator \(S\) in a Hilbert space \(H\) with domain \(D(S)\). \(\mathcal{E}\) is partially ordered by \(\alpha \leq \beta = (N_\beta, D(N_\beta), K_\beta)\) if \(N_\alpha \subset N_\beta\) and \(K_\alpha\) is a reducing subspace for \(N_\beta\). Note that for \(\alpha \leq \beta\), the restriction \(N_\beta|_{K_\alpha}\) of \(N_\beta\) on \(K_\alpha\) with domain \(D(N_\beta|_{K_\alpha}) = K_\alpha \cap D(N_\beta)\) is a normal operator in \(K_\alpha\) which is an extension in \(K_\alpha\) itself of the normal operator \(N_\alpha\).

Since a normal operator is maximally normal [10, p. 350], \(N_\alpha = N_\beta|_{K_\alpha}\) so that \(D(N_\alpha) = K_\alpha \cap D(N_\beta)\). We shall apply Zorn’s lemma to \(\mathcal{E}\).

Let \(\mathcal{E}\) be a chain in \(\mathcal{E}\). Let \(K = \cap \{K_\alpha | \alpha \in \mathcal{E}\}\), \(D = \cap \{D(N_\alpha) | \alpha \in \mathcal{E}\}\). For \(\alpha \in \mathcal{E}\), let \(P_\alpha^\perp : K \to K\) and for \(\gamma \leq \alpha\), \(P_\gamma^\perp : K_\gamma \to K_\gamma\) be orthogonal projections. Now, let \(\alpha \in \mathcal{E}\) be fixed. Since \(\mathcal{E}\) is a chain, \(K = \cap \{K_\alpha | \gamma \leq \alpha, \gamma \in \mathcal{E}\}\) and \(D = \cap \{D(N_\alpha) | \gamma \leq \alpha, \gamma \in \mathcal{E}\}\).

Claim. \(K\) is a reducing subspace for the normal operator \(N_\alpha\). For this, note that \(P_\alpha = \text{glb} \{P_\gamma | \gamma \in \mathcal{E}, \gamma \leq \alpha\}\), as in [15, p. 124]. Now consider the weak bounded commutant of \(N_\alpha\), viz \(\{N_\gamma^\vee | \gamma \in \mathcal{E}\}\). Let \(E = \text{gla} \{B(K_\gamma) : S N_\gamma \subset S N_\alpha\}\), \(B(K_\gamma)\) denoting the set of all bounded linear operators on \(K_\gamma\). By Fuglede–Putnam theorem for unbounded normal operators [10, p. 365], \(\{N_\gamma^\vee\} = \{S \in B(K_\gamma) : S N_\gamma \subset N_\alpha S, S N_\alpha \subset S N_\gamma\} = \{N_\alpha, N_\gamma^\vee\}\). If \(E\) is the spectral measure for the bounded normal operator \((1 + N_\alpha^2 N_\gamma^2)^{-1}\). For \(k = 0, 1, 2, \ldots\) let \(w_k(0) = (1/k + 1/k)\), and \(N_{\alpha k} = N_\alpha E(w_k)\) which are bounded normal operators. Then as shown in the proof of Theorem 2.1 in [8], \(\{N_{\alpha k} | k = 0, 1, 2, \ldots\}\) (usual commutant in \(B(K_\gamma)\) of a collection of bounded operators) is a von Neumann algebra. Now by [16, p. 128], reducing subspaces of \(N_\alpha\) correspond (via usual way of range projections) to projections in \(\{N_{\alpha k}\}\). Hence for \(\gamma \leq \alpha\), \(P_\gamma \in \{N_{\alpha k}\}\). Since projections in a von Neumann algebra form a complete lattice [15, p. 124], \(P_\gamma \in \{N_{\alpha k}\}\); and hence \(K\) is a reducing subspace for \(N_\alpha\).

Now for \(\gamma \leq \alpha\), \(P_\gamma^\perp(D(N_\alpha)) = K \cap D(N_\alpha)\) since \(D(N_\alpha) = [K \cap D(N_\alpha)] + [K^\perp \cap D(N_\alpha)]\).
Hence \(P_k^x(D(N_x)) = K_x \cap D(N_x) = D(N_x) \). Thus \(P_k^x(D(N_x)) \subset \{D(N_x) \mid y \in E, y \leq z\} = D \).
This implies that \(D \) is dense in \(K \). For, given \(x \in D^* (\perp \text{ in } K) \), for all \(y \in D(N_x) \),
\[
\langle x, y \rangle = \langle P_k^x x, y \rangle = \langle x, P_k^x y \rangle = 0,
\]
hence \(x = 0 \). Define an operator \(N \) in \(K \) with domain \(D(N) = D \) as \(N_x = N_x x \). Then \(N \) is a well-defined closed operator. To show that \(N \) is normal, consider an operator \(C \) in \(K \) with domain \(D(C) = D \) as \(Cx = N_x x \) (adjoint in \(K) \). Then \(C \subset N^* \) (adjoint in \(K \)). Now given \(x \in D(N^* N) \), the functional \(y \in D \rightarrow \langle N^* x, N^* y \rangle = \langle C x, C y \rangle = \langle N^* x, N^* y \rangle = \langle N x, N y \rangle \) is continuous on \(D \) as \(N x \in D(N^* N) \). Thus \(N^* x \in D(N^* N) = D(N) \) is closed. Hence \(x \in D(N^* N) \) and \(D(N^* N) \subset D(N^* N) \). In fact, \(N^* N \subset N N^* \), and so \(N^* N = N N^* \) both being self-adjoint (as \(N \) is closed). (Note that normality of \(N \) also implies \(N = N^* N \).

The normal extension \((N, D(N), K)\) is a lower bound of \(\mathcal{E} \). Now Zorn's lemma completes the proof.

(b) (i) Let the linear span \(D \) of \(\{N^* N^i x \mid x \in C^\omega(S); i, j = 1, 2, \ldots\} \) be dense in \(K \). Let \((N_0, D(N_0), K_0) \) be a normal extension of \(S \) such that \((N_0, D(N_0), K_0) \subset (N, D(N), K) \) (partial order as in the proof of (a)). Let \(x \in C^\omega(S) \). Then for all \(i = 1, 2, \ldots, S_i \in C^\omega(S) \subset C^\omega(S) \) that gives \(N^i x = S_i x \in C^\omega(S) \subset C^\omega(S) \cap K_0 \). Now for any positive integer \(k \), by the normality of \(N^k \), \(D(N^k) = D(N^k) \) which implies that \(C^\omega(S) = C^\omega(S) \). Thus \(N^k \) is defined for all \(i, j = 1, 2, \ldots \). Further, since \(K_0 \) is invariant under \(N^k \), \(N^k x \in K_0 \). Thus \(D \subset K_0 \). Hence \(K_0 = K, N_0 = N \) showing that \(N \) is MNE.

(ii) Let \((N, D(N), K) \) be a MNE of \(S \) satisfying the given condition. Let \(K_0 = D \) (closure in \(K \)). By definition of \(D \), \(N^* D \subset D \), \(N^* D \subset D \). These give \(D(N) \subset K_0 \). Further, the given condition is equivalent to \(D(N) = \{D(N) \cap K_0 \} + \{D(N) \cap K_0 \} \). We show that \(N(D(N) \cap K_0) \subset K_0 \). Let \(x \in D(N) \cap K_0 \). For all \(y \in D(N) \cap K_0 \), \(\langle N x, y \rangle = \langle N x, y \rangle = 0 \). As \(D(N) \cap K_0 \) is dense in \(K_0 \), \(N x \in K_0 \). Hence \(K_0 \) is reducing for \(N \). Then \(N |_{K_0} \) is a normal extension of \(S \) contained in \(N \). By the minimality of \(N, K_0 = K \). This completes the proof of the theorem.

The following is a spectral inclusion theorem analogous to the one for bounded subnormal. Its proof is patterned along Halmos [5, p. 157].

Theorem 2.3. Let \(S \) be a subnormal operator in a Hilbert space \(H \) with domain \(D(S) \) and a minimal normal extension \(N \). Then \(\sigma(N) \subset \sigma(S) \).

Proof. Let \(\lambda \in \sigma(S) \). Then \((\lambda - S)^{-1} \) is a bounded operator on \(H \). We can assume \(\lambda = 0 \) and \(||S^{-1}|| = 1 \). Now for \(0 < \epsilon < 1 \), consider \(E_\epsilon = \{x \in C^\omega(N) \mid ||N^* x|| < \epsilon ||x|| \} \) for \(n = 1, 2, \ldots \). For \(x \in E_\epsilon, y \in H \),
\[
|\langle x, y \rangle| = |\langle x, S^* S^{-1} y \rangle| = |\langle N^* x, S^* y \rangle| \leq \epsilon \|x\| \|y\| \text{ for all } n.
\]
As \(\epsilon < 1, \langle x, y \rangle = 0 \). Thus \(H \subset E_\epsilon^* (\perp \text{ in } K) \). Let \(N = \bigcup_{\epsilon} E_\epsilon(z) \) be the spectral theorem for \(N \). Then \(E_\epsilon = E_\epsilon K \) where \(A_\epsilon = \{z \in C \mid |z| \leq \epsilon \} \). Hence \(E_\epsilon \), and so \(E_\epsilon \) is a reducing subspace of \(N \). Now \(N |_{E_\epsilon} \) being normal, the minimality of \(N \) implies that \(E_\epsilon = K \). Hence \(E_\epsilon K = E_\epsilon = 0 \). Thus \(\phi = A_\epsilon \cap \text{supp } E = A_\epsilon \cap \sigma(N) \); and so \(0 \in \sigma(N) \).
Notice that, in above notations, \(bdy \sigma(S) = \sigma_+(S) = \sigma_+(N) = \sigma(N) \) (\(\sigma_+ \) denotes the approximate point spectrum) and component of \(\mathcal{C} \setminus \sigma(N) \) is either contained in \(\sigma(S) \) or is disjoint from \(\sigma(S) \).

COROLLARY 1

Let \(S \) be a subnormal operator. Then

(i) \(\sigma(S) \neq \phi \).

(ii) \(S \) is bounded iff \(\sigma(S) \) is bounded.

(iii) \(S \) is essentially self-adjoint iff \(\sigma(S) \) is real.

COROLLARY 2

A symmetric operator has nonempty spectrum.

Remarks 2.4. (i) Let \(S \) be an operator in a Hilbert space \(H \). A vector \(x \in C^\infty(S) \) is an analytic vector for \(S \) if there exists a \(t > 0 \) such that

\[
\sum_{n=1}^{\infty} \frac{\|S^n x\| t^n}{n!} < \infty.
\]

Let \(A(S) \) be the collection of all analytic vectors for \(S \). If \(S \) is subnormal admitting a normal extension \(N \) such that \(D(S) = D(N) \cap H \), then \(A(S) \) is dense in \(H \). Indeed, in this case, \(A(S) = A(N) \cap H \). Hence taking the orthogonal complement in \(K \), \(A(S)^+ = H^\perp \) as \(A(N) \) is dense in \(K \).

(ii) A symmetric operator in \(H \) admitting a normal extension \(N \) in (possibly a larger space) \(K \) satisfying \(D(S) = D(N) \cap H \) is essentially self-adjoint. For, in view of (i), the well-known Nelson theorem [16, p. 261] applies.

(iii) Normal extensions of an unbounded subnormal operator satisfying the above spectral inclusion (distinguished normal extensions) have been discussed recently in [6]. Thus a MNE is distinguished, though a distinguished extension need not be minimal. For example let \(N_1 \) be a MNE of \(S \) in \(K_1 \). Let \(N_2 \) be a normal operator in \(K_2 \) with \(\sigma(N_2) \subset \sigma(N_1) \). Take \(N = N_1 \oplus N_2 \) a normal extension of \(S \) in \(K_1 \oplus K_2 = K \). Then \(N_0 = N_{(e,0)} \), (where \(E \) is the spectral measure of \(N \)) is distinguished normal extension as in [6] which is not minimal.

(iv) Ōta [7] showed that if \(T \) is a densely defined closed operator in a Hilbert space \(H \) such that \(TD(T) \subset D(T^*) \), then \(T \) is bounded. This has the following implication.

PROPOSITION

Let \(S \) be a closed subnormal operator in \(H \) with dense domain \(D(S) \) such that \(SD(S) \subset D(S) \).

Then \(S \) is bounded.

This follows from \(D(S) \subset D(S^*) \) [14].

We are thankful to Prof. Ōta for bringing this to our notice.

(v) Ōta [7] has also another interesting result, viz if \(T \) is a densely defined closed operator in a Hilbert space \(H \) such that the range of \(T \) is contained in its domain and if \(T \) is unbounded, then the numerical range \(W(T) = \{ \langle Tx, x \rangle | x \in D(T), \|x\| = 1 \} \) is the entire complex plane. The following is an analogous result for spectrum.
PROPOSITION

Let T be a densely defined closed operator in a Hilbert space H such that $TD(T) \subseteq D(T)$. If $\sigma(T)$ is not the whole of complex plane, then T is bounded.

Proof. If $\lambda \notin \sigma(T)$, then $S = (T - \lambda I)^{-1}$ is a bounded operator satisfying $S(T - \lambda I) \subseteq (T - \lambda I)S = 1$. Thus $(T - \lambda I)D(T) \subseteq D(T) = H$. Closed graph theorem shows that T is bounded.

3. A Cayley transform

The problem of self-adjoint extension (within the space) of a symmetric operator is discussed via Cayley transform [15, Ch. 8] which provides a correspondence between certain partial isometries and symmetric operators that admit self-adjoint extensions. We extend this so as to associate an unbounded subnormal operator with a bounded one.

Theorem 3.1. Let S be a bounded subnormal operator on H with a bounded normal extension N on K. If

(i) $1 - N$ is one-to-one and
(ii) $1 \in \sigma(N), \sigma(N) \setminus \{1\} \subseteq \{z \in \mathbb{C} : |z| < 1\}$

then $\overline{\psi(N)}$ is an unbounded closed subnormal operator where $\psi(N)$ is the normal operator in K defined via the spectral theorem by the function $\psi(z) = i(1 + z)(1 - z)^{-1}$.

Proof. Define N' in K with domain $D(N') = R(1 - N)$ by $N'x = i(1 + N)(1 - N)^{-1}x$. Then N' is densely defined.

Claim (a). $N' = \psi(N)$.

For, given $x \in D(N'), (1 - N)y = x$, and so

$$
\int |(1 + z)(1 - z)^{-1}|^2 \, dE_{x,y} = \int |(1 + z)^2(1 - z)^{-2}|(1 - z)(1 - z)^{-1} \, dE_{x,y} < \infty,
$$

and for all $u \in K$

$$
\langle N'x, u \rangle = i\langle (1 + N)y, u \rangle = i \int (1 + z)(1 - z)^{-1} \, dE_{x,u} = \langle \psi(N)x, u \rangle.
$$

Hence $N' \in \psi(N)$. As $\psi(N)$ is closed, $\overline{\psi(N)} \subseteq \psi(N)$. Now let $N_0 = N^*|_{D(\psi(N^*)\psi(N))}$.

Then $G(N_0)$ is dense in $G(N^*)$, $G(\cdot)$ denoting the graph of the operator. Indeed, note that $G(N^*)$ is closed in $K \times K$. Let $(u, N^*u) \in G(N^*)$, $(u, N^*u) \perp G(N_0)$. Then for all $x \in D(\psi(N^*)\psi(N))$,

$$
0 = \langle (u, N^*u), (x, N^*x) \rangle
= \langle u, x \rangle + \langle N^*u, \psi(N)x \rangle (as \psi(N)^* \subseteq N^*)
= \langle u, x \rangle + \langle u, \psi(N)\psi(N)x \rangle.
$$
Here we have used the following that can be easily verified.

Lemma. Let A and B be densely defined linear operators in a Hilbert space with B closed and $D(B) = D(B^*)$. If $A \subset B$, then for all $u \in D(A^*)$, $v \in D(B)$, $\langle A^*u, v \rangle = \langle u, By \rangle$.

Thus in (a), since $R(1 + \psi(N)^*\psi(N))$ is dense in K, $u = 0$. Then $G(N_0)$ is dense in $G(N^*)$. Now, let $y \in D(N^*)$. Then for some sequence (y_i) in $D(\psi(N)^*\psi(N))$, $y_i \to y$ and $N_0y_i - N^*y = N^*y_i - N^*y \to 0$. Since $\|\psi(N)y_i - \psi(N)y_j\| = \|\psi(N)^*y_i - \psi(N)^*y_j\| = \|N^*y_i - N^*y_j\|$, $(\psi(N)y_i)$ converges to some $u \in K$. Since $y \in D(\psi(N))$, $y \in D(\psi(N))$. Thus $D(N^*) \subset D(\psi(N)) = D(\psi(N)^*)$; hence $D(N^*) = D(\psi(N)^*)$, $N^* = \psi(N)$ and so $\overline{N} = \psi(N)$.

Claim (b). H is invariant under $\psi(N)$ (and N^*). For if, $x \in D(\psi(N)) \cap H$, $y \in H^\perp$, then since 1 is not an eigenvalue, $E(\{1\}) = 0$; and so

$$\langle \psi(N)x, y \rangle = i \int_{\sigma(N)} (1 + z)(1 - z)^{-1} \text{d}E_{x,y}$$

$$= i \int_{\sigma(N) \setminus \{1\}} (1 + z)(1 - z)^{-1} \text{d}E_{x,y}$$

$$= i \sum_{k} \int (1 + z)^k \text{d}E_{x,y}$$

$$= i \sum_{k} \langle (1 + N)^k x, y \rangle = 0$$

as $(1 + N)^k x \in H$. Thus $\psi(N)x \in H$. This establishes our claim (b).

It is easy to see that $\psi(N)|H$ with domain $D(\psi(N)|H) = D(\psi(N)) \cap H$ is a closed operator.

Remark 3.2. Note that if $R(1 - S)$ (range of $(1 - S)$) is dense in H, then $S' = i(1 + S)(1 - S)^{-1}$ with domain $D(S') = R(1 - S)$ and $S_0 = N^*|H$ and hence are sub-normals (not necessarily closed) in H.

4. Examples

4.1 Unbounded analytic Toeplitz operators

Let

$$U = \{ze^{\mathbb{C}}:|z| < 1\}, \quad \Gamma = \{ze^{\mathbb{C}}:|z| = 1\}.$$

Let ϕ be a measurable function on Γ and $D_\phi = \{f \in H^2(U): \phi f \in L^2(\Gamma)\}$. Define T_ϕ in $H^2(U)$ with domain D_ϕ as $T_\phi f = P(\phi f)$, where $P:L^2(\Gamma) \to H^2(U)$ is the projection. The Toeplitz operator T_ϕ is an analytic Toeplitz operator if ϕ is analytic. Such a T_ϕ admits a normal extension M_ϕ with domain $D(M_\phi) = \{f \in L^2(\Gamma): \phi f \in L^2(\Gamma)\}$, $M_\phi f = \phi f$.

Thus, in this case, if D_ϕ is dense in $H^2(U)$, then T_ϕ is subnormal. Note that it is indeed if ϕ is bounded. We exhibit below a class of function ϕ for which T_ϕ is a nonunbounded subnormal operator.
On unbounded subnormal operators

(i) \(\phi(x) = (1 - x)^{-1} \). Then \(D_\phi = R(1 - S) \) where \(S \) is the unilateral shift. Hence \(D_\phi = \ker(1 - S^*)^* = H^2(U) \). Also \(T_\phi \) is closed. For, if \((f_n, T_\phi f_n) \to (f, g) \), then identifying \(H^2(U) \) with a closed subspace of \(L^2(\Gamma) \), there exists a subsequence \((f_{n_k}) \) of \((f_n) \) each of whose subsequence converges a.e. to \(f \) on \(\Gamma \). Since \(f_{n_k}(z)(z - 1)^{-1} \to g \in L^2(\Gamma) \), \((z - 1)g = f \) a.e. Hence \(g = T_\phi f \) in \(H^2(U) \).

(ii) A similar argument can be made for \(\phi(z) = (z - \lambda_1)^{-n_1}(z - \lambda_2)^{-n_2} \cdots (z - \lambda_k)^{-n_k} \) with \(|\lambda_i| \geq 1, n_i = 1, 2, \ldots \).

(iii) As discussed in [6], functions \(\phi \in H^2(U) \) define unbounded analytic Toeplitz operators.

Unbounded Toeplitz operators also arise quite naturally in representation of certain topological algebras by unbounded operators.

Consider Arens algebra [1] \(L^p(\Gamma) = \bigcap_{1 \leq p < \infty} L^p(\Gamma) \neq L^\infty(\Gamma) \) with pointwise operations. It is a Frechet * algebra with the topology of \(L^p \)-convergence for each \(p, 1 \leq p < \infty \). The Hardy-Arens algebra \(H^\infty(U) = \bigcap_{1 \leq p < \infty} H^p(U) \neq H^\infty(U) \) [9, Ch. 17, Ex. 10] can be regarded as a closed subalgebra of \(L^p(\Gamma) \). For \(\phi \in H^\infty(U) \), \(D_\phi \) is dense in \(H^2(U) \) since \(H^\infty(U) \subseteq D_\phi \) and \(H^\infty(U) \) is dense in \(H^2(U) \). In fact, as in (i) above, \(T_\phi \) is closed. It is easily seen that \(\phi \to T_\phi \) is a representation of \(H^\infty(U) \) by unbounded subnormal operators in \(H^2(U) \) which is the restriction of the unbounded * representation \(\phi \to M_\phi \) of \(L^p(\Gamma) \) into normal operators in \(L^2(\Gamma) \).

4.2 Unbounded Bergman operators

Let \(G \) be a bounded domain in \(\mathbb{C} \). For \(1 \leq p < \infty \), consider the Bergman spaces \(L^2_p(G) = \{ f \in L^p(G) : f \text{ is analytic on } G \} \) with \(\| \cdot \|_p \) norm. Let \(L^\infty_p(G) = \bigcap_{1 \leq p < \infty} L^p(G) \). For \(g \in L^\infty_p(G) \), define \(S_g \) in \(L^2_p(G) \) with domain \(D(S_g) = \{ f \in L^2_p(G) : \| g \| f \in L^2(G) \} \). As \(S_g f = \overline{g} f \).

Again \(S_g \) is densely defined if \(L^\infty_p(G) \) is dense in \(L^2_p(G) \). In particular, if \(G \) is a Caratheodory domain [3, Ch. 3] in which case \(L^2(G) = P^2(G) \), the \(L^2(G) \)-closure of polynomials. In this way, one gets a large class of unbounded subnormals.

Acknowledgements

We are grateful to Prof. Schōichi Ōta (Fukuoka, Japan) whose comments on the first draft of the paper led to a thorough revision (and improvements) of the paper. We are also thankful to Prof. B C Gupta for providing us with a few references.

References