On unbounded subnormal operators

ARVIND B PATEL and SUBHASH J BHATT

Department of Mathematics Sardar Patel University, Vallabh Vidyanagar 388 120 India

MS received 28 May 1987; revised to April 1988

Abstract. A minimal normal extension of unbounded subnormal operators is established and characterized and spectral inclusion theorem is proved. An inverse Cayley transform is constructed to obtain a closed unbounded subnormal operator from a bounded one. Two classes of unbounded subnormals viz analytic Toeplitz operators and Bergman operators are exhibited.

Keywords. Unbounded subnormal operator; Cayley transform; Toeplitz and Bergman operators; minimal normal extension.

1. Introduction

Recently there has been some interest in unbounded operators that admit normal extensions viz unbounded subnormal operators defined as follows:

DEFINITION 1.1

Let S be a linear operator (not necessarily bounded) defined in D(S), a dense subspace of a Hilbert space H. S is called a *subnormal operator* if it admits a normal extension (N, D(N), K) in the sense that there exists a Hilbert space K, containing H as a closed subspace (the norm induced by K on H is the given norm on H) and a normal operator N with domain D(N) in K such that Sh = Nh for all $h \in D(S)$.

These operators appear to have been introduced in [12] following Foias [4]. An operator could be subnormal internally admitting a normal extension in H; or it could admit a normal extension in a larger space. As is well known, a symmetric operator always admits a self-adjoint extension in a larger space, contrarily a formally normal operator may fail to be subnormal ([2], [11]). Recently Stochel and Szafraniec ([12], [13]) obtained a Halmos-Bram type characterization of unbounded subnormal operators.

Here we discuss the existence and characterization of minimal normal extension N of an unbounded subnormal S. This is followed by the spectral inclusion theorem $\sigma(N) \subset \sigma(S)$. In §3, we set up a Cayley transform between a bounded subnormal and an unbounded one. We also exhibit two large classes of unbounded subnormals viz Bergman operators and analytic Toeplitz operators.

Let us recall [16, Ex. 5.39 p. 127] that given an operator T with domain D(T) in a Hilbert space H, a closed subspace M of H is invariant under T if $T(D(T) \cap M) \subset M$. M is reducing under T if $T(M \cap D(T)) \subset M$, $T(M^{\perp} \cap D(T)) \subset M^{\perp}$ and D(T) =

 $[M \cap D(T)] + [M^{\perp} \cap D(T)]$. Note that restriction of a normal operator to a reducing subspace is normal.

2. Minimal normal extension

DEFINITION 2.1

A normal extension (N, D(N), K) of a subnormal operator (S, D(S), H) is a minimal normal extension (MNE) if for any normal extension $(N_1, D(N_1), K_1)$ of $S, S \subset N_1 \subset N$ and K_1 is reducing under N implies $K_1 = K$ and $N_1 = N$.

In [13, p. 51] a normal extension N in K of $S(SD(S) \subset D(S))$ is called 'minimal' if $D = \{N^{*j}N^ix: x \in D(S), i, j = 0, 1, 2, ...\}$ is linearly dense in K. The second half of the following theorem shows that it is in fact a MNE. The class of C^{∞} -vectors for an operator T in H is $C^{\infty}(T) = \bigcap_{n=1}^{\infty} D(T^n)$.

Theorem 2.2. (a) A subnormal operator admits a minimal normal extension. (b) Let S be a subnormal operator with dense domain D(S) in a Hilbert space H. Let (N,D(N),K) be a normal extension of S. Let D be the linear span of $\{N^{*i}N^{j}x:$ $i, j = 1, 2, \ldots; x \in C^{\infty}(S)$.

- (i) If D is dense in K, then N is a MNE
- (ii) If N is a MNE and $D(N) = D + (D(N) \cap D^{\perp})$, then D is dense in K.

Proof. (a) Let $\mathscr E$ be the class of all normal extensions $\alpha = (N_\alpha, D(N_\alpha), K_\alpha)$ of a subnormal operator S in a Hilbert space H with domain D(S). E is partially ordered by $\alpha \leq \beta = (N_{\beta}, D(N_{\beta}), K_{\beta})$ if $N_{\alpha} \subset N_{\beta}$ and K_{α} is a reducing subspace for N_{β} . Note that for $\alpha \leqslant \beta$, the restriction $N_{\beta}|_{K_{\alpha}}$ of N_{β} on K_{α} with domain $D(N_{\beta}|_{K_{\alpha}}) = K_{\alpha} \cap D(N_{\beta})$ is a normal operator in K_{α} which is an extension in K_{α} itself of the normal operator N_{α} . Since a normal operator is maximally normal [10, p. 350], $N_{\alpha} = N_{\beta}|_{K_{\alpha}}$ so that $D(N_{\alpha}) = K_{\alpha} \cap D(N_{\beta})$. We shall apply Zorn's lemma to \mathscr{E} .

Let $\mathscr C$ be a chain in $\mathscr E$. Let $K=\cap\{K_\alpha|\alpha\in\mathscr C\}$, $D=\cap\{D(N_\alpha)|\alpha\in\mathscr C\}$. For $\alpha\in\mathscr C$, let $P_K^{\alpha}: K_{\alpha} \to K$ and for $\gamma \leqslant \alpha$, $P_{\gamma}^{\alpha}: K_{\alpha} \to K_{\gamma}$ be orthogonal projections. Now, let $\alpha \in \mathscr{C}$ be fixed. Since $\mathscr C$ is a chain, $K=\cap\{K_\gamma|\gamma\leqslant\alpha,\gamma\in\mathscr C\}$ and $D=\cap\{D(N_\gamma)|\gamma\leqslant\alpha,\gamma\in\mathscr C\}.$

F

Claim. K is a reducing subspace for the normal operator N_{α} . For this, note that $P_K^{\alpha} = \operatorname{glb} \{ P_{\gamma}^{\alpha} | \gamma \in \mathscr{C} \} = \operatorname{glb} \{ P_{\gamma}^{\alpha} | \gamma \in \mathscr{C}, \gamma \leqslant \alpha \}, \text{ as in [15, p. 124]. Now consider the weak }$ bounded commutant of N_{α} viz $\{N_{\alpha}\}' = \{S \in B(K_{\alpha}) | SN_{\alpha} \subset N_{\alpha}S\}, B(K_{\alpha})$ denoting the set of all bounded linear operators on K_{α} . By Fuglede-Putnam theorem for unbounded normal operators [10, p. 365], $\{N_{\alpha}\}' = \{S \in B(K_{\alpha}) | SN_{\alpha} \subset N_{\alpha}S, SN_{\alpha}^* \subset N_{\alpha}^*S\} = \{S \in B(K_{\alpha}) | SN_{\alpha} \subset N_{\alpha}S, SN_{\alpha}^* \subset N_{\alpha}^*S\}$ $\{N_{\alpha},N_{\alpha}^*\}'$. Let E be the spectral measure for the bounded normal operator $(1 + N_{\alpha}^* N_{\alpha})^{-1}$. For k = 0, 1, 2, ... let $w_0(0)$, $w_k = (1/k + 1, 1/k]$, and $N_{\alpha, k} = N_{\alpha} E(w_k)$ which are bounded normal operators. Then as shown in the proof of Theorem 2-1 in [8], $\{N_{\alpha}\}' = \{N_{\alpha,k} | k = 0, 1, 2,\}'$ (usual commutant in $B(K_{\alpha})$ of a collection of bounded operators) which is a von Neumann algebra. Now by [16, p. 128], reducing subspaces of N_{α} correspond (via usual way of range projections) to projections in $\{N_{\alpha}\}'$. Hence for $\gamma \leqslant \alpha$, $P_{\gamma}^{\alpha} \in \{N_{\alpha}\}'$. Since projections in a von Neumann algebra form a complete lattice [15, p. 124], $P_K^{\alpha} \in \{N_{\alpha}\}'$; and hence K is a reducing subspace for N_{α} . Now for $\gamma \leq \alpha$, $P_K^{\alpha}(\hat{D}(N_{\alpha})) = K \cap D(N_{\alpha})$ since $D(N_{\alpha}) = [K \cap D(N_{\alpha})] + [K^{\perp} \cap D(N_{\alpha})]$.

Hence $P_K^\alpha(D(N_\alpha)) \subset K_\gamma \cap D(N_\alpha) = D(N_\gamma)$. Thus $P_K^\alpha(D(N_\alpha)) \subset \cap \{D(N_\gamma) | \gamma \in \mathscr{C}, \gamma \leqslant \alpha\} = D$. This implies that D is dense in K. For, given $x \in D^\perp$ $(\perp \text{in } K)$, for all $y \in D(N_\alpha)$, $\langle x, y \rangle = \langle P_K^\alpha x, y \rangle = \langle x, P_K^\alpha y \rangle = 0$, hence x = 0. Define an operator N in K with domain D(N) = D as $Nx = N_\alpha x$. Then N is a well defined closed operator. To show that N is normal, consider an operator C in K with domain D(C) = D as $Cx = N_\alpha^* x$ (adjoint in K_α). Then $C \subset N^*$ (adjoint in K). Now given $x \in D(N^*N)$, the functional $y \in D \to \langle N^* x, N^* y \rangle = \langle Cx, Cy \rangle = \langle N_\alpha^* x, N_\alpha^* y \rangle = \langle N_\alpha x, N_\alpha y \rangle = \langle Nx, Ny \rangle$ is continuous on D as $Nx \in D(N^*)$. Thus $N^* x \in D(N^{**}) = D(N)$ as N is closed. Thus $x \in D(N^*)$ and $D(N^*N) \subset D(NN^*)$. In fact, $N^*N \subset NN^*$; and so $N^*N = NN^*$ both being self-adjoint (as N is closed). (Note that normality of N also implies $N = N_\alpha|_K$.)

The normal extension (N, D(N), K) is a lower bound of \mathscr{C} . Now Zorn's lemma completes the proof.

- (b) (i) Let the linear span D of $\{N^{*j}N^ix|x\in C^\infty(S); i,j=1,2,\ldots\}$ be dense in K. Let $(N_0,D(N_0),K_0)$ be a normal extension of S such that $(N_0,D(N_0),K_0)\leqslant (N,D(N),K)$ (partial order as in the proof of (a)). Let $x\in C^\infty(S)$. Then for all $i=1,2,\ldots,SC^\infty(S)\subset C^\infty(S)$ gives that $N^ix=S^ix\in C^\infty(S)\subset C^\infty(N)\cap K_0$. Now for any positive integer k, by the normality of N^k , $D(N^k)=D((N^k)^*)=D((N^*)^k)$ which implies that $C^\infty(N)=C^\infty(N^*)$. Thus $N^{*j}N^i$ are defined for all $i,j=1,2,\ldots$ Further, since K_0 is invariant under N^* , $N^{*j}N^ix\in K_0$. Thus $D\subset K_0$. Hence $K_0=K$, $N_0=N$ showing that N is MNE.
- (ii) Let (N, D(N), K) be a MNE of S satisfying the given condition. Let $K_0 = \overline{D}$ (closure in K). By definition of D, $N^*D \subset D$, $ND \subset D$. These give $N(D(N) \cap K_0^{\perp}) \subset K_0^{\perp}$, $N^*(D(N) \cap K_0^{\perp}) \subset K_0^{\perp}$. Further, the given condition is equivalent to $D(N) = [D(N) \cap K_0] + [D(N) \cap K_0^{\perp}]$. We show that $N(D(N) \cap K_0) \subset K_0$. Let $x \in D(N) \cap K_0$. Then for all $y \in D(N) \cap K_0^{\perp}$, $\langle Nx, y \rangle = \langle x, N^*y \rangle = 0$. As $D(N) \cap K_0^{\perp}$ is dense in K_0^{\perp} , $Nx \in K_0$. Thus K_0 is reducing for N. Then $N|_{K_0}$ is a normal extension of S contained in N. By the minimality of N, $K_0 = K$. This completes the proof of the theorem.

The following is a spectral inclusion theorem analogous to the one for bounded subnormal. Its proof is patterned along Halmos [5, p. 157].

Theorem 2.3. Let S be a subnormal operator in a Hilbert space H with domain D(S) and a minimal normal extension N. Then $\sigma(N) \subset \sigma(S)$.

Proof. Let $\lambda \notin \sigma(S)$. Then $(\lambda - S)^{-1}$ is a bounded operator on H. We can assume $\lambda = 0$ and $\|S^{-1}\| = 1$. Now for $0 < \varepsilon < 1$, consider $E_{\varepsilon} = \{x \in C^{\infty}(N) | \|N^n x\| < \varepsilon^n \|x\| \text{ for } n = 1, 2, \ldots\}$. For $x \in E_{\varepsilon}$, $y \in H$,

$$|\langle x, y \rangle| = |\langle x, S^n S^{-n} y \rangle|$$

$$= |\langle N^{*n} x, S^{-n} y \rangle|$$

$$\leq \varepsilon^n ||x|| ||y|| \text{ for all } n.$$

As $\varepsilon < 1$, $\langle x, y \rangle = 0$. Thus $H \subset E_{\varepsilon}^{\perp}$ (\perp in K). Let $N = \int z \, dE(z)$ be the spectral theorem for N. Then $E_{\varepsilon} = E(\Delta_{\varepsilon})K$ where $\Delta_{\varepsilon} = \{z \in \mathcal{C}: |z| \le \varepsilon\}$. Hence E_{ε} , and so E_{ε}^{\perp} is a reducing subspace of N. Now $N|_{E_{\varepsilon}^{\perp}}$ being normal, the minimality of N implies that $E_{\varepsilon} = K$. Hence $E(\Delta_{\varepsilon})K = E_{\varepsilon} = \{0\}$. Thus $\phi = \Delta_{\varepsilon} \cap \sup E = \Delta_{\varepsilon} \cap \sigma(N)$; and so $0 \notin \sigma(N)$.

Notice that, in above notations, bdry $\sigma(S) \subset \sigma_{\pi}(S) \subset \sigma_{\pi}(N) = \sigma(N)$ (σ_{π} denotes the approximate point spectrum) and component of $\mathcal{C} \setminus \sigma(N)$ is either contained in $\sigma(S)$ or is disjoint from $\sigma(S)$.

COROLLARY 1

Let S be a subnormal operator. Then

- (i) $\sigma(S) \neq \phi$.
- (ii) S is bounded iff $\sigma(S)$ is bounded.
- (iii) S is essentially self-adjoint iff $\sigma(S)$ is real.

COROLLARY 2

A symmetric operator has nonempty spectrum.

Remarks 2.4. (i) Let S be an operator in a Hilbert space H. A vector $x \in C^{\infty}(S)$ is an analytic vector for S if there exists a t > 0 such that

$$\sum_{n=1}^{\infty} \frac{\|S^n x\| t^n}{n!} < \infty.$$

Let A(S) be the collection of all analytic vectors for S. If S is subnormal admitting a normal extension N such that $D(S) = D(N) \cap H$, then A(S) is dense in H. Indeed, in this case, $A(S) = A(N) \cap H$. Hence taking the orthogonal complement in K, $A(S)^{\perp} = H^{\perp}$ as A(N) is dense in K.

(ii) A symmetric operator in H admitting a normal extension N in (possibly a larger space) K satisfying $D(S) = D(N) \cap H$ is essentially self-adjoint. For, in view of (i), the well-known Nelson theorem [16, p. 261] applies.

(iii) Normal extensions of an unbounded subnormal operator satisfying the above spectral inclusion (distinguished normal extensions) have been discussed recently in [6]. Thus a MNE is distinguished, though a distinguished extension need not be minimal. For example let N_1 be a MNE of S in K_1 . Let N_2 be a normal operator in K_2 with $\sigma(N_2) \subset \sigma(N_1)$. Take $N = N_1 \oplus N_2$ a normal extension of S in $K_1 \oplus K_2 = K$. Then $N_0 = N|_{E(\sigma(S))K}$, (where E is the spectral measure of N) is distinguished normal extension as in [6] which is not minimal.

(iv) Ota [7] showed that if T is a densely defined closed operator in a Hilbert space H such that $TD(T) \subset D(T^*)$, then T is bounded. This has the following implication.

PROPOSITION

Let S be a closed subnormal operator in H with dense domain D(S) such that $SD(S) \subset D(S)$. Then S is bounded.

This follows from $D(S) \subset D(S^*)$ [14].

We are thankful to Prof. Ota for bringing this to our notice.

(v) Ota [7] has also another interesting result, viz if T is a densely defined closed operator in a Hilbert space H such that the range of T is contained in its domain and if T is unbounded, then the numerical range $W(T) = \{\langle Tx, x \rangle | x \in D(T), ||x|| = 1\}$ is the entire complex plane. The following is an analogous result for spectrum.

PROPOSITION

7 100

Let T be a densely defined closed operator in a Hilbert space H such that $TD(T) \subset D(T)$. If $\sigma(T)$ is not the whole of complex plane, then T is bounded.

Proof. If $\lambda \notin \sigma(T)$, then $S = (T - \lambda 1)^{-1}$ is a bounded operator satisfying $S(T - \lambda 1) \subset (T - \lambda 1)S = 1$. Thus $(T - \lambda 1)D(T) \subset D(T) = H$. Closed graph theorem shows that T is bounded.

3. A Cayley transform

The problem of self-adjoint extension (within the space) of a symmetric operator is discussed via Cayley transform [15, Ch. 8] which provides a correspondence between certain partial isometries and symmetric operators that admit self-adjoint extensions. We extend this so as to associate an unbounded subnormal operator with a bounded one.

Theorem 3.1. Let S be a bounded subnormal operator on H with a bounded normal extension N on K. If

- (i) 1 N is one-to-one and
- (ii) $1 \in \sigma(N)$, $\sigma(N) \setminus \{1\} \subset \{z \in \mathbb{C} : |z| < 1\}$

then $\psi(N)|_{\mathbf{H}}$ is an unbounded closed subnormal operator where $\psi(N)$ is the normal operator in K defined via the spectral theorem by the function $\psi(z) = i(1+z)(1-z)^{-1}$.

Proof. Define N' in K with domain D(N') = R(1-N) by $N'x = i(1+N)(1-N)^{-1}x$. Then N' is densely defined.

Claim (a). $\overline{N'} = \psi(N)$.

For, given $x \in D(N')$, (1 - N)y = x, and so

$$\int |(1+z)(1-z)^{-1}|^2 dE_{x,x} = \int |(1+z)^2(1-z)^{-2}|(1-z)(1-z) dE_{y,y} < \infty,$$

and for all $u \in K$

ت

$$\langle N'x, u \rangle = i \langle (1+N)y, u \rangle = i \int (1+z)(1-z)^{-1} dE_{x,u}$$

= $\langle \psi(N)x, u \rangle$.

Hence $N' \subset \psi(N)$. As $\psi(N)$ is closed, $\overline{N'} \subset \psi(N)$. Now let $N_0 = N'^*|_{D(\psi(N^*)\psi(N))}$. Then $G(N_0)$ is dense in $G(N'^*)$, $G(\cdot)$ denoting the graph of the operator. Indeed, note that $G(N'^*)$ is closed in $K \times K$. Let $(u, N'^*u) \in G(N'^*)$, $(u, N'^*u) \perp G(N_0)$. Then for all $x \in D(\psi(N)^*\psi(N))$,

$$0 = \langle (u, N'^*u), (x, N'^*x) \rangle$$

$$= \langle u, x \rangle + \langle N'^*u, \psi(N)^*x \rangle \text{ (as } \psi(N)^* \subset N'^*)$$

$$= \langle u, x \rangle + \langle u, \psi(N)\psi(N)^*x \rangle. \tag{a}$$

Here we have used the following that can be easily verified.

Lemma. Let A and B be densely defined linear operators in a Hilbert space with B closed and $D(B) = D(B^*)$. If $A \subset B$, then for all $u \in D(A^*)$, $y \in D(B)$, $\langle A^*u, y \rangle = \langle u, By \rangle$. Thus in (α) , since $R(1 + \psi(N)^*\psi(N))$ is dense in K, u = 0. Then $G(N_0)$ is dense in $G(N^{**})$. Now, let $y \in D(N^{**})$. Then for some sequence (y_i) in $D(\psi(N)^*\psi(N))$, $y_i \to y$ and $N_0y_i - N^{**}y = N^{**}y_i - N^{**}y \to 0$. Since $\|\psi(N)y_i - \psi(N)y_j\| = \|\psi(N)^*y_i - \psi(N)^*y_j\| = \|N^*y_i - N^{**}y_j\|$, $(\psi(N)y_i)$ converges to some $u \in K$. Since $\psi(N)$ is closed, $(y, u) \in G(\psi(N))$, $y \in D(\psi(N))$. Thus $D(N^{**}) \subset D(\psi(N)) = D(\psi(N)^*)$; hence $D(N^{**}) = D(\psi(N)^*)$, $N^{**} = \psi(N)$ and so $N^{**} = \psi(N)$.

Claim (b). H is invariant under $\psi(N)$ (and N'). For if, $x \in D(\psi(N)) \cap H$, $y \in H^{\perp}$, then since 1 is not an eigenvalue, $E(\{1\}) = 0$; and so

$$\langle \psi(N)x, y \rangle = i \int_{\sigma(N)} (1+z)(1-z)^{-1} dE_{x,y}$$

$$= i \int_{\sigma(N)-\{1\}} (1+z)(1-z)^{-1} dE_{x,y}$$

$$= i \sum_{k} \int (1+z)z^{k} dE_{x,y}$$

$$= i \sum_{k} \langle (1+N)N^{k}x, y \rangle = 0$$

as $(1+N) N^k x \in H$. Thus $\psi(N) x \in H$. This establishes our claim (b).

It is easy to see that $\psi(N)|H$ with domain $D(\psi(N)|_H) = D(\psi(N)) \cap H$ is a closed operator.

Remark 3.2. Note that if R(1-S) (range of (1-S)) is dense in H, then $S' = i(1+S)(1-S)^{-1}$ with domain D(S') = R(1-S) and $S_0 = N'|_H$ and hence are subnormals (not necessarily closed) in H.

4. Examples

4.1 Unbounded analytic Toeplitz operators

Let

$$U = \{z \in \mathcal{C}: |z| < 1\}, \quad \Gamma = \{z \in \mathcal{C}: |z| = 1\}.$$

Let ϕ be a measurable function on Γ and $D_{\phi} = \{f \in H^2(U): \phi f \in L^2(\Gamma)\}$. Define T_{ϕ} in $H^2(U)$ with domain D_{ϕ} as $T_{\phi}f = P(\phi f)$, where $P:L^2(\Gamma) \to H^2(U)$ is the projection. The Toeplitz operator T_{ϕ} is an analytic Toeplitz operator if ϕ is analytic. Such a T_{ϕ} admits a normal extension M_{ϕ} with domain $D(M_{\phi}) = \{f \in L^2(\Gamma): \phi f \in L^2(\Gamma)\}$, $M_{\phi}f = \phi f$. Thus, in this case, if D_{ϕ} is dense in $H^2(U)$, then T_{ϕ} is subnormal. Note that it is indeed iff ϕ is bounded. We exhibit below a class of function ϕ for which T_{ϕ} is a sed unbounded subnormal operator.

- (i) $\phi(z) = (1-z)^{-1}$. Then $D_{\phi} = R(1-S)$ where S is the unilateral shift. Hence $D_{\phi} = \ker(1-S^*)^{\perp} = H^2(U)$. Also T_{ϕ} is closed. For, if $(f_n, T_{\phi}f_n) \to (f, g)$, then (identifying $H^2(U)$ with a closed subspace of $L^2(\Gamma)$), there exists a subsequence (f_{nk}) of (f_n) each of whose subsequence converges a.e. to f on Γ . Since $f_{nk}(z)(z-1)^{-1} \to g \in L^2(\Gamma)$, (z-1)g = f a.e. Hence $g = T_{\phi}f$ in $H^2(U)$.
- (ii) A similar argument can be applied for $\phi(z) = (z \lambda_1)^{-n_1} (z \lambda_2)^{-n_2} \cdots (z \lambda_k)^{-n_k}$ with $|\lambda_i| \ge 1$, $n_i = 1, 2, \dots$
- (iii) As discussed in [6], functions $\phi \in H^2(U)$ define unbounded analytic Toeplitz operators.

Unbounded Teoplitz operators also arise quite naturally in representation of certain topological algebras by unbounded operators.

Consider Arens algebra [1] $L^{\mathbf{w}}(\Gamma) = \bigcap_{1 \leq p < \infty} L^{p}(\Gamma) \neq L^{\infty}(\Gamma)$ with pointwise operations. It is a Frechet * algebra with the topology of L^{p} -convergence for each p, $1 \leq p < \infty$. The Hardy-Arens algebra $H^{\mathbf{w}}(U) = \bigcap_{1 \leq p < \infty} H^{p}(U) \neq H^{\infty}(U)$ [9, Ch. 17, Ex. 10] can be regarded as a closed subalgebra of $L^{\mathbf{w}}(\Gamma)$. For a $\phi \in H^{\mathbf{w}}(U)$, D_{ϕ} is dense in $H^{2}(U)$ since $H^{\infty}(U) \subset D_{\phi}$ and $H^{\infty}(U)$ is dense in $H^{2}(U)$. In fact, as in (i) above, T_{ϕ} is closed. It is easily seen that $\phi \to T_{\phi}$ is a representation of $H^{\mathbf{w}}(U)$ by unbounded subnormal operators in $H^{2}(U)$ which is the restriction of the unbounded * representation $\phi \to M_{\phi}$ of $L^{\mathbf{w}}(\Gamma)$ into normal operators in $L^{2}(\Gamma)$.

4.2 Unbounded Bergman operators

Let G be a bounded domain in \mathcal{C} , For $1 \leq p < \infty$, consider the Bergman spaces $L^p_a(G) = \{f \in L^p(G): f \text{ is analytic on } G\}$ with $\|\cdot\|_p$ norm. Let $L^w_a(G) = \bigcap_{1 \leq p < \infty} L^p_a(G)$. For $g \in L^w_a(G)$, define S_g in $L^2_a(g)$ with domain $D(S_g) = \{f \in L^2_a(G): gf \in L^2_a(G)\}$ as $S_g f = gf$. Again S_g is densely defined if $L^\infty_a(G)$ is dense in $L^2_a(G)$, in particular, if G is a Caratheodory domain [3, Ch. 3] in which case $L^2_a(G) = P^2(G)$, the $L^2_a(G)$ -closure of polynomials. In this way, one gets a large class of unbounded subnormals.

Acknowledgements

We are grateful to Prof. Schôichi Ôta (Fukuoka, Japan) whose comments on the first draft of the paper led to a thorough revision (and improvements) of the paper. We are also thankful to Prof. B C Gupta for providing us with a few references.

References

- [1] Arens R, The space L^w and convex topological rings, Bull. Am. Math. Soc. 52 (1946) 931-935.
- [2] Coddington E A, Formally normal operators having no normal extension, Can. J. Math. 17 (1965) 1030-1040
- [3] Conway J B, Subnormal operators (Boston, London, Melbourne: Pitman Adv. Publishing Programme) (1981)
- [4] Foias C, Decompositions operateurs et vecteurs Propres I, Rev. Roum. Math. Pures Appl. 7 (1962) 241-281.
- [5] Halmos P R, A Hilbert space problem book (Princeton D Van Nostrand) (1967)
- [6] McDonald G and Sundberg, C, On the spectra of unbounded subnormal operators, Can. J. Math. 38 (1986) 1135-1148

- [7] Ôta S, Closed linear operators with domain containing their ranges, Proc. Edinburgh Math. Soc. 27 (1984) 229-233
- [8] Patel A B, A joint spectral theorem for unbounded operators, J. Aust. Math. Soc. Ser. A 34 (1983) 203-213
- [9] Rudin W, Real and complex analysis (New York: McGraw Hill Publ. Co.) (1965)
- [10] Rudin W, Functional analysis (New York: McGraw Hill Publ. Co.) (1976)
- [11] Smüdgen K, Formally normal operator having no normal extension, Proc. Am. Math. Soc. 95 (1985) 503-504
- [12] Stochel J and Szafranich F, Bounded vectors and formally normal operators, in Dilation theory, Toeplitz operators and other topics (ed). G. Arsene (Basel: Birkhauser, Verlag) (1983) 363-370
- [13] Stochel J and Szafranich F, Normal extensions of unbounded operators, J. Operator Theory 14 (1985)
- [14] Stochel J and Szafranich F, On normal extensions of unbounded operators II (preprint)
- [15] Takesaki, M Theory of operator algebras I (New York: Springer-Verlag) (1976)
- [16] Weidman J, Linear operators in Hilbert spaces (Graduate Text in Mathematics) (New York: Springer-Verlag) (1980)