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Abstract. Consideration of quotient-bounded elements in a locally convex GB*-algebra leads
to the study of proper GB*-algebras viz those that admit nontrivial quotient-bounded
elements. The construction and structure of such algebras are discussed. A representation
theorem for a proper GB*-algebra representing it as an algebra of unbounded Hilbert space
operators is obtained in a form that unifies the well-known Gelfand-Naimark representation
theorem for C*-algebra and two other representation theorems for b*-algebras (also called
LMC*-algebras), one representing g b*-algebra as an algebra of quotient bounded operators
and the other as a weakly unbounded operator algebra. A number of examples are discussed to
illustrate quotient-bounded operators. An algebra of unbounded operators constructed out of
noncommutative LP-spaces on a regular probability gauge space and the convolution algebra
of periodic distributions are analyzed in detail; whereas unbounded Hilbert algebras and
L*-integral of a measurable field of C*-algebras are discussed briefly.

Keywords. Generalized B*-algebras; unbounded representations; quotient-bounded ele-
ments; universally bounded elements; unbounded Hilbert algebras; locally multiplicative
convex (LMC) algebras.

1. Introduction

The following two generalizations of abstract C*-algebras at the level of topological
algebras have been investigated in the literature.

1.1. Definition ([3], [19], [23])

A b*-algebra (also called an Lmc*-algebra) is a complete topological algebra A with a
continuous involution x — x* such that
(i) A is a locally m-convex algebra ie. its topology is determined by a separating
family P = (p,) of sub-multiplicative seminorms, and )

(ii) for each o, p,(x*x) = p,(x)* for all xe 4.

A commutative b*-algebra A with 1 admits a faithful representation as the algebra of
all continuous complex valued functions ona completely regular space [23], whereas in
the noncommutative case, there are two such representation theorems viz one due to
Inoue [19] (see also [12]) representing 4 faithfully asa weakly unbounded algebra of
unbounded Hilbert space operators, and the other due to Giles et al [17] wherein A is
shown to be isomorphic to an algebra of quqtient-bounded operators on a locally
convex space.
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1.2 Definition ([2], [14])

Let A be a locally convex algebra with 1 and with a continuous involution. An element
x € A is called (Allan) bounded if for some A # 0, {(A™'x)"|n =1, 2, ... } is bounded.
The algebra A is called symmetric if for each x € 4, (1 + x*x)™ ! exists and is bounded.
Let #* be the collection of all B = A such that B is absolutely convex, B> = B, B* = B
and B is closed and bounded. A locally convex* algebra with 1 is called a Generalized
B*-algebra (GB*-algebra) if

(i) A is symmetric,

(11) the collection #* has a greatest member B, under inclusion, called the unit ball

of 4; and
(iii) the *subalgebra A(B,) = {Ax|i€¢, x€B,} is a Banach algebra with the
Minkowski functional || -||,. (It turns out to be a C*-algebra.)

Allan [2] has shown that such an algebra A, if commutative, is isomorphic to an
algebra of continuous functions on a compact Hausdorff space taking values in the
extended complex place ¢* = ¢ U {00} such that f~!(o0)is atmost a nowhere dense set.
Dixon [14] has shown that a (locally convex) GB*-algebra admits a faithful
representation as a certain algebra of closed operators (called an extended C*-algebra)
all defined on a common dense subspace of a Hilbert space.

Now as shown in [2], a b*-algebra is a GB*-algebra. Thus it is natural to synthesize
and unify the above Gelfand—Naimark type representation theorems. Here we present
GB*-representation theorems in forms that quickly reduces to the b*-theorems
mentioned above when the given algebra is a b*-algebra. This we do for a class of
GB*-algebras that arise naturally in the study of quotient-bounded and universally-
bounded elements introduced in [9].

1.3. Definition

Let A be a locally convex algebra with 1 (and with a separately continuous
multiplication). Let P(A) denote the collection-of all calibrations P on A4 viz families P
of seminorms determining the topology of A. Let P = (p,|a€ A) bein P(A). An element
ae A is called (left) P-quotient bounded if for each «, there is a real constant M, ,
depending on « and a such that p,(ax) < M, ,p,(x) holds for all x € A. Further, it is
called (left) P-universally bounded if the M, ,, for all «, have an upper bound depending
only on a (written M,).

Note that in a calibrated hypocontinuous locally convex algebra A4, a universally-
bounded element is (Allan) bounded; whereas a quotient-bounded element need not be;
e.g. let A be an LMc algebra with an m-calibration P. Then each a€ A4 is P-quotient
bounded; on the other hand, a € 4 is (Allan) bounded iff a is Q-universally bounded for
some m-calibration Q on A.

Given a locally convex algebra A with a calibration P, let B, (respectively Q) be the
set of all P-universally bounded (respectively P-quotient bounded) elements. In [9], it is
shown that @, is a subalgebra of 4 and B, is a subalgebra of Q, with 1 € B,. A natural
locally m-convex (Lmc) topology tp is defined on Q, by the m-calibration {q,|x€A}
where g,(a) = sup {p,(ax)|p,(x) < 1} (aeQ;), whereas p(a) = supg,(a) defines an
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algebra norm on B,. If 4 is complete, then each of (Bp, p) and (Qp, tp) is complete.
Further, if 4 is a hypocontinuous locally convex GB*-algebra with unit ball By, and
P is a GB*-calibration (so that A4 admits a P-hermitian decomposition [32, Theorem
8.157), then

@) (Qp, tp) is a b*-algebra having {g,} as a b*-calibration, and

(ii) (Bp,p) is a C*-algebra with Bp = {Ax|Le¢, x€Bo} = A(Bo) and p(x) = inf

{A>0lx€2Bo} = [Ixlla,:

Thus when A is a b*-algebra with a b*-calibration P, then Q, = A. However, in general
Q, may be trivial. In fact, in [9], we have an example in which there is no b*-algebra
properly lying between A(B,) and A. This motivates the following.

1.4 Definition

A locally convex GB*-algebra A is called proper if there is a GB*-calibration P on A
(called a proper GB*-calibration) such that Q, is nontrivial in the sense that
B, # Q, # A. It is called pure if A(Bo) # A.

In §2, we discuss a certain method of constructing proper GB*-algebras and a
decomposition theorem for such algebras. The functional representation theorem [14,
Theorem 4.6] and the operator representation theorem [14, Theorem 7.1] are suitably
modified for proper GB*-algebras in such a way that in the latter case, the quotient-
bounded elements of A are mapped to quotient-bounded operators on a locally convex
space [17]. Our theorem can be regarded as a GB*-analogue of a representation
theorem for b*-algebras [17, Theorem 8]. In §3, we consider a couple of examples to
illustrate the concepts. After briefly mentioning Arens algebra L® on a finite measure
space and its g-finite variant, we discuss in detail its now commutative analogue on a
regular probability gauge space. We also have the Hardy—Arens algebra H® on the disc
and its noncommutative analogue determined by a one-parameter group of *automor-
phisms on a van Newmann algebra. Q, and B, are also computed for unbounded
Hilbert algebras recently studied by Inoue [21]. We also introduce L*- and L“-direct
integrals of a measurable field of C*-algebras. The construction of these examples is
analogous. Finally we analyze in detail the convolution algebra of periodic distri-
butions on the circle. '

In the sequel, we shall frequently need the following ([4], [5]).

1.5 Theorem

(a) Let A be a locally convex GB*-algebra with unit ball B,. Then for each xe A4,
x, = x([1+ 1/n]x*x)"" is in A(Bo) for n =1, 2,...and x, = X.
(b) Let A beacomplete hypocontinuous locally convex *algebra with 1. If there exists a
*subalgebra B of A containing 1 such that
(i) B is a B*-algebra under some norm iI-1l, and
(i) the inclusion B— A4 isa continuous injection (with ||-|| on B) with sequentially
dense range, then A is a GB*-algebra.

e
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2. Main results

2.1 Proposition

Let (A4,) be an inverse system of an infinite family of pure complete hypocontinuous
locally convex GB*-algebras. Then the following hold.
(i) The inverse limit 4 = & A, 1s a pure complete hypocontinuous locally convex
‘GB*-algebra.

(i) For each o, let P, be a GB*-calibration on A4,. Let P be the natural calibration on
A.Then Pisa GB*-calibration on A.If B p* = Qp=foreach «and if 4 containsa P-
quotient-bounded hermitian element that is not (Allan) bounded, then P is a
proper GB*-calibration. |

In the course of the proof, we compute Q, and B, for A. It also follows that the

product of an infinite family of pure complete hypocontinuous GB*-algebras A,
admitting improper GB*-calibrations (i.e. Qp« = Bp:) is a proper GB*-algebra.

Proof. Let {(4,, t,)]ae A} be an infinite family of complete hypocontinuous pure
locally convex GB*-algebras. Let B, be the unit ball of A, and 1, the identity of 4,. Let

B = [] A, be the cartesian product of A,’s with the product topology t. Then it is a

routine verification that (B, t) is a complete locally convex GB*-algebra with unit ball
o =IIB,.

A simple argument also shows that the product of hypocontinuous locally convex
algebras is hypocontinuous. :

Now assume that A is directed. For a < 8 in A, let T,p: (Ap, tg) = (A,, t,) be onto
continuous* algebra homomorphisms; and for each «, let n,. B— A, be the natural
projection. Suppose that 4,’s with the maps m,p fOorm an inverse system. Let (4, t)
= 11—’“(A¢, te) = {x = (x,)el14,|x, € 4, for all « and for a < B, m4(x;) = x,} be the
inverse limit. Then A, being closed in B, is a complete hypocontinuous locally convex
GB*-algebra with unit ball B, = 4 N B, so that the C*-algebra that underlies 4 is
(A(Bo), Il 1| B,) which is a norm closed *subalgebra of A(B}) = {Ax|Ae ¢, xe By}. The
C*-norm on A(Bp)is || x|| g, = inf {4 > 0|x € ABj} }. Further for o < B, 7.5(Bg) = B,,and
0 7t.p(A(Bg)) = A(B,), |I7.(2)ll, < llz]lg for all z€ A(By). It is easily seen that with
Tap| A(Bg), @ < B in A as morphisms, {(4(B,), ||-|l.)|xe A} forms an inverse system of
C*-algebras. Let (Q, 1) be the b*-algebra obtained by taking the inverse limit of (A(B,),
[ - 1le)’s. Since each A, # A(B,), 4 # Q. Also, the unit ball of (Q, 1), as a GB*-algebra, is
By; hence A (B,) = {xeQ|sup||m,(x)||, < oo }.

Now to prove (ii), for each o, let P*= {p%lyeA,} (A, some index set) be a
GB*-calibration for A,. Hence by [32, Theorem 8.9], (4(B,), ||-|l,) = (B po P%) viz the
C*-algebra of all P* universally bounded elements of 4,. The natural calibration on A
induced by P¥sis -~

P = {pjom,|yeA,, acAl).

Claims: (a) A(B,) = By, the P-uni\férsally bounded elements of A.
(b) Q = Qp, the P-quotient bounded element of A.
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(a) Givenae A(By), Slip lla|le = sup ||74(a)|l, < oo. Thenforeachoa €A, eachye A, and
for each x € A, (p%o 7, (ax) < (sup ||a,ll,) (o 7,) (x). Hence ae By, A(Bo) = B;p.On the

other hand, given ae B, there is a constant M, depending only on a such that
(p%om,) (ax) < M,(PFom,) (x) foraeA,yeA, xe A Hence a, = n,(a)e A(B,) = Bp-and
p*(a,) = sup {p%(a,2)|p}(z) < Lforally,forze 4,} < M, (Herep® is the natural Banach
algebra norm on B, the P-universally-bounded elements of 4,). Thus sup p*(a,) < o

and so ae A(B,). Thus B, < A(B,). (This also follows from the fact that B, is the
greatest member of #*(A4).)

Note that in view of [32], this implies that P is a GB*-calibration for A.
(b) That @ = Q p follows as in (a). Let a€Q p. Then for each a€A, Y€A,, P2(a. %) S M3
p%(x,) for all x,eA4,, x, = n.(x) for xe A4, a, = n,(a). Hence a,€Qp P*-quotient
bounded elements of A,. By hypothesis, a, € Bp: = A(B,), P* being a GB*-calibration.
Thus a,€ A(B,) for each o, and so aeQ. Thus @ = Op.

Now each (Allan) bounded hermitian element of 4 is in A(B,) by [14, Lemma 2.6];
with the result, the stated condition implies that Bp # Q5. This completes the proof.

In view of [3, Theorem 2.4] and [23, Theorem 5.1], it is immediate thata b*-algebra
can be expressed as an inverse limit of a family of C*-algebras. This motivates our next
result. We say that an inverse system {(4,, )| € A} of calibrated locally convex GB*-
algebras with calibration P, on 4, satisfies property (P) provided given x in & A, with
associated thread x ~ (x,), if x, is P,-quotient bounded in A, for each a, then x, is
(Allan) bounded in A, for each a. "

2.2 Theorem

A complete metrizable proper locally convex GB*-algebra is isomorphic to an inverse
limit of a family satisfying (P) of pure metrizable calibrated complete locally convex
GB*-algebras.

Proof. Let (A4, 1) be a given GB*-algebra with a proper GB*-calibration P = (p,|
x=1,2,...) Let,foreacho, N, = {aeQplg.(a) = 0} whichisa tpclosed* ideal of Qp.
Since (Qp, tp) is a b*-algebra having {g,} as a b*-calibration, G.(a+N,) = q,(a) (aeQp) -
defines a C*-norm on (Qp), = Qp/N. BY [3, Theorem 2.4], ((Q p)w 4,) is complete. As in
[23, Theorem 5.1], (2, tp) = im ((Qp)w 4o, Where {N,} is directed asa < Bif Ny Ny
and in this case, T,4: (Qp)s (Qp)ismgla+Ng) =a+ N (aeQp).Letn,(a) =a+ N, be
the natural map from Qp onto (Q »).- Let 1§ be the quotient topology on (Q»), induced
from the topology t. Let 4, = ((Qp)a L3, the completion of ((Qp)s t3). We denote the
topology on 4, by 3. '

It is easily seen that ((@p)e, ty)isa locally convex *algebra, and that the algebraic
structure on (Qp), can be uniquely extended to A, making 4,2 complete locally convex
*algebra with identity. On the other hand, let N, be the closure of N, in (4, t). Since
multiplication is jointly continuous in A4, it is easily seen that N, is an ideal in 4; and
A/N, with the quotient topology T induced by t is a complete locally convex *algebra.
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Claim. (A/N,, t) is homeomorphic to (4,, t2).

Indeed, let ¢: (Q,), > A/N, be ¢(a+ N,) = a+ N,. Since P is a GB*-calibration, the
Banach algebra (B, p) is identical to the C*-algebra (A4 (By), ||-|| s,) Where By is the unit
ball of 4. From Theorem 1.5(a), it is immediate that the range of ¢ is sequentially dense
in A/N,. Also, ¢ is one-to-one, and for any ppe P, aeQp,

Pgla +N,) = inf{ps(a+y)lyeN,}
<inf{pgla+y)lyeN,} = pla+ N,).

Hence ¢ is £ — 7 continuous. Thus ¢ can be extended uniquely to a continuous one-to-

one *homomorphism ¢: 4, A/N,. Further, ¢ is onto. For, given x+ N,eA4/N,,

Theorem (1.5) (a) gives a sequence (x,) in A(B,) such that x, - xin 4, x, + N, > x + N;
, t “

and (x,+ N,) being Cauchy in (Q,),, converges to some y€ A,. Then ¢(y) = x+ N,.

Now the open mapping theorem implies that ¢ is a homeomorphism.

The natural quotient map =#,: 4 — A/N, is identified with the unique continuous
extension of m,: Qp— A, which is an algebra homomorphism. For xe A4, m,(x)*
= 7,(x*) is the continuous involution on 4, which is the extension of the involution on
(QP)a'

Now let 7§ be the quotient topology on (@), induced by the b*-topology 7pin Q5. It
is determined by the calibration {§,} where §s(a+ N,) = inf{gs(a+y)|yeN,}. Then
((Qr)a> T4 is a Frechet b*-algebra; and for a+ N, in (Q;),, 4g(a+N,) < gqg(a) for all B
and 4,(a+ N,) = q.(a) = g,(a + N,). (This s because for ye N,, ¢,(a) = q,(a+y—y) <
4.(a+y)+ g.(¥) = q.(a+y)). Thus, by the open mapping theorem, 7% coincides with
the norm topology given by §,.

Further, N, n A(B,) is a norm closed *ideal of the C*-algebra A(B,). Consider the
quotient C*-algebra C = A(B,)/N, n A(B,) with the quotient norm j(a+ N, n A(B,))
= inf {p(a + y)|y € N, n A(B,)}. (Note that P being a GB*-calibration on A,p= |-l
on A(B,) = By ). Then we can identify the C*-algebras (C, p) and ((Q}),, 4.). Indeed, the
embedding id : C — (Q;), is a well-defined isomorphism of C into (Q,),. Hence it is an
isometry and id(C) is a g,-closed *subalgebra of (Q}),. On the other hand, id(C) is dense
in (Qp).. For, let a+ N,e(Q;), with aeQ,. By Theorem 1.5 (a) (applied to Q, as a
GB*-algebra), we get a sequence (a,) in 4(B,) such that for each f, g s(a, —a) — 0. Hence
in particular, (§,{a, + N,)— (a+ N,)) = 0. Thus it follows that

A(Bo)/Ny 0 A(Bo) = (Qp), and j = g,

-From above and Theorem 1.5 (b), it follows that (A4, tg) is a complete metrizable
locally convex GB*-algebra with the underlying C*-algebra ((Qp)as G-

Now for « < B, consider =,,: ((Qp)p, t8) > ((Qp)as tg)- Since for each deN, inf
{psla+y)|yeN,} <inf{ps(x+y)|yeN 8)» Tap is a continuous homomorphism, and in
view of Theorem 1.5(a), extends to a continuous surjective *homomorphism 7,,: (Ap,
t8) — (A,. t3). Given xe€A, if x, is as in Theorem 1.5(a), then mg(x,)=m,(x)
(L+ (1 /n)mg (x)*mg (x)) ™1 — mp(x) and so 7,4 (my (x) = m,(x). Thus {(4,, t%), Tpla < B}
forms an inverse system. Let B = & (4,, tg) be the inverse limit. Define n: 4 —» B
as m(x) = (m,(x)). Then 7 is a topological *isomorphism of 4 onto B.
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Finally, identifying 4 and B, let a = (a,) be such that for each o, a, = a+N, is
P*-quotient bounded in A* for all each «, where P*is the natural quotient calibration on
A®for t2 viz P* = {ps| p € N} where p(x + N)= mf{p,,(a +y)lyeN } Then for each
fixed a, there is a constant M, , such that

ﬁﬂ((a +Na) (x+Na)) < Mﬂ,apﬁ(x + Na)
< M, ,pg(x) for all xe 4.

In particular, j(ax+N,) < M, p,(x) for all xe 4. Now for each yeN,, p,(ax) =
Pa(ax+y =) < po(ax+y)+p,(y) = plax+y) since N, <kerp, Thus p,(ax)
< M, ,p,(x) for all xe A. Hence ae Qp, and s0 a, € (Qp), for each a. Thus a, is (Allan)
bounded in A, for each «. This completes the proof.

A *algebra of continuous functions [14, Definition 4.7] on a topological space M is a
collection F of extended complex valued continuous functions on M such that each f€ F,
f~1(c0) is at most a set of first category and F is a *algebra under operations f+y
Af (1 € ¢), fg which consists in defining these operations pointwise on the dense set where
values involved are finite and then extending the resulting functions to be continuous
extended complex valued functions on M. Let A be a commutative GB*-algebra with
unit ball B,. By a theorem due to Allan [14, Theorem 4.6], the Gelfand representation
of A(B,) onto C(X) (where X is the compact Hausdorff maximal ideal space of A(B,))
extends uniquely to a *isomorphism of 4 onto a *algebra of extended complex valued
continuous functions on X. On the otherhand, Michael [23] and Apostol [3] have
discussed the realization of a commutative b*-algebra as the algebra of all continuous
complex-valued functions on a completely regular space. We synthesize both these
results in the following.

2.3 Theorem

Let A be a proper commutative locally convex GB*-algebra with a proper
GB*-calibration P. Then there exists a real-compact completely regular Hausdorff
space Z and a mapping 7 of 4 into extended complex-valued continuous functionson Z
such that
(a) misa *isomorphism of A onto a *algebra of functions on Z containing C(Z), the
algebra of all continuous complex-valued functions on Z;
(b) 7 represents B, *isomorphically onto Cy(Z), the C*-algebra of all bounded
continuous complex-valued functions on Z; and
(c) = represents Q *isomorphically onto C(Z).

Proof. Let X (respectively Z) be the usual weakly topological space of all non-zero
continuous multiplicative functionals (respectively all non-zero multiplicative fun-
ctionals) on Q. Thenasin [3, Corollary 3.4], X isa completely regular Hausdorff space
and X 6 Z=vX g M = BX are dense continuous embeddings. Here vX and fX are
respectively the real-compactification and the Stone—Cech compactification of X, and
M is the maximal ideal space of Bp. By results in [3], we have the algebraic
*isomorphisms Qp =~ C(X) =~ C(Z) and Bp = Cy(X) =~ Cy(Z) ~ C(M) defined as x
— % (x€Q,) where %(¢) = ¢(x) (9 Z). If x - X is the Gelfand representation of By

B
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onto C(M), then x|, = X = ¢(x) (say). By [14, Theorem 4.6], ¢ extends uniquely to a
*isomorphism of A4 onto a *algebra of functions on M defined as £ () = ¢'(x) where ¢’
is the unique ¢* = ¢ U {0} valued ‘partial homomorphism’ that extends ¢ as in [2,
Proposition 3.1]. Hence for each a€ Q, a agrees with the unique Stone extension [18,
§6.5] of e C(Z) ~ C(X) as a ¢*-valued continuous function on M. It follows that 4|,
= d (a€Qp). The map ¢ on A defined as ¢(a) = al, is the desired map.

Now we consider operator representations. A *algebra of closed operators [14,
Definition 7.1] on a Hilbert space H is a set &/ of closed operators in H that forms a
*algebra under the operations T, S — (T+S)~, (T, §)—~ (TS)"and T — T*. (Here ~
denotes the closure of the operator and * is the operator adjoint). Itis called an extended
C*-algebraif o/ ~ %B(H)isa C*-algebraand foreach Te o/, (1+T*T) e . (B(H)is
the C*-algebra of all bounded linear operators on H). It is said to have a common dense
domain D if D = ~ {D(T)|Te «} is dense in H where D(T') denotes the domain of T.
Such an algebra is an EC*-algebra in the sense of Inoue [21].

In [20], Inoue introduced weakly unbounded operator algebras. Let {of,|a € A} bea
family of C*-algebras, &, acting on a Hilbert space H,. Let H = £®H  be the Hilbert
space direct sum and let D = {¢ = ({,)e H|{,eH, for all a, ¢, = O for all but finitely
many o’s}. Itisdense in H. A *algebra of of closable operators all defined on D is called
aweakly unbounded operator algebraif of isa *subalgebra of 1&?, = {T = (T)| T, e «,
for all o} such that o, = {T|Te .« is bounded} = ., the usual (1®) direct sum of
C*-algebras. Note that &/ is a pre b*-algebra under a natural topology.

Giles et al [17] have introduced quotient-bounded and universally-bounded
operators on a locally convex space. Let X be a locally convex (Hausdorff) space witha
calibration I" = (p,|x € A). A linear operator T: X — X is called quotient-bounded if for
each a€A, there is a scalar k, >0 such that p,(Tx) < k,p,(x) (x€A). It is called
universally bounded if these k,’s for all « have an upper bounded written k. Let Q(X, T)
(respectively B(X, I')) be the set of all quotient-bounded (respectively universally
bounded) operators on X. Then Q(X, I') forms an algebra and B(X, I) is a subalgebra
of Q(X,T). The seminorms ¢,(T) = sup {p.(Tx)|p.(x) < 1} define a natural rmc
topology on Q(X, I'), where as p(T") = sup q,(T’) defines an algebra norm on B(X, I'). If

X is complete, then each of these is complete.

Dixon [ 14, Theorem 7.1] has faithfully represented a locally convex GB*-algebra A
as an extended C*-algebra. Giles et al [17, Theorem 8] have proved that a b*-algebra is
*isomorphic to a *subalgebra of quotient-bounded operators on the product of a
family of Hilbert spaces. The following representation theorem for proper GB*-
algebras synthesizes both these results. Note that in the course of the proof, we also
show that a b*-algebra is *isomorphic to a weakly-unbounded operator algebra. For
basic notions of unbounded representations, we refer to [24]. ’

2.4 Theorem

Let (A, t) be a proper complete bornological locally convex GB*-algebra with a proper
GB*-calibration P. Then there exists a complete locally convex space X and a subspace



Quotient bounded elements 79

H of X such that H is a Hilbert space that is continuously and densely injected in X;and
there exists a representation n of 4 into linear operators on X such that

(a) m represents A faithfully as an extended C*-algebra with a common dense
domain in H;

(b) = represents Q faithfully and continuously as a subalgebra Q of the algebra of
quotient-bounded operators on X which, in turn, is isomorphic to a weakly-
unbounded operator algebra on H; and

(c) mrepresents B, faithfully as a subalgebra B of the algebra of universally bounded
operators on X which, in turn, is isomorphic to a C*-algebra of bounded
operators on H.

Proof. For f in P(A), the set of all positive linear functionals on A4, let
N, = {xeA|f{x*x) = 0}, NP =N;nQp, NP =N; 0By Consider the inner pro-
duct spaces K, = A/N;, K = Q,/N{P, K = B,/NP with the canonical inner
productinduced by f(e.g.on K, {a+ N, b+ N, » = flb*a)). Let H, H®, HP be their
respective Hilbert space completions.

Claim. H, = H{ = H?) modulo-unitary equivalence. Indeed, the natural injections
K? — K{P - K, define isometric embeddings of the preceding into the following.
Hence they extend to linear isometries u,: HP — H®, u,: H) — H,. It suffices to prove
that u, o u, is onto. For this, given x € 4, Theorem 1.5 (a) gives a sequence (x,)in Bpsuch
that x, — x. Now A, being complete and bornological, is barrelled; and hence
hypocontinuous, and so the multiplication is sequentially jointly continuous. Thus
(x, — X)*(x, — x) > 0. By [14, §8], each fe P(A) is t-continuous. Hence x,+ N, = x
+ N, in K;. Thus (u;0u;) (K?) is dense in K . This gives (uz° u) (H?) = H;
establishing the claim.

Now H® = ZOHP ~ $8HP = H® ~ H = T®H . Let n, (respectively P, n'P)
be the representations of A (respectively Qp, Bp) constructed from fon H ; (respectively
HP, H'?) by the Gns construction [24, Theorem 6.3]. These are in general unbounded
representations with domains D(r,) = K, D(#’) = KD, D(#'®) = K'?, and their
closures [24, Lemma 2.6] are designated by (n,, D(r), Hy)", (=P, D(={), HP)™ and
(=?, D(n'®), HP)™. These are strongly cyclic representations respectively of A, Qp
and B, having strongly cyclic vectors &, = 1+ Ny, ¢ =1+N 1 ED = 14 NP res-
pectively. By forming their direct sum, consider the representations (r, D(n), H) =
T8(n,, D(n,), H,)~ of A on H, (x, D(a"), HV) = 9, D(nf}), )" of Qpon HY
and (72, D(x®), H?) = 28, D(nP), HP)™ of B, on H®,

Further, Let D(n}) = {n (Qp),}, a subspace of K. Let H'; be the norm closure of
D(n}) in H . Then ‘

= sl pep

defines a representation of Qp on H’; with domain D(x). Let (n;, D(n}), HY) be its
closure (as representation of Qp). Itis a closed strongly cyclic representation of Qp with
strongly cyclic vector £} Now consider the following results due to Inoue [22,
Proposition 3.12].
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Lemma. (a) Every closed *representation of a locally convex GB*-algebra is self-
adjoint.

(b) If (ny, D(ny), H,) and (r,, D(n,), H,) be two strongly cyclic self-adjoint
representations of a *algebra A, then n; and =, are unitarily equivalent if and only if
(1 (X)¢1, &1) = (ma(x)E,, &;) (x € A) where &, and &, are strongly cyclic vectors for 7,
and =,.

It follows from this that (n}, D(}), H}) and (n{M, D(x'", H)™ are unitarily
equivalent, hence so are (z, D(n*)), H®) = £®(n0, D(n'’), H}) and (n‘” D(n'D), H1),
In what follows, we shall identify unitarily equivalent spaces.

Nowlet X' = I1H ,, product of the Hilbert space H ,’s with the product topology that
is determined by the calibration I" = {p rLfeP(4)} where p.(n) =lInll, for n
= ()€ X, ||- ||, denoting the norm on H ;. Then the identity maps D = D(n) Hg X
give dense continuous embeddings. Since each fe P(A) is t-continuous, its restriction
flg, is t,~continuous; and so by a result due to Brooks [14, Theorem 6.1], it is admissible
ie. the GNs representation 7} (and so ) of Qp determined by fis bounded mapping Q,
into bounded operators. Note that admissibility of f is equivalent to the fact that for

' L BV ]
each xe Q;, sup {%;;’;L)Iye&} = M, , (say) < co. As in [14, Theorem 7.11]. =
faithfully represents, as x — n(x): D(n) = D(n) by n(x) ((n 7)) = (ng(x)n,), the algebra 4
as an EC*-algebra on D(n) in H such that B, is represented as x — ¢(x) = n(x), as a
C*-algebra of bounded operators on H with ¢(B,) = B(H) N n_(fﬁ

Let aeQ,. We show that for each fe P(A), p f(n(a)x) < M, ;p;(x) for each xe X of
the form x = {(b,+ N§")|g € P(4)} with b,e Q, for each geP(A). Indeed, n(a)x =
(ab,+ N{") e X and

py(n(a)x) = ||ab, + NP||
= f(b*a*ab '/
= M. fb3by)'? = ML/Zp,(x).

Now let xe X be of the form x = (b,+ N,) with b,€ 4 for all g € P(A). Then for each
such g, by Theorem 1.5(a), (b,), = b,(1 + (1/n)b* g)‘ € By < Qp and (b,), - b,. By the
sequential joint continuity of multiplication and the continuity of f, we get p f(n(a)x)

< M/} p(x). Thus n(a) can be regarded as a I'-quotient-bounded continuous linear
operator defined on a dense subspace of X, and hence it admits a unique I'-quotient-
bounded continuous linear extension 7#(a) on X. Thus #(Qp) ox,I).

Further let ae B, fe P(A4). Consider an x € X of the form x = {(b,+ NP)|geP(4))
with b, € B, = A(B,) for each ge P(A). Then

ps(rn(a)x) = fibfa*ab,)
< rp,(a*a)'f(b%b,) by [10, Lemma 37.6]
< ”a“Bon(x)
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and so pg(n(a)x) < ||a|lpp,(x) (xeX, feP(A)). Thus n(a)e B(X,I) and pr(n(a))
< ||allp,. Also 7 is faithful and the spectral radius of an element in a C*-algebra «,
whether calculated in « or in any Banach algebra containing « is the same. Hence

lla 12, = lla*alls, = rumy (@*a)
= Iy, n((@)*7(a)) < pr(F(a))’.

Thus ||allp,(= p(a)) = pr(7i(a)) and = isometrically maps By into (B(X, I), pr).

On the other hand, consider the natural LMc topology tr on Q(X,TI) that is
determined by the seminorms T — g (T') = sup {p,(Tz)|z€ X, p,(z) < 1}. To prove that
nmaps (Qp, tp) continuously into (Q(X, I'), tr), it is sufficient to show that given a€ Q5p,
fe P(A), there exists a finite set oy, . . ., &, in A such that g(n(a)) < max g,(a) for

gign

each a€ Qp. (The argument that we give for this is based on the idea in the proof of [11,
Theorem 6.1]). Since f | 5, is t -continuous, it is bounded on some neighbourhood U of o

in (Qp, tp). This U can be assumed to be of the form U = N U, forsomea,, ..., &,in
N i=1
A where U, = {yeQplq, () <1} for i=1, 2,...,n Let g= max g,. Since
1€i<n

{gala€ A} is a b*calibration for (Qp, t5)[9, Theorem 3.1], ker g = {x€ Qp|q(x) = 0}isa
*ideal of Qp and Qp/kerq is a *algebra which is a normed algebra under the norm
§(y +ker g) = g(y). Then f, defined as f,(y +ker g) = f(y) is a continuous positive linear
functional on (Qp/kerg, 4). Let h on Qp/kerq be defined as h(z+kerg) = f (b
+ker q)*(z + ker g)(b + ker g)) for a fixed b in Qp. Then h is a continuous positive linear
functional satisfying |h(z +ker g)| < h(1 +ker g)g(z + ker g). Hence

f(b*z*zb) = f,((b+ker q)* (z + ker g)*(z + ker q)(b +ker g))

= h((z+ker 9)*(z +ker q)) ?

= h(1 + ker q)§((z + ker q)*(z + ker g)) |

= f(b*b)(§(z +ker g))’ '

= f(b*b)(q(=))*
for all ze Qp. Hence |
f(b*z*zb)* 12 C
e = o i e | 3

< q(z).
Hence g,(7i(z)) < M 12 < max g,,(2)for all zeQp, which means that 7 maps (Qp, tp)
’ 1<ign

continuously into (Q(X, ), tr)- . .

Note also that m(Qp) is *isomorphic to 7’ (Qp)- As 7" is a direct sum of boundefi
representations, it follows that 7'(Q5) is a weakly unbounded operator algebra. This
completes the proof. ‘
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3. Examples

In this section, we analyse a few examples with a view of illustrating quotient-bounded
elements and proper GB*-algebras. First two of the following examples have been
analyzed in detail in [6] and [ 7]. Since some of our examples are motivated by them, we
have briefly included the relevant constructions.

3.1. Arens’ algebra L°(X) on a finite measure space

Let (X, Z, p) be a finite measure space. Let L%(X) = N rrx ). It is a *algebra with

I1<p<o
pointwise operations. Let 7 be the locally convex topology on L®(X) defined by the
calibration P = {||-||,|1 < p < oo}. Then (L®(X), t°) is a complete metrizable locally
convex GB*-algebra the underlying C*-algebra being L*(X).

Assertions: [9, Example 4.1]

(1) @p =B, = L*(X)
(2) L®(X) is not a proper GB*-algebra. In fact, there is no b*-algebra containing
L®(X) and properly contained in L®(X).

3.2. Arens’ algebra L{,. on a o-finite measure space
. co
On an infinite o-finite, nonatomic measure space (X, X, p) with X = UX w XpEX,
1

Xy Xpp1, u(X,) < ooforallnylet L (X) = N L} . (X) with the locally convex

l1<p<w

topology defined by

P = {ll"llkp |k, pe N} where || flly,, = (L Ifl’du)”")-

Then L{t.(X) is a locally convex GB*-algebra with unit ball B, = { fe L*(X)|
Il < 1}

Assertions: [9, Example 4.3]

(1) Bp = L*(X) and Qp = Li5(X), the topology t, being determined by ||f1l,.
= ess. sup. | f(x)|-

xeX,

(@) L. (X) is a proper GB*-algebra.

3.3. Hardy—Arens algebra H*(U)

Let U = {z€ ¢||z] < 1}. Let H?(U) (1 < p < o0) be the usual Hardy space of function
on U. Let H?(U) = HP(U). It is a locally convex *algebra with pointwise

lsp<x
operations (the involution being f*(z) = f(2)) and the topology determined by the
calibration P = {||-||,|1 < p < oo}. It properly contains the Banach algebra H®(U).
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The algebra H® is not symmetric, hence not GB*; however Q, = B, = H*(U).
LetT = {ze¢||z| = 1}. As usual, H?(U) can be identified with a subalgebra of the

convoluu?un algebra 'L"(I"). Then H®(U) is a closed subalgebra of the convolution
algebrawL (I")..In' this case (L®(T), 1) is a complete LMc algebra, and Q, = L*(I),
Bp = L®(I'). Similarly for H*(U), Qp = H*(U), Bp = H*(U).

, qu 1 < p < oo, we can also consider the Banach algebra AC,[0, 1] = { feC[0, 1]|
f exists a.e. and f" e LP[0, 1]} with norm ||fl|,, = IIfll= +11f'|l;; and construct the
algebra AC_[0, 1].

Now we shall consider non-commutative analogues of these, which we analyze in
more details.

3.4. Non-commutative Arens’ algebra L® (54, ¢) on a regular probability gauge space

Let T be a regular probability gauge space [31] viz 2 triple I' = (H, &, @) where H
is a complex Hilbert space, o a von Neumann algebra acting on H and ¢ a faithful
normal tracial state on <. For Aed, let ||4]l, = (¢(14|P)'/P(1 < p < o) where
|A| = (A*4)'2. It is norm on &/. Let LP(s#, ¢) be the completion of (<, II“11,). For
p = o0, let L®(, @) = &/ with the operator norm. These spaces can be identified as
subsets of the set of closed operators in H affiliated with /. Forl <r<p, L*(«, ¢)
o LN, @) = L'(«, ¢) = L(#, ¢). By using non-commutative Holder’s inequality, it
can be shown that L(«, @) = ﬁ LP(o, p)is a *algebra with identity with strong

1<p<wx
operations (S+7)~, (AT)~, (ST)” and the operator adjoint as the involution. The
following summarizes some aspects of the structure of L(«#, ). Let 7% be the topology
on L defined by P = {||-]|,|1 < p < co}.

3.4a Proposition: (2) (L°(&, ), ) is a complete metrizable locally convex
GB*-algebra with unit ball B, = {4Ae | ||4]| < 1}.

(b) The positive cone in L*(<, ¢) is normal and t® = T, the largest locally convex
GB*-topology on L°(«#, ¢) [14, §6]

= n(T') the largest locally convex GB*-topology with normal positive cone [8].

(c) A subset ¥ of L” (&, ) is a closed left ideal of L°(«, o) if and only if
& = L°(o, ¢)K where K isa projectionin of . Further it is a closed maximal left ideal if
and only if 1 — K is a minimal projection in &. :

(d) Every topologically primitive ideal 2 (i.e. quotient of a closed maximal left ideal)
is of the form 2 = L°(«, ¢) (1 — C(K)) where C(K) is the central support of Kin &.

Proof. (a) The topology 1 is also determined by the calibration P = {II'laIn=1, L
2,...},henceis metrizable. It is also complete. Theorem 1.5(b) implies that L*(s#, ¢) is
a GB*-algebra with the underlying C*-algebra /. b

(b) For A4, Bin L*(#, ¢),0 < A <Bgives||4 I, <I||B || in view of [33, Proposition
2.5 (iv)]. Hence by [29, Ch. V, §3.1], the positive cone in L°(&#, ¢)isnormal. Thus every
continuous hermitian linear functional in L@ is a difference of two positive functionals.
This with the automatic continuity of a positive functional on a complete metrizable

*algebra with 1 [13, p. 178] implies that the dual of Lo(o, ¢) is (L%(s/, 9))", the

i
|
4
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complex linear span of all positive functionals. Since L(<, ¢) is Mackey, it follows
from [14, §8] that t® = T, and hence t° = n(T).

In fact, the dual of L*(«/, ¢) is identified with U e (o, @), and L*(, @) is
reflexive. 1<gs<o

(g) and (d) can be verified either by a modification of the standard W *-algebra
techniques [28, Proposition 1.10.17 or else by applying [5, Corollary 3].

Assertions: (a) Taking P={||-|l,|n=1,2,...}, Qp=Bp=
(b) L*(, ¢) is not a proper GB*-algebra.

Proof. (a) It suffices to show that Q, = /. For, then Q, = B, = &, since & < Bp;
and further as P is countable, the b*-topology on Q is also metrizable, and the open
mapping theorem shows that the topologies on these algebras are identical.

Let A € Qp. Then for some scalar g,(A4), (| AX ) < ¢, (A)p(| X |)forall X e L® (&, @).
As L®(«Z, @) is dense in L*(, @), this holds for all X e L}(«, ¢). Also, for each
YeL'(o, ¢), |

e(|Y]) = IY]l, =sup {lo(¥S)||Se L=(, ¢),YSe L' («, ¢) |IS|l,, < 1}
= o)l

Hence |9(4X)| < q,(A)||1X]l; (XeL' (o, ). Hence by the noncommutative
Radon—Nikodym Theorem, A € L* (&, p) = .

(b) Suppose that there exists a *subalgebra Q of L(, ¢) admitting a b*-topology t
and containing L®(s, @) such that (L*(s, @), ||*|l,) = (@, 1) = (L°(«, @), T°) are
continuous injections. Now ¢ being a continuous positive linear form on L*(%, @),
¥ = @y is t-continuous. Let (m,, H,) be the cyclic GNs representation of Q on a Hilbert
space H,, associated with y. By [11, Theorem 6.1], ¥ is admissible i.e.

YX*X*XY)
Y(*Y)
m, maps elements of Qp as bounded operators on H, with

 [yrx*XY)
|i7,(X)||* = sup {W

Y # O,YeQ} < 00;

IY%O,YEQ}

and m,: (Q,t) > (#B(H,), || : I|) is continuous. Let 1, be the unit cyclic vector in H,, for .
Then Y(X) = (m,(X)1,, 1,) (X € Q). Since ¢ s faithful, 1, is separating for m,; hence =, is
faithful. This forces Q = .

3.5 Noncommutative H ardy—Arens algebra

Let o7 be a finite von Neumann algebra acting on a Hilbert space H. Let {«,|teR} be a
flow on &/ i.e. a o-weakly continuous one-parameter group of *automorphisms on /.
Let ¢ be a faithful, a,-invariant, normal tracial state on &/. By [27, Proposition 2.2], for
eachp, 1 < p < o0, {o,|r€ R} extends uniquely to a strongly continuous representation
of R on isometries of L?(s#, @), to be denoted by {«|teR}. This defines a



i
e
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representation of L'(R) on the Banach space LP(«, ¢) as a( f)T = Jw [ty (T)dt

(T'e L* (A, ¢), feL'(R)). For fe L'(R), let Z(f)={tele(t)=0}, fiobeing the
Fourier transform of f. Let Sp(T) = A{Z(f)|fe L}(R), o( /)T = 0}. The associated
noncommutative Hardy spaces are defined as: For 1<p<oo, H?(w)
——-} g e LP(A, 0)|Sp.(T) = [0, 00)}. Then H*(a) is a nonself-adjoint closed subalgebra
o .

Let H(a) = N Hr (), a complete locally convex algebra with relative topology

1<p<o

induced by t on L®(&, ¢). Taking P = {||* |l,|IpeN}, we have Qp = Bp = H> ().

3.6 Maximal-unbounded Hilbert algebras [21]

Let 9 be an inner product space that is a *algebra. Assume the following:

@ (&n)y= (%

() (&n,v) = {m &),

(c) Let tand 7’ on 9 be defined as n(E)y = n'(n)¢ = &n. Let Hbe the completion of
D.LetD, = {Ee D|n(d)is bounded}. Then 23 is assumed to be dense in 2. Sucha Zis
called an unbounded Hilbert algebra.

For each xeH, let my(x)¢ = 1y (E)x, Mo(x)E = me()x (E€ D). Here on P,
Ty = T|g,To = '] g, Let (Do) = {x eHan(x)e.@(H)},aHilbert algebra. Let «o(Z)
be the left von Neumann algebra of 9, and let ¢ be the natural semifinite trace on
(Do) . Let (@) (respectively m(«)) denote the extended W *-algebra of operators in
H that are ¢-restrictedly measurable (respectively measurable with respect to «o(Do))-
For Tem(e), let |T| = (T*T)'%, p(T) = sup (p(moENI0 S M) < T £e(Do); - For
1 <p<o, let LF(@)={Teml«)l | T|l, = p(|TIP)!/? < oo}, For p=> 2, L5(Zo)

= {erlno(x)eLP(tp)} with ||x]|, = || 7o ()| Let L2(p) = () L*(e). L3(Z0)
© 2€p<x

= {xeH|m,(x) € L5 ()} = N @)= () L3(@o) Let llxllo = Il for
n=2 '

2€p<

x in LY (Do) = (2o

The topology 15 is defined on L3(2,) by {II* Ipl2<P< o}, or equivalently by
P={ll.n=2, 3, ... }—making L3(Do) a complete metrizable locally convex
*algebra which is a G B*-algebra with (2 o)y 1| llo) as the underlying C*-algebra. The
algebra L§(Zo)1s 2 maximal unbounded Hilbert algebra containing Do. (We assume
that 9, contains identity 1.)

Assertions: (a) For L3(ZDo) and P as above, Qp = Bp = (Zo)y
(b) For Lg(¢p) with analogous P, Qr=Bp= (Do)

Proof. We supply details of (a). As in example (3.4), it 15 sufficient to show that
Q0r < Bp=(Dok Let ae(@,), Then no(a) € B(H); and for each x€L%(Zo)

laxll, = [mo@a) ll, < I To@1l (7N, = llallolixll, giving acBp (Zoko < Bp
@ < llalle.
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Let ae Qp. Then for each p, 2 < p < 0, ||ax||, < a (@) || x ||, (x € L] (D,)). Taking

p = 2and using the fact that L2(9,,)is identified with H, it follows that n,(a) is a norm
bounded operator on L$(2,). Let 75 be the left regular representation of L(2,). Then
n3(a)isa bounded operator. But by [21 (II), p. 422], the algebra «(L%(2,)) generated by

n3(L3(Zo)) and «(Dy)| g9, is an EW*-algebra over «,(2,). Hence n(a) € «o(Dy).
Hence a€ (D). Thus Qp < (Do), Qp = B = (9,),- The topologies also agree.

Remark. It would be interesting to investigate a noncommutative analogoue of (3.2).

3.7 L®- and L§. -integrals of a field of C*-algebras

Below we briefly describe a construction of auxilliary nature which may be of some
independent interest.

(A) Let (X, Z, p) be a nonatomic finite measure space. Let t — H(t) be a measurable

field of separable Hilbert spaces with H = JQ H(t)du(z). Let t — 2/(t) be 2 measurable
X

field of C*-algebra with «/(t) acting on H(1). Let o = f®d (t)du(t) realized as a

C*-algebra on H. For each p, 1 < p < o0, define the ‘LP-integral’ of t — &/(t) as

L?— J‘G_) & (t) du(t) = collection of all measurable operator T: t — T(t) € & (t) such that
X

1/p
NT, = (j I T(t)ll”du(t)) < 0.
X
It is a Banach space. For 1 <r <p < o0,

- f ® () dui) > L7 — J ® 4O du) > ot = L~ — j ® (O duo.
X X

X

Let
L“’—-jfad(t)dy(t)= N - j;jed(t)dp(t).

1<p<ow

With usual operations on operator fields, it is a *algebra with 1 which is a complete
metrizable locally convex GB*-algebra under the topology ¢ defined by P = {1,
|1 < p< oo}, the unit ball being B, = {T:t— T(t) in & |||T|| = esssup || T(t)|| < 1}
We conjecture that Qp = B, = . '

(B) Let X be a o-finite measure space as in (3.2). Define

LY — j @ & (t)du(t) = collection of all measurable operator fields T:t — T(t)e A (t)

X
such that foreachn=1,2,3,...

1/p
T lpm = (j Il T(t)ll”dy(t)) < 0.
Xy
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Itis a Frechet space with the topology 1) defined by P, = {-lpaln =1, 2,...}. Note
that

Ly.— j-@)d (t)dpu(t) = collection of all measurable operator fields T: t — T(t)e (1)
X

such that forn=1,2, ... | Tllw.= esssup || T(t)|| < oo.
X,

It is a b*-algebra with a b*-calibration P, = {|l'llo.aln =1, 2,...}. Now we can
formulate, as in (3.2), '

X

o _ |® ®
Lm——J d@ap=_ (1 Li.- j () dp() = A (s2y).
X 1€p<®
We conjecture that A is a GB*-algebra, P being a GB*-calibration and By = &, Qp
=Lg.— j@ o (t)dpu(t).
X

Remark. To the best of our knowledge, the above LP-integrals of operator fields do
not seem to have been investigated in the literature. We do not know whether their
elements can be regarded as concrete operators in H.

3.8 A convolution algebra of periodic distributions

Let T = {ze¢| |z| = 1} be the unit circle. Let D(T) be the cummutative convolution
*algebra with identity of all distributions on T, the identity being the Dirac delta d and
the involution being u — u* defined as ({u*, ¢) = (W S, 9*(2) = 6() (peC=(T),
ze T).Letu — 4, 6i(n) = {u, exp (= int) ) (n€ Z, the integers) be the Fourier—Schwartz
transform that maps D(T) *isomorphically onto the *algebra A = {(a,,)?m la, € ¢,
a, = 0(|n|™) for some m, depending in general on (a,)} with pointwise operations and
the complex conjugation as the involution. Under this map, the *subalgebra PM(T')
(pseudomeasures on T) of D(T) is mapped onto 1®(%), the algebra of bounded
sequences on Z. The algebra PM(T) with norm ||u]| = lldllc is @ W*-algebra.

3.8a. Proposition.

Thealgebra D(T) with the weak topology o = ¢(D(T), C=(T))is a sequentially coinplcte
locally convex GB*-algebra with unit ball B, = {ue PM(T)| ) < 1}

Proof. Using [15, §12.6],itis a simple matter to verify that (D(T), o) is a locally

convex algebra with continuous involution and jointly continuous multiplication.

Claim. PM(T) = (D(T), 0)o, the set of (Allan) bounded elements of (D(T), o) [1, §2].
Let A(T)be the Wiener algebra viz the algebra of continuous functions on T having
absolutely convergent Fourier series. Given u e PM(T), llu|l < 4; the set S = {(A"tu)"
In=12,...}is0 PM(T), A(T)) bounded and so is g-bounded. (Note that PM(T) is
the dual of A(T)). Conversely, if ue D(T)is a bounded element of (D(T), 6), then there is
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a A+ 0in ¢ such that for each ¢ € C*(T), there is a constant M, such that | { (4~ Luy,
¢>I<M,foralln=1,2,... Taking exp (—ikt) (for some ke Z) as ¢, it follows that
I[#(k))/A| < ML for all n. Thus |di(k)| < 4 for all ke Z, del”(Z) and so ue PM(T).
Thus PM(T) = (D(T), 0). ‘ ,

Now it is easily seen that D(T) is symmetric and B, = {ue PM(D)] [luil < 1} is the
greatest member of #*. The sequential completeness of o follows from [26, Theorem
2.8]. This completes the proof.

Note that (D(T), ¢) is not complete in view of [30, Theorem 32.2]. The algebra D(T)
admits two other important topologies.

(a) The topology ¢’ defined by the seminorms p,(u) = |ii(n)| for ne Z. Then (D(T),
') is a metrizable LMc*-algebra which is also a GB*-algebra with unit ball B,

(b) Thestrongtopology f = B(D(T), C*(T)) of uniform convergence on all bounded
subsets of the Frechet space C* (7). “

The importance of 8 is revealed by the following. Note that the positive elements of
D(T) are

D(T)* = {ueD(T)|{u, ¢ d*) >0 for all eC>(T)}.

3.8b Proposition

(i) The algebra (D(T), ) is a complete locally convex GB*-algebra with unit ball
B, = {ue PM(T)| ||ul| < 1}.
(i) Every positive linear functional f on D(T) is B-continuous, and is of the form
flu) = (u, p* x ¢ ) for some ¢ e C*(T).
(iii) The strong topology ;
= T the largest locally convex GB*-topology
= 1{D(T), D(T)", the Mackey topology of the duality {(D(T), D( )",
D(T) being the linear span of positive functionals on D(T') '
and
o = a(D(T), D(T)P), the positive functional topology as discussed in [14,
§87] and [2, § 5].
(iv) The positive conein D(T)is f-normal, and B = n(T), the topology that D(T)) admits
via its universal representation as an OP*-algebra with uniform topology [8].

Proof. Since C*(T')is Frechet (with its usual topology), the completeness of (D(T'), B)
follows from [30, Corollary 2 to Theorem 32.2]. The rest of (i) is a routine. Further,
(D(T), B) being the strong dual of a reflexive Frechet space, is bornological [29, Ch. IV,
§6.6 Corollary 1], hence barrelled [29, Ch. IV §6.6]. By [14, Corollary 8.2], every
positive functional on D(T) is f-continuous. This gives (ii). Since (D(T), B = (D( I8
~ C®(T) due to reflexivity of C*(T), f = 7(D(T), D(T)?) = Dixon topology, the last
equality being a consequence of the fact that in a commutative GB*-algebra A4, Dixon
topology = 1(4, A®). Finally D(T) being a vector lattice, and (D(T), By = D(T)", the
positive cone is f-normal by [29, Ch. V §6.4]. Since n(T) is the largest locally convex
GB*-topology with normal positive cone, B = n(T). This completes the proof.

Since (PM(T), ||-|l) is a W*-algebra with predual A(T) and the identity map id:
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(PM(T), s(PM(T), A(T)) = (D(T), 0) is continuous, the fact that p and o have the same
dual, and hence they determine same sets Of closed ideals, gives the following by
applying [, Corollary 3].

3.8¢c Proposition

(a) A subset I of D(T)isa p-closed ideal of D(T)if and onlyifI = I for some non-empty

subset K of Z where

I, = {ueD(D)li(n) = 0 for all neK}

(b) A linear functional f on D(T) is multiplicative if and only if f = f, for some
ne & where f,(u) = d(n).
Now let

P, = {p,[feC=(D}, ps W) = 1{w 1)L
Py = {ps|Bisa s-bounded subset of Cc=(T)},

pyu) = sup {|{w, f )| f€ B}
P, = {puin€ Z}, ps(¥) = ||

These are the natural calibrations for o, § and ¢’ respectively.

Assertions: For the algebra D(D),
(@) By, = Qp, = #0
(i) Bp, = Qr, = ¢
(i) By, = PM(T), Qp, = D(D):

Proof. (i) Let ueQ,. Then for each feC*(T), there is a constant M, ; such that
| (v, £ < My g1 0. f)1 € DT (1)

Since every distribution on T is of finite order, we can assume that the order of u < m.
By [15, §12.5.7], there is a continuous function ¢ on T such that u = D"+ 1(0)0
where D™*2¢ is the (n+2)th distributional derivative of @. Since u€Qp , 6€Qp it
follows that D™*2¢ € Qp. Applying (1) to D™*? with v = 9, we get |{D™*2¢, f)]
< M, 1f(1)] for all feC>(T); ie. | §¢(t)f‘"‘”’(t) dt| < My | f(DI (feC=(T)). Taking
f(t) = exp (int) — 1 (n€ %), it follows that ¢(n) = {$(2) exp (—int) dt =0forallne Z.
Hence ¢ = Oa.e.,and by continuity, ¢(t) = O forall z. Thus pm+2¢ = 0,u = 4(0)5. Thus
Qp, = Bp, = ¢6. (That Bp = ¢6 can also alternatively be seen as: for ueBp, (1)
holds with a constant M, depending only on w. Since C(T)is dense in C (T, it follows
that u « v is a measure if v is a measure. This forces u to be a measure [15, §12.8.4]. Also,
as above, takingv = éin (1), |ffdul < M, | f(1)| for all fe C*(T),and so for all fe C(T).
Hence u = A6 for some A€ ¢é).
(ii) is immediate from (i) in view of Bp, < Bp,, Qp, < Qs This is because P, < Pp.

A e e e A
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(iii) is a consequence of the submultiplicativity of seminorms in P,,.

Remark. More generally, one may look to the structure of distributions on a
compact Lie group.

3.9 Operators on the product of Hilbert spaces

Let { H,|o€ A} be a family of Hilbert spaces. Let X = [1X.,alocally convex space with

calibration T = {p,la€A}, p,(x)=||x,|| where x=(x,)eX. Let H=ZX®H, =
{x = (x) € X|Z||x,]|> < oo} with inner product {x,y ) = Z{x,, y, » for x=(X),y =
(yoin H.Let D = {x = (x,) € X)x, = O for all but a finite number of «}. The inclusion H
— X is continuous and D is a dense subspace of H and X.

Let Q(X, ') and B(X, I') be the algebras consisting of respectively the quotient
bounded operators and the universally bounded operators on X. As shown in [9],
(Q(X, ), tp) is a b*-algebra and (B(X, I), pr) is a C*-algebra. (Recall: The topology
tr is determined by the b*-calibration {q,}, g.(T) = sup {p.(TX)|p.(x) <1} and

pr(T) = sup q,(T)). Note X /ker p,is identified with H, with the result, given TeQ(X, I'),

= (T'x), is a well-defined bounded linear operator on H,, q,(T) = ||T*|| and the
involution on Q(X, I') is defined by (T *x), = (T %*x, for x = (x,) in X.
Now let L(X) be the algebra of all continuous linear operators on (X, I'). Let % be
either on the following

%, = all finite subsets of X,

¢, = all compact convex subsets of X,
%, = all compact subsets of X,

%, = all bounded subsets of X.

Let « be a o-neighbourhood base for X. On L(X), the topology 74 of uniform
convergence on members of % is defined by taking a o-neighbourhood base consisting
of sets of the form U(B, V) = {Te L(X)|T(B) = V} (Be ¥, Ve «). It is given by the
calibration Pp. , = {p, gla€A, Be %} where p, z(T) = sup{p,(Tx)|x € B}. The sets of
quotient-bounded and universally-bounded elements of the calibrated locally convex
algebra (L(X), Pr 4) are denoted by Qp . and B, _ respectively. The natural LMC
topology t, onQ Pr 1s determined by the sernmorms 4, 5(T) = sup{ pu, 8(TS)|p, 5(S)

<1} and thc norm on By, L 15 P( T)= Ppr,(T) = sup 4. (7). Then as in [9, Example

4.1, Qp_, is topologically *1somorph1c to (Q(X 1"), tr) and Bp_, is isometrically
*1somorph1c to (B(X,T), pr) which in turn is isometrically *isomorphic to a C*-
subalgebra of #(H).
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