Proc. Indian Acad. Sci. (Math. Sci.), Vol. 111, No. 1, February 2001, pp. 65-94.
(© Printed in India

Topological *-algebras with C*-enveloping algebras II

S J BHATT

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120,
India
E-mail: sjb@spu.ernet.in

MS received 17 October 1997; revised 14 March 2000

Abstract. Universal C*-algebras C*(A) exist for certain topological *-algebras called
algebras with a C*-enveloping algebra. A Frechet *-algebra A has a C*-enveloping
algebra if and only if every operator representation of A maps A into bounded
operators. This is proved by showing that every unbounded operator representation m,
continuous in the uniform topology, of a topological *-algebra A, which is an inverse
limit of Banach *-algebras, is a direct sum of bounded operator representations,
thereby factoring through the enveloping pro-C*-algebra E(A) of A. Given a C*-
dynamical system (G,A, ), any topological *-algebra B containing C.(G,A) as a
dense *-subalgebra and contained in the crossed product C*-algebra C*(G,A, )
satisfies E(B) = C*(G,A,«). If G=R, if B is an a-invariant dense Frechet *-
subalgebra of A such that E(B) = A, and if the action « on B is m-tempered, smooth
and by continuous *-automorphisms: then the smooth Schwartz crossed product
S(R, B, a) satisfies E(S(R, B, a)) = C*(R,A, ). When G is a Lie group, the C>-
elements C*(A), the analytic elements C¥(A) as well as the entire analytic elements
C*(A) carry natural topologies making them algebras with a C*-enveloping algebra.
Given a non-unital C*-algebra A, an inductive system of ideals I, is constructed
satistying A = C*-ind lim /,,; and the locally convex inductive limit ind lim /,, is an m-
convex algebra with the C*-enveloping algebra A and containing the Pedersen ideal K4
of A. Given generators G with weakly Banach admissible relations R, we construct
universal topological *-algebra A(G, R) and show that it has a C*-enveloping algebra if
and only if (G,R) is C*-admissible.

Keywords. Frechet *-algebra; topological *-algebra; C*-enveloping algebra;
unbounded operator representation; O*-algebra; smooth Frechet algebra crossed
product; Pedersen ideal of a C*-algebra; groupoid C*-algebra; universal algebra on
generators with relations.

1. Statements of the results

In [5], a functor E has been considered that associates C*-algebras E(A) with certain topo-
logical *-algebras A, called algebras with a C*-enveloping algebra. By a classic construc-
tion due to Gelfand and Naimark, a Banach *-algebra A admits a C*-enveloping algebra
C*(A) = E(A) ([14], 2.7, p. 47). By ([15], Theorem 2.1), a complete locally m-convex
*-algebra has a C*-enveloping algebra if and only if it admits a greatest continuous C*-
seminorm. The following extrinsic characterization of such algebras has been motivated
by the simple observation that any *-homomorphism from a Banach *-algebra into the
*-algebra of linear operators on an inner product space maps the algebra into bounded
operators.
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Theorem 1.1. Let A be a Frechet *-algebra. Then A is an algebra with a C*-enveloping
algebra if and only if every *-representation of A is a bounded operator representation.

The above theorem is false without the assumption that A is metrizable (see
Remark 4.4). By a *-representation (m,D(r), H) of a *-algebra A [37] is meant a homo-
morphism 7 from A into linear operators (not necessarily bounded) all defined on a
common dense invariant subspace D(m) of a Hilbert space H such that for all x in A,
m(x*) C w(x)". In the general theory of *-algebras, following Palmer [24], A is called a
BG*-algebra if every *-homomorphism from A into linear operators on a pre-Hilbert
space maps A into bounded operators. The absence of a complete algebra norm on a non-
Banach *-algebra A indicates that A may contain elements that fail to be bounded in any
natural sense. Hence an appropriate framework for the representation theory of A is that
of unbounded operator representations. However, this natural point of view was
developed rather late, following [30, 20]. Prior to (and later, in spite of) this, bounded
operator representations of A have been investigated in detail, especially when A is a
locally m-convex *-algebra, i.e., A = proj limA,, the inverse limit (also called the
projective limit) of Banach *-algebras [9,15], (see [16] for a summary of bounded
operator representations of A). In fact, such an A, when *-semisimple, admits sufficiently
many continuous irreducible bounded operator representations [9]. Then the enveloping
pro-C*-algebra (projective limit of C*-algebras) E(A) of A, discussed in [10], [19] and
[15], turns out to be E(A) = proj lim E(A,), E(A,) = C*(A,) being the enveloping C*-
algebra of the Banach *-algebra A, ([15], Theorem 4.3). Thus A has a C*-enveloping
algebra if E(A) is a C*-algebra. By the construction, E(A) is universal for norm-
continuous bounded operator representations of A. Theorem 1.2, to be used to prove
Theorem 1.1, shows desirably that E(A) is also universal for representations into
unbounded operators. The uniform topology ([37], p. 77, 78) on an unbounded operator
algebra is defined at the end of this section.

Theorem 1.2. Let A be complete locally m-convex *-algebra. Let (w,D(r),H) be a
closed *-representation of A continuous in the uniform topology on ww(A). Then there
exists a unique *-representation (o,D(0),H,) of E(A) such that the following hold.

(1) H, = H and D(0) = D(7).

(2) As a representation of E(A), o is closed and continuous in the uniform topology on
o(E(A)).

(3) o is an ‘extension’ of w to E(A) in the sense that for all x in A, (o o j)(x) = m(x),
Jj:A — E(A) being the natural map, j(x) = x + srad (A), srad (A) denoting the star
radical of A.

(4) On the unbounded operator algebra mw(A), the uniform topology Tg(A> is a (not
necessarily complete) pro-C*-topology which coincides with the relative uniform
topology TS(E(A» from a(E(A)).

COROLLARY 1.3

Let  be a closed irreducible *-representation of a complete locally m-convex *-algebra A
continuous in the uniform topology on w(A). (In particular, let A be Frechet and 7 be
irreducible). Then ™ maps A into bounded operators.

AO*-algebras (abstract O*-algebras) [36,37] provide the unbounded operator algebra
analogues of C*-algebras. Starting with a topological (not necessarily m-convex)
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*-algebra A, one can construct an enveloping AO*-algebra O(A) universal for
*-representations continuous in the uniform topology, and declare A to have a C*-
enveloping algebra if the uniform topology on O(A) is normable. On the other hand, by
modifying the construction in [15], the pro-C*-algebra E(A) can also be considered as the
universal object for norm-continuous bounded operator *-representations of more general
locally convex, non-m-convex, *-algebras A. In general, the completion of O(A) differs
from E(A). For a barrelled A, O(A) is normable implies that E(A) is a C*-algebra, but the
converse does not hold. In the present context, the following shows that both the
approaches are consistent in the metrizable case.

Theorem 1.4. Let A be a Frechet *-algebra. Then the pro-C*-algebra E(A) is the com-
pletion of the AO*-algebra O(A). Thus O(A) is normable if and only if A is an algebra
with a C*-enveloping algebra.

There are several situations in C*-algebra theory in which topological *-algebras arise
naturally [27]. Enveloping C*-algebras provide a standard method of constructing C*-
algebras; and frequently, lurking behind such a construction is a topological *-algebra B
such that E(B) = A. Let « be a strongly continuous action of a locally compact group G
by *-automorphisms of a C*-algebra A. The crossed product C*-algebra C*(G, A, «) is the
enveloping C*-algebra of the L'-crossed product Banach *-algebra L!(G,A,«). If B
is a topological *-algebra such that C,(G,A) C B C C*(G,A,a) and C.(G,A) is dense
in B, then E(B) = C*(G,A, «). Let G be a Lie group. Then the *-subalgebra C*(A) of
C>-elements of A is a Frechet *-algebra with an appropriate topology such that
E(C*(A)) = A. The *-algebras C¥(A) and C*“(A) consisting of analytic elements and
entire elements of A are shown to carry natural topologies making them algebras with
C*-enveloping algebras. We also consider the smooth crossed product [29,34]. For
simplicity, we take G = R, and prove the following.

Theorem 1.5. Let o be a strongly continuous action of R by *-automorphisms of a
C*-algebra A. Suppose that B is a dense Frechet *-subalgebra of A satisfying the following.

(@) A has a bounded approximate identity contained in B and which is a bounded
approximate identity for B.

(b) E(B) = A.

(c) B is a-invariant; and the action o« of R on B is smooth, m-tempered and by
continuous *-automorphisms of B.

Then the smooth Schwartz crossed product S(R,B,«) is a Frechet *-algebra with a
C*-enveloping algebra, and E(S(R, B, «)) = C*(R, A, «). Further, if the action of R on B
is isometric (see § 5), then the L'-crossed product L' (R, B, &) is also a Frechet *-algebra
with a C*-enveloping algebra, and E(L'(R, B,a)) = C*(R,A, ).

It follows that E(S(R,C*(A),a) = C*(R,A, «). In particular, if « is a smooth action
of R on a C*°-manifold M, then E(S(R,C*(M),a) = C*(R,C(M), a), the covariance
C*-algebra of the R-space M.

For a locally compact Hausdorff space X, let X be the directed set consisting of all
compact subsets of X. For K € K, let Cx(X) = {f € C.(X) : suppf C K}, C.(X) denoting
the compactly supported continuous functions on X. It is well known that {Cg(X) :
K € K} forms an inductive system; and Cy(X) = C*-ind lim Cg (X) (C*-inductive limit),
C.(X) = ind lim Ck (X) (locally convex inductive limit). Further, C.(X) with the locally
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convex inductive limit topology is a complete locally m-convex Q-algebra and
E(C.(X)) = Cy(X). The following provides a non-commutative analogue of this. We
refer to the last paragrapgh in this section for the relevant definitions pertaining to
topological algebras.

Theorem 1.6. Let A be a non-unital C*-algebra. Let K, denote its Pedersen ideal. For
a € Ky, let I, denote the closed two sided ideal of A generated by aa*. Let K} =
U{l, : a € K }. Then the following hold.

(1) {I,:a€ K} forms an inductive system, A= C*—ind lim{l,:a € K}, and
K% =ind lim{l, : a € K} }.

(2) K¢ with the locally convex inductive limit topology t is a locally m-convex Q-algebra
satisfying E(K}¢) = E(K4) = A.

(3) If A has a countable bounded approximate identity, then (K}°,t) is an LFQ-algebra.

In general K4 # K}, though K4 C K. Now K4 has been interpreted as a non-
commutative analogue of C,.(X). Then K may be interpreted as continuous functions on
a non-commutative space vanishing at infinity in ‘commutative directions’ and having
compact supports in ‘non-commutative directions’. This interpretation is suggested by the
remarks preceeding ([28], Theorem 8).

The universal C*-algebra C*(G,R) on a C*-admissible set of generators G with
relations R provides another method of constructing C*-algebras. Motivated by some
problems in C*-algebras, Phillips introduced more general weakly C*-admissible
generators with relations (G,R) leading to the construction of the universal pro-C*-
algebra C*(G,R) on (G,R) [27]. In § 8, we construct a universal topological *-algebra
A(G,R) on (G,R) with weakly Banach admissible relations R, and prove the following.

Theorem 1.7. Let (G,R) be weakly Banach admissible.

(1) E(A(G,R)) = C*(G.R)
(2) A(G,R) has a C*-enveloping algebra if and only if (G,R) is C*-admissible.

The paper is organized as follows. Proofs of Theorems 1.1, 1.2 and 1.4 are presented in
§ 3. The preliminary lemmas and constructions in the locally convex, non-m-convex set
up more general than in [5], are discussed in § 2. Section 4 contains a couple of remarks
including some corrections in [5]. The smooth crossed product is discussed in §5
culminating in the proof of Theorem 1.5. Section 6 contains the proof of Theorem 1.6.
This is followed by a brief discussion on the C*-algebra of a groupoid in § 7. Universal
C*-algebras on generators with relations are discussed in § 8. In what follows, we briefly
recall the relevant ideas in unbounded operator representations.

For the basic theory of unbounded operator *-representations (m, D(w),H) of a
*-algebra A, we refer to [37,30]. Let A' denote the unitization of A. The graph topology
tr = tyary on D(m) is defined by seminorms & — [[¢]| + [[m(x)&][|, where x € A. The
closure 7 of  is the *-representation (7, D(7), H), where D(7) = ({D(r(x)) : x € A},

D(m(x)) being the domain of the closure 7(x) of m(x); and 7(x) = 7(x)| p(r) forallxin Al
Throughout, 7 is assumed non-degenerate, i.e., the norm closure (m(A)H)” = H and the
tr~closure (m(A)D(w))" = D(7).If m = T, then 7 is closed. The hermitian adjoint ™ of =
is the representation (not necessarily a *-representation) (7*,D(n*),H), where
D(m*) = ({D(r(x)" : x € A'}, and 7*(x) = w(x*)*|D(ﬂx> for all x € A'. If 7 = 7%, then

7 is self-adjoint. Further, 7 is standard if w(x*)" = 7(x) for all x in A'. If each 7(x) is a
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bounded operator, then 7 is bounded. If 7 is a direct sum of bounded representations, then
w is weakly unbounded. An O*-algebra is a collection U of linear operators T all defined
on a dense subspace D of a Hilbert space H such that for all T € U, one has TD C D, and
T*D C D; and U is a *-algebra with the pointwise linear operations, composition as
the multiplication, and T — T* :=T*|, as the involution. Given a *-representation
(m,D(7), H) of a *-algebra A, the uniform topology [201, ([371, p. 77-78) p zrgg; on the
O*-algebra 7(A) is the locally convex topology defined by the seminorms {gx : K is a
bounded subset of (D(7), )}, where
gk ((x)) = sup{[{m(x)¢,m)| : &, n in K}.

A vector ¢ in D(r) is strongly cyclic [30] (called cyclic in [37]) if D(7) = (7(A)¢) ™"
the closure of (7(A)¢) in (D(7), ). By a cyclic vector, we mean & in D(r) such that the
norm closure (7(A)£)” = H. For topological *-algebras, we refer to [21]. A Q-algebra is
a topological algebra whose quasi-regular elements form an open set. An LFQ-algebra is
a Q-algebra which is an LF-space [41]. The topology of a locally convex (respectively
locally m-convex) *-algebras A is determined by the family K(A) (respectively K;(A)), or
a separating subfamily P thereof, consisting of continuous *-seminorms (repsectively
continuous submultiplicative *-seminorms) p. If A has a bounded approximate identity
(e;), then it is assumed that p(e;) < 1 for all i and all p. A pro-C*-algebra is a complete
locally m-convex *-algebra whose topology is determined by a family of C*-seminorms.
A Frechet *-algebra (respectively locally convex F*-algebra) is a complete metrizable
locally m-convex (respectively locally convex) *-algebra. A o-C*-algebra means a Frechet
pro-C*-algebra. For pro-C*-algebras, we refer to [26,27].

2. Preliminary constructions and lemmas

Let A be a *-algebra, not necessarily having an identity element. Let f be a positive
linear functional on A. Then f is representable if there exists a closed strongly cyclic
*-representation (7, D(w),H) of A having a strongly cyclic vector £ € D(w) such that
f(x) = (m(x)&, &) for all x € A. If 7 can be chosen to be a bounded operator representation,
then f is boundedly representable. The first half of the following is an unbounded
representation theoretic analogue of ([39], Theorem 1), whereas the remaining half
improves a part of ([39], Theorem 1) even in the bounded case. The proof exhibits the
unbounded analogue of the GNS construction in the case of non-unital algebras. This
provides a useful supplement to ([37], §8.6). It is well-known that a representable
functional is boundedly representable if and only if it is admissible in the sense that for
each x € A, there exists k > 0 such that f(y*x*xy) < kf(y*y) forall y € A. In the following,
Lemma 2.1(3) is very close to ([39], Theorem 1) in which a C*-seminorm p is taken.

*

Lemma 2.1. Let f be a positive linear functional on a
equivalent.

-algebra A. The following are

(1) f is representable.
(2) There exists m > 0 such that |f(x)|* < mf(x*x) for all x € A.
Further, f is boundedly representable if and only if f satisfies (2) above and the following.
(3) There exists a submultiplicative *-seminorm p on A and M >0 such that
|f(x)] < Mp(x) for all x € A.

When A is a Banach *-algebra, Lemma 2.1 is given in ([7], Theorem 37.11, p. 199). In
the framework of unbounded representation theory, it is discussed in [2]. There is a gap in
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the proof in ([7], Theorem 37.11) in that hermiticity of f has been implicitly used.
Regrettably it remained unnoticed in [2]. This was rectified in [39] in the formalism of
bounded representations. The following proof provides an analogous correction in the
context of unbounded representations.

Proof. Suppose (1) holds with f(x) = (m(x)¢, &) for all x € A. Then for all x in A.

F)F < ()€1 < IIEP (r ()€, m(x)€)
= (€] (m(0) 7 (x)€, &) = [|€]1* (m(x")m(x)é, &)
as m(A)§ € D(r) = D(n(x)) = D(n(x")) and 7(x") C 7 (x)". Thus
(

FF < TP (r(x )€, €) = (€] (")

for all x € A, giving (2).

Conversely, assume (2). We adopt the GNS construction. Let Ny= {x € A : f(x*x) = 0}.
By the Cauchy-Schwarz inequality, Ny is a left ideal of A. Let Xy = A/Ny, and A\f : A — X;
be Ar(x) = x 4+ Ny. Then (A (x), Ar(y)) = f(y*x) defines an inner product on X;. Let Hy be
the Hilbert space obtained by completing X;. Let ¢ : Xy — C be ¢(Ar(x)) = f(x), a linear
functional. Then for all x € A,

e @) = 1f @) < mf (%) = m{y (), A (x) = ml|Ar ()]
Thus ¢ extends uniquely to Hy as a bounded linear functional; and by Riesz theorem,
there exists a § € Hy such that for all x € A, f(x) = (M (x)) = (Ar(x), &). Further, if m is
the minimum possible constant in the assumed inequality, then ||¢|| = m'/?. The idea of
using Riesz theorem at this stage is borrowed from [39]. Define a *-representation
(w0, D(mo), Hy) of A by: D(m) = Xy; and for any x in A, mo(x)\r(y) = Ap(xy) for all y in
A. Let 7 be the closure of . Then for all x, y in A,

(), A () =F (") = N (x), &) = (mo(y") A (%), ) (i)

Assertion 1. Xy = m§(A)E.
LetxcA. Forally € A,

(o (¥) A (), ] = [Ar(), )] = £ (e)] < fax®) 2 ()
* 2
=) P )|

showing that the linear functional As(y) — (mo(x)Ar(y), &) on D(mo) is || ||-continuous.
Hence £ € D(mo(x)") for all x € A. It follows, by the definition of D(7), that & € D(m}).
Now (i) becomes (A (x), Ar(y)) = (Ar(x), mo(y*)*E) for all x € A. Since Xy is dense in Hy,
we obtain A(y) = mo(y*)"€ = m5(y)€ for all y in A. Thus X; = 75(A)E.

Assertion 2. £ € D().

Since o (x) = mo(x) **, we show that £ € D(my(x)™™) for all x € A, i.e., for all x, the
functional on D((x)*) given by n — {(mo(x)*n, &) is || ||-continuous. Fix an x € A. Now
¢ € D(m};), hence & € D(mo(x*)") so that the functional g on D(mo(x*)) = X; defined by
g(n) = (mo(x*)n,&) is || ||-continuous, and extends continuously to H;. Now let
¥ € D(mo(x)"). Let (k) be a sequence in Xy such that iz — ¢ in || ||. Then & € D()
implies that for any x € A,

(mo(x) ¥, &) = (v, mo(x")"€) = (¥, w5 (x)¢)
= lim(n, 7 (x)€) = Lim(mo (x")1, §) = (1))
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showing that 1 — (mo(x)™, &) is || ||-continuous on D(my(x)*). This proves the
assertion 2.
Now by the proof of assertions 1 and 2 above, it follows that for any x € A,

fx) =0 (x) = (N (x),8) = (mo(x")"¢, &) = (m(x)¢, &)
= <7T'()(X)f, ’£> = <7T()C)§7 £>

Clearly € is a strongly cyclic vector for 7. Thus (2) implies (1).

Now assume (2) and (3). Let N, = {x € A : p(x) = 0}, a *-ideal in A. Let A, be the
Banach *-algebra obtained by completing A/N, in the norm ||x,||, = p(x) where
x, =x+ N,. By (3), F(x,) = f(x) gives a well-defined continuous positive functional on
A,. By standard Banach *-algebra theory, for all x, y in A,

() m()EI” = (7 X 20)E,€) = F('xxy) = F(yixix,y,)
< [ llF(iys) < pe)*F(7y) = p@)llm (el

Since m(A)¢ is dense in Hy, 7 is a bounded operator representation.

COROLLARY 2.2
Let A be a *-algebra.

(1) A positive functional f on A is representable if and only if f is extendable as a positive
functional on the unitization A' of A.

(2) A representable positive functional on A satisfies f(x*) = f(x)~ for all x in A.

(3) Let A be a topological *-algebra having a bounded approximate identity. Then every
continuous positive functional on A is representable.

COROLLARY 2.3

Let A be a complete locally m-convex *-algebra with a bounded approximate identity (e)
satisfying p(e,) <1 for all p in a defining family of seminorms.

(1) Let f be a continuous positive functional on A. Then f is boundedly representable and
there exists p € K,(A) such that | f(x)| < (limsup f(e,e?))p(x) for all x € A.

(2) Let (m,D(m),H) be a *-representation of A. Then each w(e.) is a bounded operator
and ||m(e,)|| < 1 for all ~. Further, if  is strongly continuous (in particular, if 7 is
continuous in the unifrom topology, which is the case if A is locally convex F* ([37],
Theorem 3.6.8, p. 99)), then ||m(e,)§ — || — O for each &.

Proof. (1) By continuity, there exist p € K;(A) and m > 0 such that | f(x)| < mp(x) for
all x € A. Now Lemma 2.1 applies by Corollary 2.2(3). Let / = lim sup f(e,e ), which is
finite. Let ¢ = sup{|f(x)| : p(x) = 1}. Choose a sequence (x,) in A such that f(x,) — ¢
and p(x,) = 1 for all n. Then, by the Cauchy-Schwarz inequality,

| (x)* = lim | f (er%)|* < (limsupf(ese))f (xpxn) < le,

as p(xix,) < p()c,,)2 = 1. Hence ¢? < ¢, i.e. ¢ <, and the assertion follows.

(2) Let P = (p,) be a cofinal subset of K (A) determining the topology of A. Let
A, = {x € A :sup, p.(x) < co}. Then A, is a *-subalgebra of A containing each e,. As A
is complete, A, is a Banach *-algebra with norm p(x) = supp.(x). For any £ € H,
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cons1der the posmve functional we(x) = (m(x)€,£) on A. Then for all x €A,
|owe (x X[ < )€1 we(x*x). By Lemma 2.1, wy is representable, hence extends as a positive
functional w on the umtlzatlon A' of A. In view of the inclusion map (A, ) — Al wisa
posmve functional on (A ) By ([7], Corollary 37.9, p. 198), w is continuous in the norm
of (A ) It follows that w, restricted to A, is continuous in the norm of A, and
el < [1¢] . For cach ~.

2 x 2 2

|I(e7)EII" = we(eser) < llwellp(ey)” < [I€]l
showing that ||7(e,)|| < 1. Now suppose that  is strongly continuous. Let n € D(m) and
€ > 0. There exists x € A and 1/ € D(n) such that ||7(x)7’ — n|| < e/3. Since e x — x,
there exists vy such that for all v > ~y,

[In = m(ex)nll < [ln = 7| + llx ()i — w(eyx)rf ]

+m(e)l @) —nll < e

showing that 7(e,)n — 7 for each n € D(w). This completes the proof of Corollary 2.3.
The enveloping pro-C*-algebra E(A)

We construct the enveloping pro-C*-algebra E(A) for a locally convex *-algebra A with
jointly continuous multiplication. This extends the consideration in [10, 15, 19] in which
A is additionally assumed m-convex. The added generality will include several
constructions relevant in C*-algebra theory (like the C*-algebra of a groupoid). Let
R(A) denote the set of all continuous bounded operator *-representations 7 : A — B(H)
of A into the C*-algebras B(H;) of all bounded linear operators on Hilbert spaces H. Let
R'(A) = {m € R(A) : 7 is topologically irreducible}. For p € K(A), let

R,(A) = {m € R(A) : for some k > 0, ||7(x)|| < kp(x) for all x},
and R (A) = R,(A) N R'(A). Then
(4) = JIR,(4) : p e K(4)}, R(A) = J{R,(4) : p € K(A)}.
Let r,(x) = sup {||7(x)|| : 7 € R,(A)}.

Lemma 2.4. Let A be as above p € K(A). Then r,( ) is a continuous C*-seminorm on A

satisfying 1, (x) < p(x'x)"%. If p € Ky(A), then r,(x) = sup{[lw(x)|| : 7 € R (A)) < p(x)
for all x € A.

Proof. Let s,(x) = p(x*x)? Leth=h* cAand 7 € R,(A). Then ||x(h")|| < kp(h") for
all n € N. By standard Banach algebra arguments, the spectral radius satisfies

r(n(h)) = liminf||x(k")||'"/" = inf ||x(K")||"" < inf p(K")"/" < p(h).
Hence, for any x € A,

Iw@)|[* = [Jw(x"x)|| = r(z(x"x)) < p(x"x),

so that r,(x) <s,(x). We use the joint continuity of multiplication to conclude the
continuity of the C*-seminorm x — r,(x). Now suppose p € K (A). Then

() < 5p(x) < (P () < p(a).
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Further, let N, = {x € A: p(x) =0}, a closed *-ideal in A. Let A, be the Banach
“-algebra obtained by completing A/N, in the norm ||x + N,||, = p(x). Then R,(A)
(respectively R} (A)) can be identified with R(A,) (respectively R'(A;)). The assertion
follows from the fact that for all z € A,

sup{||¢(2)l| : ¢ € R(Ap)} = sup{[|¢(2)[| : » € R'(A,)}
([14], 2.7, p. 47). This completes the proof of the lemma.

Define the star radical to be

srad (A) ={x € A :r,(x) =0 for all p € K(A)}
={xe€A:7w(x)=0forall m€ R(A)}.

For each p € K(A), g,(x + srad (A)) = r,(x) defines a continuous C*-seminorm on the
quotient locally convex *-algebra A/srad (A) with the quotient topology. Let 7 be the
Hausdorff topology on A/srad (A) defined by {g, : p € K(A)}. The enveloping pro-C*-
algebra E(A) of A is the completion of (A/srad (A), 7). When A is metrizable, E(A) is
metrizable. In view of Corollary 2.2, when A is m-convex, this coincides with the
enveloping 1.m.c. *-algebra defined in [10, 19, 15].

Lemma 2.5. Let A be a locally convex *-algebra with jointly continuous multiplication.

(a) Let A be the completion of A. Then E(A) = E(A).
(b) E(A") = E(A)".

Proof. Since A has jointly continuous multiplication, A is a complete locally convex
*_algebra. The map i : A/srad (A) — A/srad (A), where i(x + srad (A)) = x + srad (A), is
a well defined *-isomorphism into E(A). Note that for any p € K(A), R,(A) = R,(A) via
the restriction (in fact, also K(A) = K(A)), hence srad (A) = A Nsrad (A). For any

p € K(A), let p € K(A) be the unique extension of p. Then, for any x € A,

qp(x + srad(A)) = 1, (x) = gp(x + srad(A));

and for any p € K(A), gp(x + srad(A)) = gjja(x + srad(A)). Thus i is a homeomorphism
for the respective pro-C*-topologies. On the other hand, i has dense range in A /srad(A).
Indeed, let z € A. Choose a net (x;) in A such that x; — z in the topology ¢ of A. Then

qp(xi — z+ srad(A)) = rp(x; — z) = sup{|[7(x; — 2)[| : 7 € R3(A)}
<kp(xi—z) —0

for all p € K(A). Thus E(A), which is the completion of A/srad(A), coincides with the
completion E(A) of A/srad(A). This completes the proof of (a). We omit the proof of (b).

A representation (w, D(7), H) of A is countably dominated if there exists a countable
subset B of A such that for any x € A, there exists b € B and a scalar kK > 0 such that
[Im(x)€]| < kl|m(b)¢|| for all £ € D(m) ([22], p. 419).

Lemma 2.6. (a) Let A be a locally convex *-algebra. Let j : A — E(A), j(x) = x + srad(A).

(1) If m: A — B(H) is a continuous bounded operator *-representation, then there exists
a unique continuous *-representation o : E(A) — B(H) such that m = o o j. Further,
7 is irreducible if and only if o is irreducible.
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(2) Let (mw,D(w),H) be a closed *-representation of A continuous in the uniform
topology. Let m be weakly unbounded. Then there exists a closed weakly unbouned
*-representation (0,D(0),H) of E(A) such that m = o o j and D(o) is dense in the
locally convex space (D(7), ).

(3) Let A be unital and symmetric. Assume that A is separable or nuclear (as a locally
convex space). Let (m,D(w),H) be a separably acting, countably dominated
*-representation of A continuous in the uniform topology. Then there exists a closed
*-representation (0, D(c),H) of E(A) such that m = o o}j.

(b) (1) There exists a unital, locally convex, non-m-convex, F*-algebra A such that A
admits a faithful family of unbounded operator *-representations, but admits no
non-zero bounded operator *-representation.

(2) There exists a unital non-locally-convex F*-algebra that admits no non-zero
*-representation.

Proof. (a) (1) follows by the definition of E(A).

(2) Let m = &m;, where each 7; is a norm continuous bounded operator *-representation
7 : A — B(H;) on a Hilbert space H;. We take D(w;) = H; . Let E; : H — H; be the
orthogonal projection. By (1), there exist continuous *-homomorphisms o; : E(A) —
B(H,;), o;0j = m;. Let 0 = &0; on the Hilbert direct sum &H; = H having the domain

D(o) = {n=SEm € H : 3||o;(2) Em||* < oo for all z € E(A)}
C D(r) = {n=XEn € H : %||m(x)Em||* < oo for all x € A}.

On D(0), the o-graph topology f,(g) is finer than the relativized 7-graph topology
tﬁ|D(”>. Being closed and weakly unbounded, both ¢ and 7 are standard representations.
Hence, for all 1 = h* in A, the operators o(j(h)) having domain D(o) and 7(k) with
domain D(7) are essentially self-adjoint. Since self-adjoint operators are maximally

symmetric, D(o) is dense in D(w(h)) for the graph topology defined by & — ||¢||+
[|m(h)&||. Thus D(o) is dense in the locally convex space D(w) = {D(w(h)) : h = h*
in A}.

(3) By ([22], Theorem 3.2 and remark on p. 422) and ([37], Theorem 12.3.5, p. 343),
there exists a compact Hausdorff Z with a positive measure p such that

w= [ mau), D= [ D). H= [ o)

and each m, is irreducible. Since A is symmetric, each 7 and 7, are standard ([37],
Corollary 9.1.4, p. 237) (the commutativity assumption in this reference is not required,
as the arguments in ([2], Theorem 3.5) shows); and by [3], each ) is a bounded operator
representaion, being irreducible. Then we can proceed as in (2).

(b) (1) Take A = L¥[0,1] = () LP[0, 1] (the Arens algebra) with pointwise operations,

1<p<o0
complex conjugation, and the topology of L”-convergence for each p, 1 < p < oo. The

algebra A is a unital, symmetric, locally convex F*-algebra, admitting a faithful standard
*-representation (m,D(7), H) such that w(A) is an extended C*-algebra with a common
dense domain [13]. However, there exists no non-zero bounded operator representation of
A, as A admits no non-zero multiplicative linear functional; and hence no non-zero
submultiplicative *-seminorm. Thus srad (A) = A and E(A) = (0). (2) Take A = M [0,1],
the algebra of all Lebesgue measurable functions on [0,1] with the topology of
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convergence in measure. It admits no non-zero positive linear functional, and hence no
non-zero *-representation.

Remark. 2.7. We call a *-representation (m,D(w),H) of a *-algebra A boundedly
decomposable if it can be disintegrated as 7w = fZ@ madu(N\) with each 7, a bounded
operator *-representation. One may show that £(A) is universal for all closed boundedly
decomposable *-representations of a locally convex F*-algebra A. We do not know
whether in (2) and (3) of Corollary (2.4) (a), o is continuous in the uniform topology.

The bounded vectors [4] for a *-representation 7w of a *-algebra A are B(w) =
({B(w(x)) : x € A}, where, for an operator 7, the bounded vectors for T are

B(T) ={£ € D(T) : there exists a > 0,c > 0 such that
[|T"¢]| < ac” for all n € N}.

The following is motivated by [35]. It shows that unbounded representations of locally m-
convex *-algebras cannot be wildly unbounded,

Lemma 2.8. Let (m, D(w), H) be a closed *-representation of a complete locally m-convex
*-algebra A continuous in the uniform topology on w(A). Then the following hold.

(1) D(r) = B(n); and 7 is a direct sum of norm-continuous cyclic bounded operator
*-representations.

(2) 7 is standard. For commuting normal elements x, y of A, the normal operators ﬁ
and W have mutually commuting spectral projections.

(3) The uniform topology Tp on ©(A) is a pro-C*-topology, i.e., it is determined by a
family of C*-seminorms.

(4) If A is Frechet, then Tp is metrizable and w is direct sum of a countable number of
cyclic bounded-operator *-representations.

Proof. Let & € D(w). Let we on A be the positive functional we(x) = (7(x)¢, &) for x € A.
By Lemma 2.1, wy is representable and admissible. Hence the closed GNS representation
(e D(wwg), H,,) associated with w¢ is a cyclic, norm-continuous bounded operator
*-representation with D(TQ%) = H,,. Let &, denote the cyclic vector for Te- Let
D(me) = (7(A)¢)™™ and H = [7(A)¢]”. Since 7 is closed, D(m¢) C D(r). The n-
invariant subspace D(m¢) defines a closed subrepresentation (me, D(m¢),He) of m as
Te(x) = (%) |p(ry)- Since (Mo (X)&u, o) = we(x) = (me(x)€, €) for all x € A, it follows
that 7, and 7 are unitarily equivalent. Thus 7¢ is a bounded operator representation, and
D(m¢) = He C B(m). This also implies that He is reducing in the sense of ([37], § 8.3).
Thus the following is established.

Assertion 1. For any ¢ in D(r), [7(A)¢]™"" = [7(A)¢]” C B(m).

It follows that 7w(A)D(w) C B(r), hence B(n) is dense in (D(7), ) and norm dense in
H. Since B(rw) forms a set of common analytic vectors for 7(A), the conclusion (2)
follows, using ([40], Theorem 2). Also, a standard Zorn’s lemma argument gives
m = @m;, with each 7; a cyclic, continuous, bounded operator representation.

Assertion II. For each bounded subset M of (D(r), t;), there exists p € K (A) such that
[w()nl] < [Inllp(x) for all x € A, n € M.
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By continuity, given M as above, there is k > 0 and p € KY(ZA) such that g (7(x )) <
kp(x) for all x € A. Hence, for each 7 € M and x € A, ||7(x)n||* < kp(x*x) < kp(x)*. By
Corollary 2.3, ||z(x)n||* < Ip(x)?, where [ = lim sup wy(ee]) < ||n||*. Hence ||x(x)n|| <
[|[7]|p(x) for all x € A, all n € M.

Now let & € D(m). By (I) above, there exists p € K (A) such that for all n € N,

7 (0)"€ll” = (m(x""x")&,€) < [I€]7p(x)*"

showing that £ € B(w(x)). Thus D(w) = B(w) proving (1).

The proof of (3) is based on arguments in ([35], Theorem 1). Let F be the collection of
all subspaces (linear manifolds) K of D(w) such that K is m-invariant, and 7|, is a
bounded operator *-representation. For K € F, let sx be the C*-seminorm

s (m(x)) = sup{||w(x)n]| : n € K, |[n|| < 1}.

Let 7y be the topology on 7(A) defined by {sx : K € F}. We show that 7p = 7. Clearly
71 < 7p. Let M be a bounded subset of (D(7),,). Choose k and p as in assertion (II)
above. By Corollary 2.3, |we(x)] < [|€]|p(x) for all x € A, all £ € M. Thus

M C D, = {ne D) : |(x(x)n,n) < |[nlPp(x) for all x inA}.

Then D, € F; ||x(x)n]| < ||n|[’p(x)* for all n € D,; and, as = is closed, ([35], Lemma 3)
implies that D, is || ||-closed. Let S ={{ € D, : ||{|| < 1}. As M is also || - || bounded,
|In|] < r for all n € M; and M C rS. Then, for all x € A, gy (7(x)) < r*sp, (w(x)). Thus
7p < 7. This gives (3). Finally (4) is consequence of the fact that the topology of a
metrizable A is determined by a countable cofinal subfamily of K,(A). This completes the
proof of Lemma 2.8.

Now let A be commutative. Let M(A) be the Gelfand space consisting of all non-zero
continuous multiplicative linear functionals on A. Let M*(A) = {p € M(A) : ¢ = ¢*}
and ¢*(x) = p(x*). For each x € A, let x : M*(A) — C be the map x(¢) = p(x). The
following, which incorporates the spectral theorem for unbounded normal operators,
describes all unbounded *-representations of A. The proof can be constructed using
Lemma 2.8 and ([9], Theorem 7.3), in which all bounded *-representations of A have
been realized.

COROLLARY 2.9

Let A be a commutative complete locally m-convex *-algebra. Let (7, D(r),H) be a
closed *-representation of A continuous in the uniform topology. Then there exist a
positive regular Borel measure 1 on M*(A) and a spectral measure E on the Borel sets in
M*(A) with values in B(H) such that the following hold.

(1) 7 is a unitarily equivalent to the representation (0,D(0),H,) by multiplication
operators in H, = L*>(M*(A), u) with domain

Do) ={f € Hy: v — x(¢)f(¢)isinH, for all x € A}

defined as (o(x )f)(@) = f(@)f(sﬁ)-
(2) For each x € A, (x fM E(p).

We say that a locally convex —algebra A is an algebra with a C*-enveloping algebra if
the pro-C*-algebra E(A) is a C*-algebra. In view of Lemma 2.5, we do not need to
assume A to be complete or unital. In [5], A is further assumed to be m-convex. The
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following extends the main results in ([5], § 2) to the present more general set up, and can
be proved as in [5]. A is called an sQ-algebra if for some k > 0, p € K(A), the spectral
radius r satisfies r(x*)c)l/2 < kp(x) for all x € A; A is *-sb if r(x*x) < oo for each x,
equivalently, r(h) < oo for all h = h*. Thus Q => sQ => *-sb.

Lemma 2.10. Let A be a complete locally convex *-algebra with jointly continuous
multiplication.

(1) A is an algebra with a C*-enveloping algebra if and only if A admits greatest
continuous C*-seminorm.

(2) If A is sQ, then A admits a greatest C*-seminorm, which is also continuous.

(3) Let A be an F*-algebra. If A is *-sb, then A has a C*-enveloping algebra; but the
converse does not hold (see ([5], Example 2.4)).

The enveloping AO*-algebra O(A)

For a locally convex *-algebra (A,7) (¢ denoting the topology of A), let P.(A,?)
(respectively P.,(A, 1)) be the set of all continuous (respectively continuous admissible)
representable positive functionals on A. For each f in P.(A, ), let (77, D(ny), Hy) denote
the strongly cyclic GNS representation defined by f as in Lemma 2.1. Let I = N{ker 7 :
f€P(A )} and J =n{kerny : f € P.(A,f)}. Then I and J are closed *-ideal of A,
J CI, and I =srad (A) in view of the cyclic decomposability of any = € R(A). The
universal representation of (A, t) is m, = @&{ny : f € P.(A,1)}. This is a slight variation of
([371, p. 228). Then o,(x +J) = m,(x) define a one—one *-homomorphism of A/J into
the maximal O*-algebra £ (D(m,)). Let 0,(t) be the topology on A/J induced by the
uniform topology on m,(A); viz. 0,(t) is determined by the seminorms {qy : M is a
bounded subset of (D(m,), )}, where gy (x + J) = sup{|(m,(x)&,n)| : &, in M}. Then
(A/J, 0,()) is an AO*-algebra [36] in the sense that it is algebraically and topologically
*-isomorphic to an O*-algebra with uniform topology [37]. We call (A/J, o,(t) the
enveloping AO*-algebra of A, denoted by O(A).

Lemma 2.11. Let A be as above.

(1) Every *-representation of A which is continuous in the uniform topology and which is
a direct sum of strongly cyclic representations factors through O(A). When A is either
complete and m-convex, or is countably dominated, every *-representation of A
continuous in the uniform topology factors through O(A).

(2) Let A be barrelled. Then o,(t) is coarser than the quotient topology t, on A/J.

(3) There exists a continuous *-homomorphism from O(A) into the pro-C*-algebra E(A).

(4) The following are equivalent.

(i) oy(z) is normable.
(ii) o,(t) is C*-normable.
(iii) There exists a linear norm on A/J defining a topology finer than o,(t).

When any of these conditions hold, and if A is barrelled, then A has a C*-enveloping
algebra; but the converse does not hold.

Proof. (1) follows from the construction of O(A) and Lemma 2.8. (2) Let A be barrelled.
Since J is closed. (A/J,1,) is barrelled ([32], ch. II, §7, Corollary 1, p. 61). Further, o, is



78 S J Bhatt

weakly continuous. Hence, o, is continuous in the uniform topology ([20], Theorem 4.1).
(3) Since J C srad A, the map

¢:A)J — A/stradA — E(A),p(x +J) = x + sradA

is a well defined *-homomorphism. Now, as E(A) is a pro-C*-algebra, E(A)/kerg, is a
C*-algebra for any p € K(A), denoted by E,(A), with the norm ||z + ker g, || = ¢,(z) and
E(A) = proj limE,(A), inverse limit of C*-algebras [26]. Let ¢, : E(A) — E,(A) be
¢p(z) = z+ ker g,,. For the continuity of ¢ : (O(A), 0,(t)) — (E(A),7), it is sufficient to
show the continuity of the *-homomorphism ¢, = ¢, 0 ¢ : O(A) — E,(A). Now the map

1 :A— A/srad (A) — E(A) — E,(A),(x) = (x + srad (A)) + ker g,

is a continuous bounded operator *-representation; and ¢ = ¢, o ji, j.(x) = x + I. Hence
¢, is continuous for each p € K(A).

(4) (1) if and only if (ii) if and only if (iii) follows from ([20], Theorems 3.2, 3.3). Let A be
barrelled. Let | | be a norm on A/J determining o,(t). Since t;, > 0,(1), poo(x) = |x + J|
defines a continuous C*-seminorm on A. Let p be any continuous C*-seminorm on A. Let
A, be the completion of A/ ker p in the C*-norm |x + ker p| = p(x). Then 7, : A — A,
my(x) = x + ker p defines a continuous bounded operator *-representation. By (1), there
exists a continuous *-homomorphism o, such that o, 0j, = m,. Since the uniform
topology on A, is the | | -topology, and since o, (t) is determined by | |, it follows that for
some k > 0, |0,(z)| < klz| for all z € A/J. Thus p(x) < kpso(x); and so p(x) < pso(x) for
all x € A, both being C*-seminorms. Thus p is the greatest continuous C*-seminorm on
A. By Lemma 2.8, E(A) is a C*-algebra. That the converse does not hold is illustrated by
Arens’ algebra A = L“[0, 1], wherein E(A) = (0), O(A) = A topologically as well.

3. Proofs of theorems 1.1, 1.2 and 1.4

Proof of Theorem 1.2. First we prove the following.

Assertion 1. Given a bounded subset M of (D(r),1,), there exists p € K,(A) and k > 0
such that gy (7(x)) < kr,(x) for all x € A.

By the continuity of =, given M, there exists k >0 and p € K,(A) such that
gu(m(x)) < kp(x) for all x € A. Let £ € M. Then

we(¥)] = [(7(x)¢, €)| < gm((x)) < kp(x)

for all x. Since w is representable, it is extendable to A'. The arguments in the proof of
Corollary 2.3(1) applied to the extension of we to A! give

we(x'x) < [[€]17p () < |I€]1Pp(x)?

for all x in A. Thus [[m,, (x){]| < [[[[p(x): and by the definition of r,, ||m.,(x)&]| <
||€]|rp(x) for all x in A. Since M is || ||-bounded, there exists / > 0 such that for all £ in
M, all xin A,

|we (x"x)| = [ (X)E]]* < Pry(x)*.
It follows that for all x in A, and all &, nin M,
(@€ m| < llmllwe(xx)'? < Pry ().

Thus gy (m(x)) < Pr,(x) for all x in A.
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Now, by Lemma 2.8, m = @, with each 7; : A — B(H;) norm continuous. By Lemma
2.6, there exists a closed representation (¢, D(o’),H) o' = @o; of E(A), with each
o; : E(A) — B(H;) norm continuous, o; oj = m; for all i. We shall eventually show
D(n) = D(d).

On the other hand, consider the *-representation (o, D(c),H) of A/srad (A) having
domain D(o) = D(m), and given by o(j(x)) = m(x) for all x € A. By ([37], Proposition
2.2.3, p. 39), on D(m), tr = ty+(p(x), Which is the graph topology on D(m) due to the
maximal O*-algebra £ (D(r)). Hence, on 7(A), the uniform topology Tg(A) = T£+(D(7r))
\W(A) = 71 (say), which, by lemma 2.8, is a pro-C*-topology. By ([37], Proposition 3.3.20,
p. 85), o(A/srad (A)) is contained in a Tg(D(ﬂ))-complete *-subalgebra of L (D(r)); and
o can be extended as a continuous *-homomorphism o(E(A),7) — [L"(D(r)), Té+(D<ﬂ))]
giving a closed *-representation o of E(A) on H with domain D(c) = D(7). Next we
prove the following.

Assertion II. As representations of E(A), o = ¢’.

This, we do, in the following steps.
(a) o is an extension of ¢’.

Clearly, D(0") C D(7) = D(0). We show o(z)|p() = 0’(z) for all z € E(A). Fix z €
E(A). Let n € D(m). Choose a net (x,) in A such that for all p € K(A),
gy (j(x,) —z) — 0. Choose an appropriate p by (I) above. Then

; . 2 2
o (iCer))n = a(ile))nll” = [l (e )n — mle)n]]
= wy((xr — x)"(xr — x))
<kry(x —xp)
= kqp(j(x),) —j(xr)) = 0.
Hence 7(x,)n is norm Cauchy in D(r); and similarly, 7(x)m(x,)n is norm Cauchy in D(r)
for all x € A. Thus 7(x,)n is Cauchy in (D(m), t), which is complete as 7 is closed. Thus
there exists £ € D(w) such that lim(x,)n = & in #,. This defines o(z) as o(z)n = &, which
gives o(2) py) = (2).
(b) o is a closed representation of E(A).
Indeed, as 7 is closed.

D(0) = D(r) = [ {D(m(x)) : x € A"}
= WD(o(j(0) - j(x) € j(A") = (j(4)")}
> {D(0.(2)) : 2 € (E(4))'}
=D(5) D D(o),
hence D(0) = D(o’). This also follows from the fact that 7 is closed: on D(o) = D(7),

tr =t (D) = Loy as well as m(A) C o(E(A)) C L7 (D(r)). This further implies

T£+(D(”)>|0(E< 4) = TSE(A)); which, in turn gives the following.

(c) ¢’ is continuous in the uniform topology as a *-representation of (E(A), 7).

Now, by (c), Lemma 2.8 implies that the closed representation ¢’ is standard; hence
self-adjoint, and so maximal hermitian ([31], (I), Lemma 4.2). Then (a) gives ¢’ = o,
thereby verifying (II). This completes the proof of Theorem 1.2.
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If 7 is irreducible, then o is irreducible, hence is a bounded operator representation by
[3], ([6], Theorem 4.7). This gives Corollary 1.3.

Proof of Theorem 1.1. Let A be Frechet. Then A = proj limA,,, an inverse limit of a
sequence of Banach *-algebras A,. Assume that each *-representation (and hence the
universal representation ,) of A is a bounded operator representation. Since A is Frechet,
m, is continuous. Let o be the representation of E(A) defined by Theorem 1.2
corresponding to m,. Then o is also a bounded operator *-representation. Further, as A is
Frechet, E(A) = proj lim C*(A,) is also Frechet. Thus o is continuous and there exists a
continuous C*-seminorm g, on E(A) such that ||o(z)|| < go(z) for all z € E(A). Now the
bounded part of E(A)

b(E(A)) ={z € E(A) : q(z) < oo for all continuous C*-seminorm g}
is a C*-algebra with the norm

l1zl] . = sup{q(z) : ¢ is a continuous C*-seminorm on E(A)}
= sup{gy(2) : p € Ki(A)}.

Since o is one-one, the restriction o’ = 0|, z,) is a *-isomorphism of the C*-algebra
b(E(A)) into B(H,). Hence, for all z € b(E(A)),

10" @I = [zl = a5(2) = llo(2)]]
It follows that b(E(A)) = E(A). As E(A) is Frechet, the continuous inclusion map
(b(A),]] |ls) — (E(A),T) is a homeomorphism. The converse follows from Theorem 1.2.

Proof of Theorem 1.4. By Corollary 2.3, I = J = srad (A) in the notations of Lemma 2.9.
Let K = A/J, a Frechet *-algebra in the quotient topology from A. By Lemma 2.8, the
uniform topology 7p on m,(A) is a o-C*-topology; and the topology o,(¢) on K is
determined by the (continuous) C*-seminorms {sg(-) : G € F}, where F is the collection
of all subspaces D of D(m,) such that D is m,-invariant and 7| is a bounded operator
*-representation; and sg(z) = ||m.|5(x)|| for all z = x + J, x € A. Thus 0, (r) < 7 where 7
is the relative topology from E(A) defined by all C*-seminorms on E(A). To show that
T < s,(1), let z, =x, +J € K, z, — 0 in 0,(f). Let g be any C*-seminorm on A. There
exists 7€ R(A) such that g(x) = ||m(x)||, and 7= @{ns|f € F;} for a suitable
F, CP,A,t). Now H,=&sr Hf CD(m,), Hr € F, and ||7(x,)|| = su,(z0) — 0.
Hence z, — 0 in 7. Thus 7 = 0,(r), and E(A) = (O(A),0,(t)), the completion. The
remaining assertion follows from Lemma 2.11.

4. Remarks

PROPOSITION 4.1
Let A be a *-sb Frechet *-algebra. If A is hermitian, then A is a Q-algebra.

Proof. We can assume that A is unital. Let P be a sequence of submultiplicative
*-seminorms defining the topology of A. Let A = proj limA, be the Arens-Michael
decomposition expressing A as an inverse limit of a sequence of Banach *-algebras;
where, for g € P, A, is the Banach *-algebra obtained by completing A/ ker ¢ in the norm
||x +kerg|| = g(x). Let 7y : A — A, be my(x) = x + kergq.
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Case 1. Assume that A is commutative. By hermiticity, spa(h) = {¢(h) : ¢ € M(A)} C
R for all h = h* € A. Note that since A is hermitian. M(A) = M*(A). Using ([23],
Proposition 7.5), it follows that for each g, M(A,) = M*(4,); hence by ([7], Theorem
35.3, p. 188), each A, is hermitian. Now by ([17], Lemma 41.2, p. 225), for each z € A,
the spectral radius satisfies

1/2
ra,(2) <ra,(22) 2= |24l

| |, denoting the Gelfand-Naimark pseudonorm on A,. Then m,(x) = |my(x), defines a
continuous C*-seminorm on A. By Lemma 2.10, there exists a greatest continuous C*-
seminorm p..( ) on A. By ([23], Corollary 5.3), for each x € A,

ra(x) = sup{ra, (7y(x))} < sup{my(x)} < poc(x).

By the continuity of p.,, there exists a p € K;(A) and k > 0 such that for all x in A,
r(x) < poo(x) < kp(x). Tt follows from ([23], Proposition 13.5) that A is a Q-algebra.

Case 2. Let A be non-commutative. Let M be a maximal commutative *-subalgebra of A
containing the identity of A. Since M is spectrally invariant in A, M is also hermitian. By
*-spectral boundedness and hermiticity, each positive functional on M can be extended to
a positive functional on A ([17], Theorem 9.3, p. 49). It follows from ([15], Corollary 2.8)
and the continuity of positive functionals on unital Frechet *-algebras, that for all z € M,
Poo(2) = PM(2) < ru(z*2)"/%, p™ being the greatest C*-seminorm on M and ry(-)
denoting the spectral radius in M. Thus M is a commutative hermitian algebra with a C*-
enveloping algebra. By case 1, M is a Q-algebra. Further, M being hermitian, the Ptak’s
function x — rM(x*x)l/2 is a C*-seminorm on M ([17], Corollary 8.3, p. 38; Theorem
8.17, p. 45).

Now let x € A, and take M to be the maximal commutative *-subalgebra containing
x*x. Let rg(-) denote the spectral radius in an algebra K. Then by Ptak’s inequality in
hermitian Frechet *-algebras ([17], Theorem 8.17, p. 45)

ra(x) < rA(x*)c)l/2 = rM(x*x)1/2 zpi/lo(x*)c)l/2 :poo(x*x)l/2 < g(x),

q being a *-algebra seminorm on A depending on p,, only. It follows from ([23],
Proposition 13.5) that A is a Q-algebra.

(4.2) (i) It is claimed in ([5], Corollary 2.4) that a complete hermitian m-convex *-algebra
with a C*-enveloping algebra is a Q-algebra. Regrettably, there is a gap in the proof. The
author sincerely thanks Prof. M Fragoulopoulou for pointing out this. It is implicitely
used in the ‘proof’ therein that the completion of a hermitian normed algebra is
hermitian. By Gelfand theory, this is certainly true in the commutative case, but is not
true in non-commutative case (see ([17], p. 18)). Thus ([15], Corollary 2.4) remains valid
in commutative case; and the above proposition partially repairs the gap in the non-
commutative case. Consequently ([15], Lemma 2.15, Theorem 2.14) remains valid for
Frechet algebras. Is a hermitian Frechet algebra with a C*-enveloping algebra a
Q-algebra? (ii) The algebra C(R) of continuous functions on R exhibits that the condition
*-sb can not be omitted from the above proposition. It also follows from above that a *-sb
o-C*-algebra is a C*-algebra.

(4.3) In Theorem 1.2, the assumption that 7 is closed can not be omitted. Let A = C*(R),
the Frechet *-algebra of C* functions on R, with pointwise operations and the topology



82 S J Bhatt

of uniform convergence on compact subsets of R of functions as well as their derivatives.
Then E(A) = C(R), the algebra of continuous functions on R with the compact open
topology. On the Hilbert space H = L*(R), the *-representation 7 of A with
D(m) = C*(R), w(a)f = af, cannot be extended to a *-representation of C(R) with
the same domain ([10], Example 4.7).

(4.4) Theorem 1.1 means that a Fechet *-algebra has a C*-enveloping algebra if and only
if it is a BG*-algebra [24]. In the non-metrizable case, it follows from Theorem 1.2 that if
A is a complete topological m-convex *-algebra with a C*-enveloping algebra, then every
*-representation of A which is continuous in the uniform topology is a bounded operator
representation. However, the converse does not hold. This is exhibited by the BG*-algebra
C[0,1] of continuous functions on [0,1] with the pro-C*-topology 7 of uniform
convergence on all countable compact subsets of [0,1]. Thus Theorem 1.1 is false without
the assumption that A is Frechet. It would be of interest to find an example of a
topological algebra with a C*-enveloping algebra which is not a BG*-algebra.

(4.5) Yood [42] has shown that a *-algebra A admits a greatest C*-seminorm if and only if
sup | f(x)] < oo for each x, where the sup is taken over all admissible states S; and by
Lemma 2.10, this happens for a Frechet A if and only if A has a C*-enveloping algebra.
Yood’s result is an algebraic version of ([5], Corollary 2.9) that states that a complete
m-convex algebra has a C*-enveloping algebra if and only if S is equicontinuous.

(4.6) (1) Let m be a *-representation of a complete locally m-convex *-algebra A with a
bounded approximate identity. Let A have a C*-enveloping algebra. Is 7 continuous in the
uniform topology? In particular, let ™ be a bounded operator *-representation. Is 7w norm-
continuous?

*

(i1) Let A be a pro-C*-algebra (more generally, a complete m-convex *-algebra with a
bounded approximate identity). Let f be a representable, not necessarily continuous,
positive functional on A. Is the GNS representation 7, a bounded operator representation?
Is every *-representation of A weakly unbounded?

These are motivated by the point of view ([5], Remark 2.11, p. 207) that a topological
*-algebras with a C*-enveloping algebra provide a hermitian analogue of a commutative
Q-algebra. It is easy to see that a *-representation 7 of a locally convex Q-algebra is a
bounded operator representation and is norm continuous.

5. Crossed product constructions

We recall the crossed product of a C*-dynamical system (G, A, «). Let « be a strongly
continuous action of a locally compact group G by *-automorphisms of a C*-algebra A.
Let C.(G,A) be the vector space of all continuous A-valued functions with compact
supports. It is a *-algebra with twisted convolution

xxy(g) = / x()a(y(h ' g))dh

and the involution x*(g) = A(g) ' ag(x(g™"))*. The Banach *-algebra L'(G,A) is the
completion of C.(G,A) in the norm ||x|[, = [ ||x(h)||dh; and the crossed product C*-
algebra C*(G,A, a) is the completion of L'(G,A) in its Gelfand—-Naimark pseudonorm
||x|] = sup{||7(x)|| : * € R(L'(G,A))}, which is, in fact, a norm. Thus it is the
enveloping C*-algebra of the Banach *-algebra L'(G,A). The C*-algebra C*(G,A, )
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can also be realized as the enveloping C*-algebra of non-normed topological *-algebras
smaller than L'(G,A).

Let 27" be the collection of all compact, symmetric neighbourhoods of the identity in G.
For K € A, let Ckx(G,A) = {f € C.(G,A) : suppf C K}, a Banach space with the norm
[|f]| = sup{||f(x)]| : x € K}. The inductive limit topology 7 on C.(G,A) is the finest
locally convex topology on C.(G,A) making each of the embeddings Ck(G,A) —
C.(G,A), for all K € A, continuous. Then C.(G,A) is a locally convex, non- m-convex,
topological *-algebra with jointly continuous multiplication and continuous involution.
From ([18], p. 203), E(C.(G,A)) = C*(G, A, o). This immediately leads to the following.

PROPOSITION 5.1

Let (G,A, @) be a C*-dynamical system. Let B be any topological *-algebra containing
C.(G,A) as a dense *-subalgebra and satisfying C.(G,A) C B C C*(G,A,a). Then
E(B) = C*(G,A, o).

For 1 < p < oo, let AP(G,A) = L'(G,A) N ¥ (G, A), a Banach *-algebra with the norm
x|, = [|x][; + [[x]|,- The above applies to B = ({A”(G,A): 1 < p < oo}, a locally m-
convex Q-Frechet *-algebra with the topology of | | ,-convergence for each p.

Smooth elements of a Lie group action

Let A be a unital C*-algebra and G be a Lie group acting on A. Let A denote the
infinitesimal generators of actions of 1-parameter subgroups of G on A, viz.,

A = {(d/dr) oo lpg + £ — ul)
is a continuous homomorphism of R into G}.
Then A consists of derivations and it is a finite dimensional vector space ([11], p. 40)

having basis, say 41, 6, . . ., 64. Then C"-elements (1 < n < co) and C*-elements of A for
the action « are defined as follows.

C"(A) ={x € A: x € Dom (6;,6;, ...6;,) for all n-tuples {&;,,...,6;} in A}
C*(A) = {C"(4) :neN}.

By ([11], Proposition 2.2.1), each C"(A) and C*(A) are dense *-subalgebras of A; and
C"(A) is a Banach *-algebra with the norm

n d
el = el + >0 > 11646s - 6, ()1 /R

k=1 iy,is,....ik=1

Then C*°(A) = proj lim C"(A) is a Frechet *-algebra with the topology defined by the
norms {|| |,:n=1,2,...}.

Lemma 5.2. C*(A) has a C*-enveloping algebra and E(C*(A)) = A.

Proof. Tt is well known that C"(A) and C*(A) are spectrally invariant in A. Hence
(C"(A),|| |]) and (C*(A),]|| ||) are Q-algebras in the norm || || from the C*-algebra A.
Since || || <|| |],» (C>(A),7) is also a Q-algebra. By Lemma 2.10, (C*(A),7) is an
algebra with a C*-enveloping algebra. Let 7 : B — B(H), where B = C"(A) or C*°(A), be
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a bounded operator *-representation on a Hilbert space H. Then for all x € B,
2 * * *
w()II" = [lm ()| = ri) (m(x"x)) < reg) (7(x"x))
< rp('x) < Il

Hence 7 is || ||-continuous; and by the density of C>(A) in A,  extends uniquely to a
*-representation of A on H. It follows that E(C*(A)) = C*(C"(A)) = A for all n.

An element x € A is analytic if x € C*°(A) and there exists a scalar 7 > 0 such that
00 d
Z( S N6, 5ik(X)I/k!)t" < o
k=0 \i1,iz,...,0x=1
whereas x is entire if x € C*°(A) and for all ¢ > 0, it holds that
00 d
Z( > llenby 6,»k<x>|/k!)zk <.
k=0 \i,iz,—ix=1

Let C¥(A) (respectively C*(A)) denote the set of all analytic (respectively entire)
elements of A. Then each of CY(A) and C*“(A) is a *-subalgebra of A and
C*(A) C C¥(A) C C*®(A). For each t > 0 and x € C"(A), define

n d
P = Il + Z( >l -~-6ik(x>||/k!>t’<.
=1 Ntz =1
Then || ||, and p,( ) are equivalent norms. Hence P' = (p!( ))andp = (|| ||,) define

the same C*-topology 7 on C(A). Let A, = {x € C™(A) : p'(x) = sup, pi(x) < o0}, a
*-subalgebra of C*°(A), which is a Banach *-algebra with norm p’( ), and which
consists of elements of C*°(A) whose numerical ranges defined with respect to P’ are
bounded. For ¢ < s, the inclusion A; — A; is norm decreasing. Thus

C(A) = (|{A : t > 0} = [ A, = proj limA,,
n=1

a Frechet m-convex, *-algebra with the topology 7., defined by the family of norms
{P'( ):te N} (setting p°( ) =|| |P. Further,

o0
(@A) =JA = JAiu = ind limA, ,
>0 n=1

with the linear inductive limit topology 7. By ([21], Corollary 10.2, Lemma 10.2, p. 317)
and ([32], Proposition 6.6, p. 59), (C¥(A), 7,,) is a complete m-convex *-algebra which is
a Q-algebra. Thus C¥(A) is an algebra with a C*-enveloping algebra. Further if each A4, is
dense and spectrally invariant in C*°(A), then C*“(A) is an algebra with a C*-enveloping
algebra and E(C*“(A)) = E(C¥(A)) = A.

The smooth crossed product

We recall the smooth Frechet algebra crossed product [29]. Let B be a Frechet *-algebra.
Let (p,) be a sequence of submultiplicative *-seminorms defining the topology of B. Let
[ be a strongly continuous action of R by continuous *-automorphisms of B. Then (3 is
called m-tempered (respectively isometric) if for each m € N, there exists a polynomial
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P(X) such that p,,(5,(x)) < P(r)pm(x) for all x € B, r € R (respectively for each m € N,
Pm(Br(x)) = pm(x) for all x € B, all r € R). Let S(R) be the Schwartz space consisting of
the rapidly decreasing C*°-functions on R. It is a Frechet space with the Schwartz
topology. The completed projective tensor product S(R) ® B = S(R,B) consists of
B-valued Schwartz functions on R. If 3 is m-tempered, then S(R,B) becomes an m-
convex Frechet algebra with twisted convolution

(f + 8)(r) = / F()0s(8(r — 5))ds.

This Frechet algebra is called the smooth Schwartz crossed product of B by the action /3
of R, and is denoted by S(R, B, 3). In general, S(R, B, 3) need not be a *-algebra ([34],
§4). If 3 is isometric, then the completed projective tensor product

L'(R)® B = L'(R,B)

= {f : R — B measurable function :/pm(f(r))dr < oo for all m € N}
R

is a Frechet *-algebra with twisted convolution and the involution f*(r) = 8,(f(—r)"),
denoted by L!(R, B, ). One has S(R,B, 3) C L' (R, B, 3).
The following is closely related with ([29], Lemma 1.1.9).

Lemma 5.3. Let A be a dense Frechet *-subalgebra of a Frechet *-algebra B. Assume that
A and B can be expressed as inverse limits of Banach *-algebras A, and B, respectively,
where A, is dense in B, for all n; the inclusions A — A,, B — B,, have dense ranges for
all n; and each A, is spectrally invariant in B,. Then A is spectrally invariant in B and
E(A) = E(B).

Proof. By ([15], Theorem 4.3), E(A) = proj imE(A,) and E(B,) = proj lim E(B,).
Since A, — B, is spectrally invariant with dense range, A, is a Q-normed algebra in the
norm of B,. Hence every C*-seminorm on A, is continuous in the norm of B,; and
extends uniquely to B,. Thus A, and B, have the same collection of C*-seminorms. It
follows that E(A,) = E(B,) for all n; and so E(A) = E(B).

PROPOSITION 5.4

Let o be an m-tempered strongly continuous action of R by continuous *-automorphisms
of a Frechet *-algebra B contained as a dense *-subalgebra of a C*-algebra A such that
E(B) = A. Then E(C*(B)) = A.

Proof. Let || || denote the C*-norm on A. Let (p,) be an increasing sequence of
submultiplicative *-seminorms defining the topology of B. In view of the continuity of the
inclusion B — A, the increasing sequence g,( ) =p,( )+ || of norms also deter-
mines the topology of B. Let B, = (B, ¢,) be the completion, which is a Banach *-algebra.
Then B = proj.lim B, = (\B,. Now, for any n € N, r € R, and x € B,

qn(ar(x)) = [l (x)[| + pu(w(x))
= ||x[| + poly (r)pa(x) = poly’ (r)qu(x)

for some polynomial poly’( ). It follows that « is m-tempered for (g,( )) also; and it
induces an action o™ of R by continuous *-automorphisms of B,. Let B, ,, be the Banach



86 S J Bhatt

*-algebra consisting of all C"-vectors in B, for al By ([33], Theorem 2.2), B, ,,, — B,
are spectrally invariant embeddings with dense ranges. Also, C*°(B) = proj lim,,
By, m = proj lim, B, ,. Now Lemma 5.2 implies that C*(B) is spectrally invariant in B
and E(C*(B)) = A.

PROPOSITION 5.5

Let o be a strongly continuous action of R by *-automorphisms of a C*-algebra A. The
following hold.

(a) The Frechet algebras S(R, A, ) and S(R,C*(A), @) are Q-algebras.

(b) The embeddings S(R, C*(A ), a) = S(R,A, a) — C*(R,A, a) are continuous, spec-
trally invariant and have dense ranges.

(c) The Frechet algebra S(R,C*(A),«) is *-algebra and E(S(R,C*(A),a) =
C*(R,A, ).

Proof. By ([34], Theorem A.2), o leaves C*(A) invariant. In ([34], Corollary 4.9), taking
the scale o to be the weight w(r) =1+ |r| on G =R = H, it follows that S(R,C*
(A), @), is a Frechet *-algebra. Now &;(f)(r) = a,(f(r)) defines an action & of R on the
Frechet algebra S(R,A,«) for which, by ([29], p. 189), C*(S(R,A,«a)) = S(R,
C*(A), ) homeomorphically. Note that the embeddings

S(R,C*(A),a) — S(R,A,a) — L'(R,A,a) — C*(R,A, a)

are continuous; S(R,C*(A),«a) is dense in S(R,A,a) by ([34], Theorem A.2); and
S(R,A, ) is dense in L!(R,A, o); which, in turn, is dense in C*(R, A, a).

Now let {| |,} be an increasing sequence of submultiplicative seminorms defining the
topology of S(R,A, «). Let (B, | |,) be the Hausdorff completion of S(R,A,«) in | |,.
Then B, is a Banach algebra and S(R,A, «) = proj.lim B,. Since ||c,(x)|| = ||x||, the
action & of R on S(R,A,«a) extends to a strongly continuous action a" of R by
automorphisms of B,,. Let C"(B,) be the Banach algebra of all C"-vectors in B, for the
action of &. As noted in ([29], p. 189), C"(B,,) is dense and spectrally invariant in B,;
and S(R,C*(A), o) = proj lim C"(B,). Let x € S(R,C*(A), ), x = (x,) being a cohe-
rent sequence with x, € C" (Bn) for all n € N. Now

SPS(R,C>(A USPCn B,) (Xn) USPB (xn) —SPS(RAa)( )
Thus S(R,C*(A),«) is spectrally invariant in S(R,A, «); which in turn is spectrally
invariant in C*(R,A,a) by ([33], Corollary 7.16). Thus each of S(R,C*(A),«) and
S(R,A, ) are Q-normed algebras in the C*-norm of C*(R,A,«); and hence are Q-
algebras in their respective Frechet topologies. Using Lemma 2.10, E(S(R,C*
(A)aa)) - C*(R,A,a).

Proof of Theorem 1.5. Since C*°(B) = B, the Frechet m-convex algebra S(R, B, «) is a
*-algebra by ([34], Corollary 4.9). Since B is Frechet and sits in the C*-algebra A, B is
*-semisimple. Similarly, since the inclusion S(R, B, ) — C*(R,A, «) is continuous and
one-one, S(R, B, ) is also *-semisimple. To prove that E(S(R, B, «)) = C*(R, A, ), it is
sufficient to prove that any *-representation o :S(R,B,«) — B(H,) extends to a
*-representation (&) : C*(R,A, o) — B(H,). This would imply that the C*-norm on
S(R, B, &) induced by the C*-algebra norm on C*(R,A, «) is the greatest (automatically
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continuous) C*-seminorm on S(R, B, «). This is shown below by arguments analogous to
those in ([25], Proposition 7.6.4, p. 255).

Let (x)) be a bounded approximate identity for A contained in B and which is also a
bounded approximate identity for B. For each n € N, let f, € C>°(R) be such that
0<f, <1, fulx) =1 for all x € [—n,n], and supp f, C [-n — 1,n+ 1]. Then (f,) is a
bounded approximate identity for S(R) (pointwise multiplication) contained in C2°(R).
The inverse Fourier transforms g, of f, constitute a bounded approximate identity for
S(R) with convolution. Thus y, y = g, ® x) constitute a bounded approximate identity
for S(R, B, ). Given a *-representation o : S(R,B,«) — B(H,) automatically contin-
uous, let U(H,) be the group of all unitary operators on H,. Define 7 : B — B(H,) and
U:R— U(H,) by

m(x) = (lifil) o(xymrn( ),

Ui = (lrllfil) oo (y(- = 1))).

The limits are taken in the weak sense; and they exist. As in ([25], § 7.6, p. 256), it is
verified that 7 is a *-representation of B; U is a unitary representation of R;
Um(x)U; = m(oy(x)) forall 1 € R, all x € B; and for all y € S(R, B, &), o(y) = [ 7(y(t))
U.dt. Now, since E(B) = A, extends to a *-representation 7:A — B(H,) so that
(7,U,H,) is a covariant representation of the C*-dynamical system (R,A,«). Then
6(y) = [ ®(y(¢))U, dt defines a non-degenerate *-representation of the Banach *-algebra
L'(R, B, a); and hence extends uniquely to a *-representation & of C*(R, B, «). This & is
the desired extension of ¢. This shows that E(S(R, B, «)) = C*(R,A, ).

Further, suppose that the action  of R on B is isometric. Then by [29], L' (R, B, a) is a
*-algebra, which is a Frechet m-convex *-algebra; and

S(R,B,a) — L'(R,B,a) — L'(R,A, ) — C*(R,A, )

are continuous embeddings with dense ranges. It follows that E(L'(R,B,a) =
C*(R,A, «). This completes the proof of the theorem.

Actions on topological spaces

(a) Let M be a locally compact Hausdorff space. Let o : M — [0, 00) be a Borel function,
o(m) > 1 for all m € M. Assume that ¢ is bounded on compact subsets of M. Following
([34], §5), let

C°(M) = {f € Co(M) : ||o?f]| < oo for all d € N},

called the algebra of continuous functions on M vanishing at infinity o-rapidly. It is
shown in [34] that C?(M) is a Frechet m-convex *-algebra with the topology defined by
seminorms

lof 1] = sup{|(o(x))*f ()] : x € M}, d€N;

and that C.(M) — C?(M) — Cy(M) are continuous embeddings with dense ranges. Thus
E(C°(M)) = Co(M). In fact, C°(M) is an ideal in Cy(M); hence inverse closed in Co(M);
and so is a Q-algebra.

(b) Let G be a Lie group acting on M. If f € C7(M), define oy (f)(m) = f(g"'m). By
([34], §5), if o is uniformly G-translationally equivalent (in the sense that for every
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compact K C G, there exists / € N and C > 0 such that o(gm) < Co(m)' for all g € G,
m € M), then g — o, defines a strongly continuous action of G by continuous
*-automorphisms of C?(M). Then the space C*°(C?(M)) consisting of C*-vectors for the
action « of G on C?(M) is an m-convex Frechet *-algebra with a C*-enveloping algebra
and E(C*(C7(M)) = Co(M).

(c) In particular, let G = R, M be a compact C*°-manifold, and let the action of R on M
be smooth. Then the induced action o on C(M) is smooth, so that «,,(C*(M)) C C*(M)
for all r € R. It follows from Theorem 5.1 that E(S(R, C* (M), o) = C*(R, C(M), «) the
covariance C*-algebra.

6. The Pedersen ideal of a C*-algebra

Let A be a non-unital C*-algebra. Let K4 be its Pedersen ideal. It is a hereditary, minimal
dense *-ideal of A. For a € A, let L, = (Aa)~, R, = (aA)~, I, be the closed *-ideal of A
generated by aa*. Since a € L, (R, aa* € I,. Let K} = Ko (A" be the positive part of
K, endowed with the order relation induced from that of A*. Let K¢ = (J{l, : a € K }.

Lemma 6.1. K'i€ is a dense *-ideal of A containing Ka; and A = C*-indlim {I, : a € K| }.

Proof. Let a € KI. Then a*> = aa* € I,; and 1, being a C*-algebra, a = (az)l/2 el,.
Thus KX C Kj¢. Observe that for any x = x* € K4, x € I,. Indeed, e Kj; hence
x> €l and lx\ € I,. But than taking the Jordan decomposition x =x" —x~ in A,
(x")? = (x")? +xx~ = x"|x| € I; so that x* €I, x~ €1, and x € I,. In particular,
x? € I and |x| € I2. By repeating this argument, x € I,. C K¢ for any x = x* € K,. It
follows that K4 C K. Now, by ([28], Lemma 1), 0 <a < b in A implies L, C Ly,
R, C Ry and I, CI; and Ky = |J{L, :a € K} =|U{R,: a € K} }. The family {I, :
a € K, } forms an inductive system of C*-algebras; and C*-ind lim{l,:a € K} =
(U{l.:a€Kf})” =A, () denoting the norm closure. This proves the lemma.

Let #, (respectively 1,) be the finest locally convex linear topology (respectively finest
locally m-convex topology) on K making continuous the embeddings I, — K}, where
a € K. Then (K}, 1) (respectively (K%, 1,)) is the linear topological inductive limit
(respectively topological algebraic inductive limit) of {I, : a € K} } ([21], ch. IV).

Proof of Theorem 1.6. In the present set up, ([21], p. 115, 118, 125) implies that | = 1,,
equal to 7 say, and (K}, 7) is a complete m-barrelled locally m-convex *-algebra; and the
|| ||-topology on K’ is coarser than 7. Since K/} is an ideal, it is inverse closed in its
|| ||-completion A, and hence (K7, || ||) and (Kj, || ||) are Q-algebras. This implies that
any *-homomorphism from K¢ into B(H) for a Hilbert space H is || ||-continuous and
extends uniquely to A. Thus || || is the greatest C*-seminorm on K’{°. To show that || || is
the greatest 7-continuous C*-seminorm on K¢ so that E(K) = A, it is sufficient to show
that (K¢, 7) is a Q-algebra. To that end, in view of ([23], Lemma E.2), we show that 0 is
a T-interior point of the set (K}°) | of quasiregular elements of K. Note that, by ([21],
p. 114), basic 7-neighbourhoods of 0 in K}° are precisely of the form V =|co|
{U(Uq:a € K;)}, where |co| denotes the absolutely convex hull and U, denotes a
convex balanced neighbourhood of 0 in (|| ||). For any a € K, (I,]| ||) is a O-
algebra, and being an ideal in A, (I,)_, = A_; () I,. Hence, for the zero neighbourhood
Us={x € 1o Ixll < 1} in (T, ] 11,
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Ua C (L) = (K3)_y()1a C (K5)_y; and
|co|{U<Ua:aeK:>}={xeKz° Wl <1} = U (say)

is a zero neighbourhood in (K%¢,7) contained in (K}¢) ,. It follows that (K%, 7) and
(Ka,T) are Q-algebras. Now, as in the proof of ([28], Theorem 4), Ki* = U{l,, }. (e)
being a bounded approximate identity for A contained in K4. Thus if A has countable
bounded approximate identity, then K¢ is an LFQ-algebra; and 7 is the finest (unique)
locally convex topology on Ki° such that for each A, 7| I, is the norm topology.

7. The groupoid C*-algebra

We follow the terminology and notations of [31]. Let G be a locally compact groupoid,
i.e., a locally compact space G with a specified subset G> C G x G so that two conti-
nuous maps G — G, x — x~ !, and G*> — G, (x,y) — xy are defined satisfying
(xy)z = x(yz), x '(xy) =y and (zx)x ! =z The unit space of G is G° = {xx!
x€ G} ={x'x:x€ G} Let r(x) = xx~! and d(x) = x 'x. Assume that there exists a
left Haar system {N":u € G’} on G, ie., a family of measures \* on G such that
supp )\” = r (u); for eachf C CA(G), u— ffd)\” is continuous; and for all x € G and
feCG), [flxy) YA (y = [f(y)d\ )(y). Let o be a continuous 2-cocycle in
7*(G, T) Let t denote the usual inductive hmlt topology on C.(G). Then (C.(G),t) is a
topological *-algebra with jointly continuous multiplication

frgx / flxy o(xy,y™ X (y)

and the involution f*(x) = (f(x ")o(x,x~'))” ([31], Proposition I.1.1, p. 48). The I-
norm on C.(G, ) is |Lf1l, = max({|fll, 17],,), where

171l = sup{ [1slaxue 00}7 11l = sup{ [1san e 00}7

A = (X" being the image of \“ by the inverse map x — x~"' ([31], p. 50). Then || ||,
is a submultiplicative *-norm on C.(G,o). The L'-algebra of (G, o) is the completion
A = (C.(G,0),]| ||,),aBanach *-algebra. For f in C.(G, o), define || f|| = sup{||=(f)
7 running over all weakly continuous, non-degenerate *-representations 7 : (C.(G, o),
t) — B(H) satisfying ||7(f)|| <||f]|, for all f. Then || || defines a C*-norm on C.(G, 0);
and the groupoid C*-algebra of (G, 0) is C*(G,0) = (C.(G,0),|| ||)”, the completion.
The following can be proved using cyclic decomposition and ([31], Corollary 1I.1.22,
p. 72).

PROPOSITION 7.1

Let G be second countable having sufficiently many non-singular G-Borel sets. Then
E(C.(G,0)) = C*(G,0).

8. The universal *-algebra on generators with relations

Let G be any set. Let F(G) be the free associative *-algebra on generators G, viz., the
*-algebra of all polynomials in non-commuting variables G][G* where G* =
{x* 1 x € G}. Let R be a collection of statements about elements of G, called relations
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on G, assumed throughout to be such that they make sense for elements of a locally
m-convex *-algebra. A Banach (respectively C*-) representation of (G, R) is a function p
from G to a Banach *-algebra (respectively a C*-algebra) p: G — A such that
{p(g) : g € G} satisfies the relations R in A. Let Repg(G,R) (respectively Rep(G,R))
be the set of all Banach representations (respectively C*-representations) of (G,R).
Motivated by ([27], Definition 1.3.4), it is assumed that R satisfies the following.

(i) The function p : G — {0} is a Banach representation of (G, R).

(ii) Let p: G — A be a representation of (G,R) in a Banach *-algebra A. Let B be a
closed *-subalgebra of A containing p(G). Then p is a representation of (G, R) in B.
(iii) Let p be a representation of (G, R) in a complete locally m-convex *-algebra A. Let
¢ : A — B be a continuous *-homomorphism into a Banach *-algebra B. Then ¢ o p is

a representation of (G, R) in B.
(iv) Let A be a complete locally m-convex *-algebra expressed as an inverse limit of
Banach *-algebras viz. A = proj.limA,. Let 7, : A — A, be the natural maps. Let
p : G — A be a function such that for all p, 7, o p is a representation of (G, R). Then

p is a representation of (G, R).

*

DEFINITION 8.1

(a) (Blackadar) (G, R) is C*-bounded if for each g in G, there exists a scalar M(g) such
that ||p(g)|| < M(g) for all p € Rep (G, R).

(b) (Blackadar) (G, R) is C*-admissible if it is C*-bounded and the following holds.
(bC*) If (po) is a family of representations p, : G — B(H,) of (G,R) on Hilbert spaces
H,, then @®p, : G — B(®H,) is a representation of (G, R).

(c) (G, R) is weakly Banach admissible if given finitely many representations p; : G — A;
(1 <i<n)of G into Banach *-algebras, the map g — pi(g) B p2(g) B ... ® pu(g) is a
representation of (G,R) in @ A;. (G,R) is weakly C*-admissible [27] if this holds with
Banach algebras replaced by C*-algebras.

The class of relations making sense for elements of a Banach *-algebra is smaller than
the class of relations making sense for elements of a C*-algebra. The usual algebraic
relations involving the four elementary arithmetic operations on elements of G and G* do
make sense for Banach *-algebras; but relations like x* > x~ for x = x* in G, or like
|x| > [y| for elements x, y in G, which make sense for C*-algebras, fail to make sense for
Banach *-algebras. We refer to [27] for relations satisfying (i)—(iv) except (ii). The
relation (suggested by the referee). “The elements a, b and ¢ generate A” fails to satisfy
Definition 8.1(c). Our definition of weakly Banach admissible relations is very much
ad hoc aimed at exploring a method of constructing non-abelian locally m-convex
*-algebras.

Lemma 8.2. (a) Let (G,R) be weakly Banach admissible. Then there exists a complete
m-convex *-algebra A(G,R) and a representation p : G — A(G,R) such that given any
representation ¢ :G — B into a complete m-convex *-algebra B, there exists a
continuous *-homomorphism ¢ : A(G,R) — B satisfying ¢ o p = o.

(b) ([27], Proposition 1.3.6). Let (G, R) be weakly C*-admissible. Then there exists a pro-
C*-algebra C*(G,R) and a representation py : G — C*(G,R) such that given any
representation o : G — B of G into a pro-C*-algebra B, there exists a continuous
*-homomorphism ¢ : C*(G,R) — B such that ¢ o p,, = 0.
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Proof. (a) Let K = K(F(G)) be the set of all submultiplicative *-seminorms p on F(G) of
the form p(x) = ||o(x)||, o running through all Banach representations of G. For p € K,
let N, ={xe€ F(G):p(x)=0} and N,=N{N,:p €K} a *-ideal of F(G). Let
B = F(G)/N,. Take p(x+ N,) = p(x). Let ¢ be the Hausdorff topology defined by
{P:p€K}. Let A(G,R) be the completion of (B,r). Let p: G — A(G,R) be
p(8) = g + Na.

Claim 1. p is a representation of G in A(G,R).

Let g be any r-continuous submultiplicative *-seminorm on A(G,R). Let A, be the
Banach *-algebra obtained by the Hausdorff completion of (A(G,R), q). By (iv) above, it
is sufficient to prove that m, 0 p: G — A, is a representation of (G,R). Since q is -
continuous, there exists py,pa, ..., px in K such that g(x) < ¢ max p;(x) for all x € F(G);
and each p; is of form p;(x) = ||o;(x)||, ;i : G — A(i) being a representation into some
Banach algebra A(i). By (c) of Definition 8.1, there exists a Banach *-algebra B and a
representation o : G — B such that ¢g(x) < ||o(x)|| for all x € F(G). In view of (ii), we
assume that B is generated by o(G). Let ¢:B— A, be ¢(o(x)) = (x+ N,)+
kerq = m,(p(x)). Then ¢ is well defined, continuous and ¢ oo =m,0p. By the
assumption (iii) above, ¢ o ¢ is a representation of G.

Claim 2. Given any representation ¢ : G — C into a complete m-convex *-algebra C,

there exists a unique continuous *-homomorphism ¢ : A(G,R) — C such that g o p = 0.

Let C = proj.lim C,, an inverse limit of Banach *-algebras C,, 7, : C — C, being the

projection maps. By (iii) of above, m o ¢ is a Banach representation of (G,R). By the
construction of A(G,R), there exist continuous *-homomorphisms ¢, : A(G,R) — C,
such that ¢, o p = 7, o 0. Hence by the definition of an inverse limit, there exists a
continuous *-homomorphism ¢ : A(G,R) — C such that ¢ o p = 0.
(b) We only outline the (needed) construction of C*(G, R) from [27]. Let S be the set of
all C*-seminorms on F(G) of form ¢(x) = ||o(x)||, o running over all representations of
G into C*-algebras. Let N, = {x € F(G) : q(x) =0} and N = N{N, : ¢ € S}. Let 7 be
the pro-C*-topology on F(G)/N defined by g(x + N) = g(x), g € S. Then C*(G,R) is
the completion of (F(G)/N, 7). The map ps : G — C*(G,R) where ps(x) =x+ N is
the canonical representation.

The following brings out the essential point in arguments in claim 1 above.

Lemma 8.3. There exists a natural one-to-one correspondence between Repg(G,R)
(respectively Rep (G,R)) and t-continuous Banach *-representations (respectively C*-
algebra representations) of A(G,R).

Lemma 8.4. srad (A(G,R)) (F(G)/N,) = srad (F(G)/N,) = {x+ N, : x € N}.

Proof. Let C=F(G)/N,. Let x+ N, € C(\sradA. Then w(x+N,) =0 for all
continuous *-homomorphisms 7 : A — B(H;). By Lemma 8.3, p(x) =0 for all p € S.
Hence x € N, and x + N, € srad (F(G)/N,). Conversely, let x € N. Then g(x) = 0 for all
g € S. Again by Lemma 8.3, ||7(x + N,)|| = 0 for all m € R(A), hence x + N, € sradA.

Proof of Theorem 1.1. (1) Let A = A(G,R). Let ¢ : (F(G)/N,,t) — (F(G)/N,,T) be
¢(X+N,) =x+N. Then ¢ is a well defined, continuous *-homomorphism; hence
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extends as a continuous surjective *-homomorphism ¢ : A — C*(G,R). The universal
property of C*(G,R), Lemma 8.3 and weak Banach admissibility of R imply the follow-
ing whose proof we omit.

Assertion 1. Given any continuous *-homomorphism 7 :A(G,R) — B to a pro-C*-
algebra B, there exists a continuous *-homomorphism 7 : C*(G,R) — B such that
T=To .

A(G,R) ——7-[-—% B

G —> G.R)
)

By applying the above to the maps ¢ and j : A — E(A), j(x) = x + srad (A), it follows
that there exist continuous *-homomorphisms ¢ : E(A) — C*(G,R) and j : C*(G,R) —
E(A) such that the following diagrams commute.

/

E(A) <_ c*G. R
j

Assertion 2. The maps ¢ and j are inverse of each other.
Indeed, j is one—one on F(G)/N. For given x € F(G),

0 :j(x‘FN) :joﬁb(x"'Na) =j(x+ Na)

which implies (x+ N,) +srad (A) =0 and (x+N,) € srad (A). Hence x € N by
Lemma 8.4, so that x + N = 0. Similarly ¢ is one—one on F(G)/N. Also,

(@o)(x+N)=dojod(x+N,)

=¢oj(x+N,) =p(x+N,) =x+N,

which implies that ¢ =j' on F(G)/N,; and j= ¢! on F(G)/N,+sradA. By
continuity and density, ¢ establishes a homeomorphic *-isomorphism é:E (A) — C*
(G,R) with ¢~! = .

(2) Let (G,R) be C*-admissible. Then sup{||o(x)||: 0 € Rep(G,R)} < oo; and 7=
®{o:0€Rep(G,R)} € Rep(G,R). Thus g(x) = ||n(x)|| defines the greatest member
of S(F(G)), ¢q is a C*-norm, and it is the greatest 7-continuous C*-seminorm on F(G)/N.
Thus the topology 7 on C*(G, R) is determined by ¢. Conversely suppose that C*(G, R) is
a C*-algebra so that ||z]|., =sup{q(z) :¢ is a continuous C*-seminorm on
C*(G,R)} < oo for all z € C*(G,R), and 7 is determined by the C*-norm || ||,. Let
Poo(x) = ||x + N||, = sup{g(x) : g € S} for all x € F(G). Then p., € S and ker po, = N.
There exists a C*-representation o : G — C such that p,.(g) = ||o(g)|| for all g € G; and
this defines a continuous C*-representation o : C*(G,R) — C. It is clear that R is C*-
bounded. We verify (bC*) of Definition 8.1. Let {p,} C Rep (G, R) with p, : G — B(H,)
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for some Hilbert space H,. Let H = ®H,,. For x € F(G), let A(x) = ®p,(x). By the C*-
boundedness of (G, R), A(x) € B(H). This defines a *-homomorphism A : F(G) — B(H)
satisfying || A(x)]| = sup ||pa(*)|| < poo(x) for all x € F(G). Since ker po, = N, A factors
to a *-representation \ : F(G)/N — B(H) satisfying [[A(z)|| < ||zll... As || || is 7-
continuous, so is X. By lemma 8.3, {\(g) : g € G} satisfies the relations R in B(H). Thus
(G,R) is C*-admissible.
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