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Abstract. Universal C�-algebras C�ðAÞ exist for certain topological �-algebras called
algebras with a C�-enveloping algebra. A Frechet �-algebra A has a C�-enveloping
algebra if and only if every operator representation of A maps A into bounded
operators. This is proved by showing that every unbounded operator representation �,
continuous in the uniform topology, of a topological �-algebra A, which is an inverse
limit of Banach �-algebras, is a direct sum of bounded operator representations,
thereby factoring through the enveloping pro-C�-algebra EðAÞ of A. Given a C�-
dynamical system ðG;A; �Þ, any topological �-algebra B containing CcðG;AÞ as a
dense �-subalgebra and contained in the crossed product C�-algebra C�ðG;A; �Þ
satisfies EðBÞ ¼ C�ðG;A; �Þ. If G ¼ R, if B is an �-invariant dense Frechet �-
subalgebra of A such that EðBÞ ¼ A, and if the action � on B is m-tempered, smooth
and by continuous �-automorphisms: then the smooth Schwartz crossed product
SðR;B; �Þ satisfies EðSðR;B; �ÞÞ ¼ C�ðR;A; �Þ. When G is a Lie group, the C1-
elements C1ðAÞ, the analytic elements C!ðAÞ as well as the entire analytic elements
Ce!ðAÞ carry natural topologies making them algebras with a C�-enveloping algebra.
Given a non-unital C�-algebra A, an inductive system of ideals I� is constructed
satisfying A ¼ C�-ind lim I�; and the locally convex inductive limit ind lim I� is an m-
convex algebra with the C�-enveloping algebra A and containing the Pedersen ideal KA

of A. Given generators G with weakly Banach admissible relations R, we construct
universal topological �-algebra AðG;RÞ and show that it has a C�-enveloping algebra if
and only if ðG;RÞ is C�-admissible.

Keywords. Frechet �-algebra; topological �-algebra; C�-enveloping algebra;
unbounded operator representation; O�-algebra; smooth Frechet algebra crossed
product; Pedersen ideal of a C�-algebra; groupoid C�-algebra; universal algebra on
generators with relations.

1. Statements of the results

In [5], a functor E has been considered that associates C�-algebras EðAÞ with certain topo-

logical �-algebras A, called algebras with a C�-enveloping algebra. By a classic construc-

tion due to Gelfand and Naimark, a Banach �-algebra A admits a C�-enveloping algebra

C�ðAÞ ¼ EðAÞ ([14], 2.7, p. 47). By ([15], Theorem 2.1), a complete locally m-convex
�-algebra has a C�-enveloping algebra if and only if it admits a greatest continuous C�-
seminorm. The following extrinsic characterization of such algebras has been motivated

by the simple observation that any �-homomorphism from a Banach �-algebra into the
�-algebra of linear operators on an inner product space maps the algebra into bounded

operators.
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Theorem 1.1. Let A be a Frechet �-algebra. Then A is an algebra with a C�-enveloping

algebra if and only if every �-representation of A is a bounded operator representation.

The above theorem is false without the assumption that A is metrizable (see

Remark 4.4). By a �-representation ð�;Dð�Þ;HÞ of a �-algebra A [37] is meant a homo-

morphism � from A into linear operators (not necessarily bounded) all defined on a

common dense invariant subspace Dð�Þ of a Hilbert space H such that for all x in A,

�ðx�Þ � �ðxÞ�. In the general theory of �-algebras, following Palmer [24], A is called a

BG�-algebra if every �-homomorphism from A into linear operators on a pre-Hilbert

space maps A into bounded operators. The absence of a complete algebra norm on a non-

Banach �-algebra A indicates that A may contain elements that fail to be bounded in any

natural sense. Hence an appropriate framework for the representation theory of A is that

of unbounded operator representations. However, this natural point of view was

developed rather late, following [30, 20]. Prior to (and later, in spite of) this, bounded

operator representations of A have been investigated in detail, especially when A is a

locally m-convex �-algebra, i.e., A ¼ proj lim A�, the inverse limit (also called the

projective limit) of Banach �-algebras [9, 15], (see [16] for a summary of bounded

operator representations of A). In fact, such an A, when �-semisimple, admits sufficiently

many continuous irreducible bounded operator representations [9]. Then the enveloping

pro-C�-algebra (projective limit of C�-algebras) EðAÞ of A, discussed in [10], [19] and

[15], turns out to be EðAÞ ¼ proj lim EðA�Þ, EðA�Þ ¼ C�ðA�Þ being the enveloping C�-
algebra of the Banach �-algebra A� ([15], Theorem 4.3). Thus A has a C�-enveloping

algebra if EðAÞ is a C�-algebra. By the construction, EðAÞ is universal for norm-

continuous bounded operator representations of A. Theorem 1.2, to be used to prove

Theorem 1.1, shows desirably that EðAÞ is also universal for representations into

unbounded operators. The uniform topology ([37], p. 77, 78) on an unbounded operator

algebra is defined at the end of this section.

Theorem 1.2. Let A be complete locally m-convex �-algebra. Let ð�;Dð�Þ;HÞ be a

closed �-representation of A continuous in the uniform topology on �ðAÞ. Then there

exists a unique �-representation ð�;Dð�Þ;H�Þ of EðAÞ such that the following hold.

(1) H� ¼ H and Dð�Þ ¼ Dð�Þ.
(2) As a representation of EðAÞ, � is closed and continuous in the uniform topology on

�ðEðAÞÞ.
(3) � is an ‘extension’ of � to EðAÞ in the sense that for all x in A, ð� � jÞðxÞ ¼ �ðxÞ,

j : A! EðAÞ being the natural map, jðxÞ ¼ xþ srad ðAÞ, srad ðAÞ denoting the star

radical of A.

(4) On the unbounded operator algebra �ðAÞ, the uniform topology �
�ðAÞ
D is a (not

necessarily complete) pro-C�-topology which coincides with the relative uniform

topology �
�ðEðAÞÞ
D from �ðEðAÞÞ.

COROLLARY 1.3

Let � be a closed irreducible �-representation of a complete locally m-convex �-algebra A

continuous in the uniform topology on �ðAÞ. (In particular, let A be Frechet and � be

irreducible). Then � maps A into bounded operators.

AO�-algebras (abstract O�-algebras) [36, 37] provide the unbounded operator algebra

analogues of C�-algebras. Starting with a topological (not necessarily m-convex)
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�-algebra A, one can construct an enveloping AO�-algebra OðAÞ universal for
�-representations continuous in the uniform topology, and declare A to have a C�-
enveloping algebra if the uniform topology on OðAÞ is normable. On the other hand, by

modifying the construction in [15], the pro-C�-algebra EðAÞ can also be considered as the

universal object for norm-continuous bounded operator �-representations of more general

locally convex, non-m-convex, �-algebras A. In general, the completion of OðAÞ differs

from EðAÞ. For a barrelled A, OðAÞ is normable implies that EðAÞ is a C�-algebra, but the

converse does not hold. In the present context, the following shows that both the

approaches are consistent in the metrizable case.

Theorem 1.4. Let A be a Frechet �-algebra. Then the pro-C�-algebra EðAÞ is the com-

pletion of the AO�-algebra OðAÞ. Thus OðAÞ is normable if and only if A is an algebra

with a C�-enveloping algebra.

There are several situations in C�-algebra theory in which topological �-algebras arise

naturally [27]. Enveloping C�-algebras provide a standard method of constructing C�-
algebras; and frequently, lurking behind such a construction is a topological �-algebra B

such that EðBÞ ¼ A. Let � be a strongly continuous action of a locally compact group G

by �-automorphisms of a C�-algebra A. The crossed product C�-algebra C�ðG;A; �Þ is the

enveloping C�-algebra of the L1-crossed product Banach �-algebra L1ðG;A; �Þ. If B

is a topological �-algebra such that CcðG;AÞ � B � C�ðG;A; �Þ and CcðG;AÞ is dense

in B, then EðBÞ ¼ C�ðG;A; �Þ. Let G be a Lie group. Then the �-subalgebra C1ðAÞ of

C1-elements of A is a Frechet �-algebra with an appropriate topology such that

EðC1ðAÞÞ ¼ A. The �-algebras C!ðAÞ and Ce!ðAÞ consisting of analytic elements and

entire elements of A are shown to carry natural topologies making them algebras with

C�-enveloping algebras. We also consider the smooth crossed product [29, 34]. For

simplicity, we take G ¼ R, and prove the following.

Theorem 1.5. Let � be a strongly continuous action of R by �-automorphisms of a

C�-algebra A. Suppose that B is a dense Frechet �-subalgebra of A satisfying the following.

(a) A has a bounded approximate identity contained in B and which is a bounded

approximate identity for B.

(b) EðBÞ ¼ A.

(c) B is �-invariant; and the action � of R on B is smooth, m-tempered and by

continuous �-automorphisms of B.

Then the smooth Schwartz crossed product SðR;B; �Þ is a Frechet �-algebra with a

C�-enveloping algebra, and EðSðR;B; �ÞÞ ¼ C�ðR;A; �Þ. Further, if the action of R on B

is isometric (see § 5), then the L1-crossed product L1ðR;B; �Þ is also a Frechet �-algebra

with a C�-enveloping algebra, and EðL1ðR;B; �ÞÞ ¼ C�ðR;A; �Þ.

It follows that EðSðR;C1ðAÞ; �Þ ¼ C�ðR;A; �Þ. In particular, if � is a smooth action

of R on a C1-manifold M, then EðSðR;C1ðMÞ; �Þ ¼ C�ðR;CðMÞ; �Þ, the covariance

C�-algebra of the R-space M.

For a locally compact Hausdorff space X, let K be the directed set consisting of all

compact subsets of X. For K 2 K, let CKðXÞ ¼ f f 2 CcðXÞ : supp f � Kg, CcðXÞ denoting

the compactly supported continuous functions on X. It is well known that fCKðXÞ :
K 2 Kg forms an inductive system; and C0ðXÞ ¼ C�-ind lim CKðXÞ (C�-inductive limit),

CcðXÞ ¼ ind lim CKðXÞ (locally convex inductive limit). Further, CcðXÞ with the locally
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convex inductive limit topology is a complete locally m-convex Q-algebra and

EðCcðXÞÞ ¼ C0ðXÞ. The following provides a non-commutative analogue of this. We

refer to the last paragrapgh in this section for the relevant definitions pertaining to

topological algebras.

Theorem 1.6. Let A be a non-unital C�-algebra. Let KA denote its Pedersen ideal. For

a 2 KþA , let Ia denote the closed two sided ideal of A generated by aa�. Let Knc
A ¼

UfIa : a 2 KþA g. Then the following hold.

(1) fIa : a 2 KþA g forms an inductive system, A ¼ C� ÿ ind limfIa : a 2 KþA g, and

Knc
A ¼ ind limfIa : a 2 KþA g.

(2) Knc
A with the locally convex inductive limit topology t is a locally m-convex Q-algebra

satisfying EðKnc
A Þ ¼ EðKAÞ ¼ A.

(3) If A has a countable bounded approximate identity, then ðKnc
A ; tÞ is an LFQ-algebra.

In general KA 6¼ Knc
A , though KA � Knc

A . Now KA has been interpreted as a non-

commutative analogue of CcðXÞ. Then Knc
A may be interpreted as continuous functions on

a non-commutative space vanishing at infinity in ‘commutative directions’ and having

compact supports in ‘non-commutative directions’. This interpretation is suggested by the

remarks preceeding ([28], Theorem 8).

The universal C�-algebra C�ðG;RÞ on a C�-admissible set of generators G with

relations R provides another method of constructing C�-algebras. Motivated by some

problems in C�-algebras, Phillips introduced more general weakly C�-admissible

generators with relations ðG;RÞ leading to the construction of the universal pro-C�-
algebra C�ðG;RÞ on ðG;RÞ [27]. In § 8, we construct a universal topological �-algebra

AðG;RÞ on ðG;RÞ with weakly Banach admissible relations R, and prove the following.

Theorem 1.7. Let ðG;RÞ be weakly Banach admissible.

(1) EðAðG;RÞÞ ¼ C�ðG;RÞ.
(2) AðG;RÞ has a C�-enveloping algebra if and only if ðG;RÞ is C�-admissible.

The paper is organized as follows. Proofs of Theorems 1.1, 1.2 and 1.4 are presented in

§ 3. The preliminary lemmas and constructions in the locally convex, non-m-convex set

up more general than in [5], are discussed in § 2. Section 4 contains a couple of remarks

including some corrections in [5]. The smooth crossed product is discussed in § 5

culminating in the proof of Theorem 1.5. Section 6 contains the proof of Theorem 1.6.

This is followed by a brief discussion on the C�-algebra of a groupoid in § 7. Universal

C�-algebras on generators with relations are discussed in § 8. In what follows, we briefly

recall the relevant ideas in unbounded operator representations.

For the basic theory of unbounded operator �-representations ð�;Dð�Þ;HÞ of a
�-algebra A, we refer to [37, 30]. Let A1 denote the unitization of A. The graph topology

t� ¼ t�ðA1Þ on Dð�Þ is defined by seminorms �! jj�jj þ jj�ðxÞ�jj, where x 2 A. The

closure �� of � is the �-representation ð��;Dð��Þ;HÞ, where Dð��Þ ¼
T
fDð�ðxÞÞ : x 2 A1g,

Dð�ðxÞÞ being the domain of the closure �ðxÞ of �ðxÞ; and ��ðxÞ ¼ �ðxÞjDð��Þ for all x in A1.

Throughout, � is assumed non-degenerate, i.e., the norm closure ð�ðAÞHÞÿ ¼ H and the

t�-closure ð�ðAÞDð�ÞÞt� ¼ Dð��Þ. If � ¼ ��, then � is closed. The hermitian adjoint �� of �
is the representation (not necessarily a �-representation) ð��;Dð��Þ;HÞ, where

Dð��Þ ¼
T
fDð�ðxÞ� : x 2 A1g, and ��ðxÞ ¼ �ðx�Þ�jDð��Þ for all x 2 A1. If � ¼ ��, then

� is self-adjoint. Further, � is standard if �ðx�Þ� ¼ �ðxÞ for all x in A1. If each �ðxÞ is a
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bounded operator, then � is bounded. If � is a direct sum of bounded representations, then

� is weakly unbounded. An O�-algebra is a collection U of linear operators T all defined

on a dense subspace D of a Hilbert space H such that for all T 2 U, one has TD � D, and

T�D � D; and U is a �-algebra with the pointwise linear operations, composition as

the multiplication, and T ! Tþ :¼ T�jD as the involution. Given a �-representation

ð�;Dð�Þ;HÞ of a �-algebra A, the uniform topology [20], ([37], p. 77–78) �D¼��ðAÞDð�Þ on the

O�-algebra �ðAÞ is the locally convex topology defined by the seminorms fqK : K is a

bounded subset of ðDð�Þ; t�Þg, where

qKð�ðxÞÞ ¼ supfjh�ðxÞ�; �ij : �; � in Kg:
A vector � in Dð�Þ is strongly cyclic [30] (called cyclic in [37]) if Dð�Þ ¼ ð�ðAÞ�Þÿt�

the closure of ð�ðAÞ�Þ in ðDð�Þ; t�Þ. By a cyclic vector, we mean � in Dð�Þ such that the

norm closure ð�ðAÞ�Þÿ ¼ H. For topological �-algebras, we refer to [21]. A Q-algebra is

a topological algebra whose quasi-regular elements form an open set. An LFQ-algebra is

a Q-algebra which is an LF-space [41]. The topology of a locally convex (respectively

locally m-convex) �-algebras A is determined by the family KðAÞ (respectively KsðAÞ), or

a separating subfamily P thereof, consisting of continuous �-seminorms (repsectively

continuous submultiplicative �-seminorms) p. If A has a bounded approximate identity

(ei), then it is assumed that pðeiÞ � 1 for all i and all p. A pro-C�-algebra is a complete

locally m-convex �-algebra whose topology is determined by a family of C�-seminorms.

A Frechet �-algebra (respectively locally convex F�-algebra) is a complete metrizable

locally m-convex (respectively locally convex) �-algebra. A �-C�-algebra means a Frechet

pro-C�-algebra. For pro-C�-algebras, we refer to [26, 27].

2. Preliminary constructions and lemmas

Let A be a �-algebra, not necessarily having an identity element. Let f be a positive

linear functional on A. Then f is representable if there exists a closed strongly cyclic
�-representation ð�;Dð�Þ;HÞ of A having a strongly cyclic vector � 2 Dð�Þ such that

f ðxÞ ¼ h�ðxÞ�; �i for all x 2 A. If � can be chosen to be a bounded operator representation,

then f is boundedly representable. The first half of the following is an unbounded

representation theoretic analogue of ([39], Theorem 1), whereas the remaining half

improves a part of ([39], Theorem 1) even in the bounded case. The proof exhibits the

unbounded analogue of the GNS construction in the case of non-unital algebras. This

provides a useful supplement to ([37], § 8.6). It is well-known that a representable

functional is boundedly representable if and only if it is admissible in the sense that for

each x 2 A, there exists k > 0 such that f ðy�x�xyÞ � kf ðy�yÞ for all y 2 A. In the following,

Lemma 2.1(3) is very close to ([39], Theorem 1) in which a C�-seminorm p is taken.

Lemma 2.1. Let f be a positive linear functional on a �-algebra A. The following are

equivalent.

(1) f is representable.

(2) There exists m > 0 such that j f ðxÞj2 � m f ðx�xÞ for all x 2 A.

Further, f is boundedly representable if and only if f satisfies (2) above and the following.

(3) There exists a submultiplicative �-seminorm p on A and M > 0 such that

j f ðxÞj � MpðxÞ for all x 2 A.

When A is a Banach �-algebra, Lemma 2.1 is given in ([7], Theorem 37.11, p. 199). In

the framework of unbounded representation theory, it is discussed in [2]. There is a gap in
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the proof in ([7], Theorem 37.11) in that hermiticity of f has been implicitly used.

Regrettably it remained unnoticed in [2]. This was rectified in [39] in the formalism of

bounded representations. The following proof provides an analogous correction in the

context of unbounded representations.

Proof. Suppose (1) holds with f ðxÞ ¼ h�ðxÞ�; �i for all x 2 A. Then for all x in A.

j f ðxÞj2 � jj�ðxÞ�jj2jj�jj2 � jj�jj2h�ðxÞ�; �ðxÞ�i
¼ jj�jj2h�ðxÞ��ðxÞ�; �i ¼ jj�jj2h�ðx�Þ�ðxÞ�; �i

as �ðAÞ� � Dð�Þ ¼ Dð�ðxÞÞ ¼ Dð�ðx�ÞÞ and �ðx�Þ � �ðxÞ�. Thus

j f ðxÞj2 � jj�jj2h�ðx�xÞ�; �i ¼ jj�jj2f ðx�xÞ

for all x 2 A, giving (2).

Conversely, assume (2). We adopt the GNS construction. Let Nf ¼ fx 2 A : f ðx�xÞ¼ 0g.
By the Cauchy-Schwarz inequality, Nf is a left ideal of A. Let Xf ¼ A=Nf , and �f : A! Xf

be �f ðxÞ ¼ xþ Nf . Then h�f ðxÞ; �f ðyÞi ¼ f ðy�xÞ defines an inner product on Xf . Let Hf be

the Hilbert space obtained by completing Xf . Let ’ : Xf ! C be ’ð�f ðxÞÞ ¼ f ðxÞ, a linear

functional. Then for all x 2 A,

j’ð�f ðxÞÞj2 ¼ j f ðxÞj2 � mf ðx�xÞ ¼ mh�f ðxÞ; �f ðxÞi ¼ mjj�f ðxÞjj2:

Thus ’ extends uniquely to Hf as a bounded linear functional; and by Riesz theorem,

there exists a � 2 Hf such that for all x 2 A, f ðxÞ ¼ ’ð�f ðxÞÞ ¼ h�f ðxÞ; �i. Further, if m is

the minimum possible constant in the assumed inequality, then jj�jj ¼ m1=2. The idea of

using Riesz theorem at this stage is borrowed from [39]. Define a �-representation

ð�0;Dð�0Þ;Hf Þ of A by: Dð�0Þ ¼ Xf ; and for any x in A, �0ðxÞ�f ðyÞ ¼ �f ðxyÞ for all y in

A. Let � be the closure of �0. Then for all x, y in A,

h�f ðxÞ; �f ðyÞi ¼ f ðy�xÞ ¼ h�f ðy�xÞ; �i ¼ h�0ðy�Þ�f ðxÞ; �i: ðiÞ
Assertion 1. Xf ¼ ��0ðAÞ�.

Let x 2 A. For all y 2 A,

jh�0ðxÞ�f ðyÞ; �ij ¼ jh�f ðxyÞ; �ij ¼ j f ðxyÞj � f ðxx�Þ1=2
f ðy�yÞ1=2

¼ f ðxx�Þ1=2jj�f ðyÞjj

showing that the linear functional �f ðyÞ ! h�0ðxÞ�f ðyÞ; �i on Dð�0Þ is jj jj-continuous.

Hence � 2 Dð�0ðxÞ�Þ for all x 2 A. It follows, by the definition of Dð��0Þ, that � 2 Dð��0Þ.
Now (i) becomes h�f ðxÞ; �f ðyÞi ¼ h�f ðxÞ; �0ðy�Þ��i for all x 2 A. Since Xf is dense in Hf ,

we obtain �f ðyÞ ¼ �0ðy�Þ�� ¼ ��0ðyÞ� for all y in A. Thus Xf ¼ ��0ðAÞ�.
Assertion 2. � 2 Dð�Þ.

Since �0ðxÞ ¼ �0ðxÞ ��, we show that � 2 Dð�0ðxÞ��Þ for all x 2 A, i.e., for all x, the

functional on Dð�0ðxÞ�Þ given by �! h�0ðxÞ��; �i is jj jj-continuous. Fix an x 2 A. Now

� 2 Dð��0Þ, hence � 2 Dð�0ðx�Þ�Þ so that the functional g on Dð�0ðx�ÞÞ ¼ Xf defined by

gð�Þ ¼ h�0ðx�Þ�; �i is jj jj-continuous, and extends continuously to Hf . Now let

 2 Dð�0ðxÞ�Þ. Let ð�kÞ be a sequence in Xf such that �k !  in jj jj. Then � 2 Dð��0Þ
implies that for any x 2 A,

h�0ðxÞ� ; �i ¼ h ; �0ðx�Þ��i ¼ h ; ��0ðxÞ�i
¼ limh�k; �

�
0ðxÞ�i ¼ limh�0ðx�Þ�k; �i ¼ gð Þ
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showing that  ! h�0ðxÞ� ; �i is jj jj-continuous on Dð�0ðxÞ�Þ. This proves the

assertion 2.

Now by the proof of assertions 1 and 2 above, it follows that for any x 2 A,

f ðxÞ ¼ ’ð�f ðxÞÞ ¼ h�f ðxÞ; �i ¼ h�0ðx�Þ��; �i ¼ h��0ðxÞ�; �i
¼ h��0ðxÞ�; �i ¼ h�ðxÞ�; �i:

Clearly � is a strongly cyclic vector for �. Thus (2) implies (1).

Now assume (2) and (3). Let Np ¼ fx 2 A : pðxÞ ¼ 0g, a �-ideal in A. Let Ap be the

Banach �-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pðxÞ where

xp ¼ xþ Np. By (3), FðxpÞ ¼ f ðxÞ gives a well-defined continuous positive functional on

Ap. By standard Banach �-algebra theory, for all x, y in A,

jj�ðxÞ�ðyÞ�jj2 ¼ h�ðy�x�xyÞ�; �i ¼ f ðy�x�xyÞ ¼ Fðy�px�pxpypÞ
� jjx�pxpjjFðy�pypÞ � pðxÞ2f ðy�yÞ ¼ pðxÞ2jj�ðyÞ�jj2:

Since �ðAÞ� is dense in Hf , � is a bounded operator representation.

COROLLARY 2.2

Let A be a �-algebra.

(1) A positive functional f on A is representable if and only if f is extendable as a positive

functional on the unitization A1 of A.

(2) A representable positive functional on A satisfies f ðx�Þ ¼ f ðxÞÿ for all x in A.

(3) Let A be a topological �-algebra having a bounded approximate identity. Then every

continuous positive functional on A is representable.

COROLLARY 2.3

Let A be a complete locally m-convex �-algebra with a bounded approximate identity (e
)

satisfying pðe
Þ � 1 for all � in a defining family of seminorms.

(1) Let f be a continuous positive functional on A. Then f is boundedly representable and

there exists p 2 KsðAÞ such that j f ðxÞj � ðlim sup f ðe
e�
ÞÞpðxÞ for all x 2 A.

(2) Let ð�;Dð�Þ;HÞ be a �-representation of A. Then each �ðe
Þ is a bounded operator

and jj�ðe
Þjj � 1 for all 
. Further, if � is strongly continuous (in particular, if � is

continuous in the unifrom topology, which is the case if A is locally convex F� ([37],

Theorem 3.6.8, p. 99)), then jj�ðe
Þ� ÿ �jj ! 0 for each �.

Proof. (1) By continuity, there exist p 2 KsðAÞ and m > 0 such that j f ðxÞj � mpðxÞ for

all x 2 A. Now Lemma 2.1 applies by Corollary 2.2(3). Let l ¼ lim sup f ðe
e�
Þ, which is

finite. Let c ¼ supfj f ðxÞj : pðxÞ ¼ 1g. Choose a sequence (xn) in A such that f ðxnÞ ! c

and pðxnÞ ¼ 1 for all n. Then, by the Cauchy-Schwarz inequality,

j f ðxnÞj2 ¼ lim


j f ðe
xnÞj2 � ðlim sup f ðe
e�
ÞÞf ðx�nxnÞ � lc;

as pðx�nxnÞ � pðxnÞ2 ¼ 1. Hence c2 � lc, i.e. c � l, and the assertion follows.

(2) Let P ¼ ðp�Þ be a cofinal subset of KsðAÞ determining the topology of A. Let

Ap ¼ fx 2 A : sup� p�ðxÞ <1g. Then Ap is a �-subalgebra of A containing each e
 . As A

is complete, Ap is a Banach �-algebra with norm pðxÞ ¼ sup
/

p/ðxÞ. For any � 2 H,
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consider the positive functional !�ðxÞ ¼ h�ðxÞ�; �i on A. Then for all x 2 A,

j!�ðxÞj2 � jj�jj2 !�ðx�xÞ. By Lemma 2.1, !� is representable, hence extends as a positive

functional ! on the unitization A1 of A. In view of the inclusion map ðApÞ1 ! A1, ! is a

positive functional on ðApÞ1. By ([7], Corollary 37.9, p. 198), ! is continuous in the norm

of ðApÞ1. It follows that !� restricted to Ap is continuous in the norm of Ap and

jj!�jj � jj�jj2. For each 
,

jj�ðe
Þ�jj2 ¼ !�ðe
e�
Þ � jj!�jjpðe
Þ
2 � jj�jj2

showing that jj�ðe
Þjj � 1. Now suppose that � is strongly continuous. Let � 2 Dð�Þ and

" > 0. There exists x 2 A and �0 2 Dð�Þ such that jj�ðxÞ�0 ÿ �jj � "=3. Since e
x! x,

there exists 
0 such that for all 
 � 
0,

jj� ÿ �ðe
Þ�jj � jj� ÿ �ðxÞ�0jj þ jj�ðxÞ�0 ÿ �ðe
xÞ�0jj
þ jj�ðe
Þjj jj�ðxÞ�0 ÿ �jj < "

showing that �ðe
Þ� ! � for each � 2 Dð�Þ. This completes the proof of Corollary 2.3.

The enveloping pro-C�-algebra EðAÞ
We construct the enveloping pro-C�-algebra EðAÞ for a locally convex �-algebra A with

jointly continuous multiplication. This extends the consideration in [10, 15, 19] in which

A is additionally assumed m-convex. The added generality will include several

constructions relevant in C�-algebra theory (like the C�-algebra of a groupoid). Let

RðAÞ denote the set of all continuous bounded operator �-representations � : A! BðH�Þ
of A into the C�-algebras BðH�Þ of all bounded linear operators on Hilbert spaces H�. Let

R0ðAÞ ¼ f� 2 RðAÞ : � is topologically irreducibleg. For p 2 KðAÞ, let

RpðAÞ ¼ f� 2 RðAÞ : for some k > 0; jj�ðxÞjj � kpðxÞ for all xg;

and R0pðAÞ ¼ RpðAÞ \ R0ðAÞ. Then

RðAÞ ¼
[
fRpðAÞ : p 2 KðAÞg; R0ðAÞ ¼

[
fR0pðAÞ : p 2 KðAÞg:

Let rpðxÞ ¼ sup fjj�ðxÞjj : � 2 RpðAÞg.

Lemma 2.4. Let A be as above, p 2 KðAÞ. Then rpð Þ is a continuous C�-seminorm on A

satisfying rpðxÞ � pðx�xÞ1=2
. If p 2 KsðAÞ, then rpðxÞ ¼ supfjj�ðxÞjj : � 2 R0pðAÞÞ � pðxÞ

for all x 2 A.

Proof. Let spðxÞ ¼ pðx�xÞ1=2
. Let h ¼ h� 2 A and � 2 RpðAÞ. Then jj�ðhnÞjj � kpðhnÞ for

all n 2 N. By standard Banach algebra arguments, the spectral radius satisfies

rð�ðhÞÞ ¼ lim infjj�ðhnÞjj1=n ¼ inf jj�ðhnÞjj1=n � inf pðhnÞ1=n � pðhÞ:

Hence, for any x 2 A,

jj�ðxÞjj2 ¼ jj�ðx�xÞjj ¼ rð�ðx�xÞÞ � pðx�xÞ;

so that rpðxÞ � spðxÞ. We use the joint continuity of multiplication to conclude the

continuity of the C�-seminorm x! rpðxÞ. Now suppose p 2 KsðAÞ. Then

rpðxÞ � spðxÞ � ðpðx�ÞpðxÞÞ1=2 � pðxÞ:

72 S J Bhatt



Further, let Np ¼ fx 2 A : pðxÞ ¼ 0g, a closed �-ideal in A. Let Ap be the Banach
�-algebra obtained by completing A=Np in the norm jjxþ Npjjp ¼ pðxÞ. Then RpðAÞ
(respectively R0pðAÞ) can be identified with RðApÞ (respectively R0ðApÞ). The assertion

follows from the fact that for all z 2 Ap,

supfjj’ðzÞjj : ’ 2 RðApÞg ¼ supfjj’ðzÞjj : ’ 2 R0ðApÞg

([14], 2.7, p. 47). This completes the proof of the lemma.

Define the star radical to be

srad ðAÞ ¼ fx 2 A : rpðxÞ ¼ 0 for all p 2 KðAÞg
¼ fx 2 A : �ðxÞ ¼ 0 for all � 2 RðAÞg:

For each p 2 KðAÞ, qpðxþ srad ðAÞÞ ¼ rpðxÞ defines a continuous C�-seminorm on the

quotient locally convex �-algebra A=srad ðAÞ with the quotient topology. Let � be the

Hausdorff topology on A=srad ðAÞ defined by fqp : p 2 KðAÞg. The enveloping pro-C�-
algebra EðAÞ of A is the completion of ðA=srad ðAÞ; �Þ. When A is metrizable, EðAÞ is

metrizable. In view of Corollary 2.2, when A is m-convex, this coincides with the

enveloping l.m.c. �-algebra defined in [10, 19, 15].

Lemma 2.5. Let A be a locally convex �-algebra with jointly continuous multiplication.

(a) Let �A be the completion of A. Then Eð�AÞ ¼ EðAÞ.
(b) EðA1Þ ¼ EðAÞ1.

Proof. Since A has jointly continuous multiplication, �A is a complete locally convex
�-algebra. The map i : A=srad ðAÞ ! �A=srad ð�AÞ, where iðxþ srad ðAÞÞ ¼ xþ srad ð�AÞ, is

a well defined �-isomorphism into Eð�AÞ. Note that for any p 2 Kð�AÞ, RpðAÞ ¼ Rpð�AÞ via

the restriction (in fact, also Kð�AÞ ¼ KðAÞÞ, hence srad ðAÞ ¼ A \ srad ð�AÞ. For any

p 2 KðAÞ, let ~p 2 Kð�AÞ be the unique extension of p. Then, for any x 2 A,

qpðxþ sradðAÞÞ ¼ rpðxÞ ¼ q~pðxþ sradð�AÞÞ;

and for any ~p 2 Kð�AÞ, q~pðxþ sradðAÞÞ ¼ q~pjAðxþ sradðAÞÞ. Thus i is a homeomorphism

for the respective pro-C�-topologies. On the other hand, i has dense range in �A=sradð�AÞ.
Indeed, let z 2 �A. Choose a net ðxiÞ in A such that xi ! z in the topology t of �A. Then

q~pðxi ÿ zþ sradðAÞÞ ¼ r~pðxi ÿ zÞ ¼ supfjj�ðxi ÿ zÞjj : � 2 R~pð�AÞg
� k~pðxi ÿ zÞ ! 0

for all ~p 2 Kð�AÞ. Thus Eð�AÞ, which is the completion of �A=sradð�AÞ, coincides with the

completion EðAÞ of A=sradðAÞ. This completes the proof of (a). We omit the proof of (b).

A representation ð�;Dð�Þ;HÞ of A is countably dominated if there exists a countable

subset B of A such that for any x 2 A, there exists b 2 B and a scalar k > 0 such that

jj�ðxÞ�jj � kjj�ðbÞ�jj for all � 2 Dð�Þ ([22], p. 419).

Lemma 2.6. (a) Let A be a locally convex �-algebra. Let j : A! EðAÞ, jðxÞ ¼ xþ sradðAÞ.

(1) If � : A! BðHÞ is a continuous bounded operator �-representation, then there exists

a unique continuous �-representation � : EðAÞ ! BðHÞ such that � ¼ � � j. Further,

� is irreducible if and only if � is irreducible.
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(2) Let ð�;Dð�Þ;HÞ be a closed �-representation of A continuous in the uniform

topology. Let � be weakly unbounded. Then there exists a closed weakly unbouned
�-representation ð�;Dð�Þ;HÞ of EðAÞ such that � ¼ � � j and Dð�Þ is dense in the

locally convex space ðDð�Þ; t�Þ.
(3) Let A be unital and symmetric. Assume that A is separable or nuclear (as a locally

convex space). Let ð�;Dð�Þ;HÞ be a separably acting, countably dominated
�-representation of A continuous in the uniform topology. Then there exists a closed
�-representation ð�;Dð�Þ;HÞ of EðAÞ such that � ¼ � � j.

(b) (1) There exists a unital, locally convex, non-m-convex, F�-algebra A such that A

admits a faithful family of unbounded operator �-representations, but admits no

non-zero bounded operator �-representation.

(2) There exists a unital non-locally-convex F�-algebra that admits no non-zero
�-representation.

Proof. (a) (1) follows by the definition of EðAÞ.
(2) Let � ¼ ��i, where each �i is a norm continuous bounded operator �-representation

�i : A! BðHiÞ on a Hilbert space Hi. We take Dð�iÞ ¼ Hi . Let Ei : H ! Hi be the

orthogonal projection. By (1), there exist continuous �-homomorphisms �i : EðAÞ !
BðHiÞ, �i � j ¼ �i. Let � ¼ ��i on the Hilbert direct sum �Hi ¼ H having the domain

Dð�Þ ¼ f� ¼ �Ei� 2 H : �jj�iðzÞEi�jj2 <1 for all z 2 EðAÞg
� Dð�Þ ¼ f� ¼ �Ei� 2 H : �jj�iðxÞEi�jj2 <1 for all x 2 Ag:

On Dð�Þ, the �-graph topology t�ðEðAÞÞ is finer than the relativized �-graph topology

t�jDð�Þ. Being closed and weakly unbounded, both � and � are standard representations.

Hence, for all h ¼ h� in A, the operators �ð jðhÞÞ having domain Dð�Þ and �ðhÞ with

domain Dð�Þ are essentially self-adjoint. Since self-adjoint operators are maximally

symmetric, Dð�Þ is dense in Dð�ðhÞÞ for the graph topology defined by �! jj�jjþ
jj�ðhÞ�jj. Thus Dð�Þ is dense in the locally convex space Dð�Þ ¼ \fDð�ðhÞÞ : h ¼ h�

in Ag.
(3) By ([22], Theorem 3.2 and remark on p. 422) and ([37], Theorem 12.3.5, p. 343),

there exists a compact Hausdorff Z with a positive measure � such that

� ¼
Z �

Z

��d�ð�Þ; Dð�Þ ¼
Z �

Z

Dð��Þd�ð�Þ; H ¼
Z �

Z

H�d�ð�Þ

and each �� is irreducible. Since A is symmetric, each �� and ��� are standard ([37],

Corollary 9.1.4, p. 237) (the commutativity assumption in this reference is not required,

as the arguments in ([2], Theorem 3.5) shows); and by [3], each �� is a bounded operator

representaion, being irreducible. Then we can proceed as in (2).

(b) (1) Take A ¼ L!½0; 1� ¼
T

1�p<1
Lp½0; 1� (the Arens algebra) with pointwise operations,

complex conjugation, and the topology of Lp-convergence for each p, 1 � p <1. The

algebra A is a unital, symmetric, locally convex F�-algebra, admitting a faithful standard
�-representation ð�;Dð�Þ;HÞ such that �ðAÞ is an extended C�-algebra with a common

dense domain [13]. However, there exists no non-zero bounded operator representation of

A, as A admits no non-zero multiplicative linear functional; and hence no non-zero

submultiplicative �-seminorm. Thus srad ðAÞ ¼ A and EðAÞ ¼ ð0Þ. (2) Take A ¼M [0,1],

the algebra of all Lebesgue measurable functions on [0,1] with the topology of
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convergence in measure. It admits no non-zero positive linear functional, and hence no

non-zero �-representation.

Remark. 2.7. We call a �-representation ð�;Dð�Þ;HÞ of a �-algebra A boundedly

decomposable if it can be disintegrated as � ¼
R�

Z
��d�ð�Þ with each �� a bounded

operator �-representation. One may show that EðAÞ is universal for all closed boundedly

decomposable �-representations of a locally convex F�-algebra A. We do not know

whether in (2) and (3) of Corollary (2.4) (a), � is continuous in the uniform topology.

The bounded vectors [4] for a �-representation � of a �-algebra A are Bð�Þ ¼T
fBð�ðxÞÞ : x 2 Ag, where, for an operator T, the bounded vectors for T are

BðTÞ ¼ f� 2 DðTÞ : there exists a > 0; c > 0 such that

jjTn�jj � acn for all n 2 Ng:

The following is motivated by [35]. It shows that unbounded representations of locally m-

convex �-algebras cannot be wildly unbounded,

Lemma 2.8. Let ð�;Dð�Þ;HÞ be a closed �-representation of a complete locally m-convex
�-algebra A continuous in the uniform topology on �ðAÞ. Then the following hold.

(1) Dð�Þ ¼ Bð�Þ; and � is a direct sum of norm-continuous cyclic bounded operator
�-representations.

(2) � is standard. For commuting normal elements x, y of A, the normal operators �ðxÞ
and �ðyÞ have mutually commuting spectral projections.

(3) The uniform topology �D on �ðAÞ is a pro-C�-topology, i.e., it is determined by a

family of C�-seminorms.

(4) If A is Frechet, then �D is metrizable and � is direct sum of a countable number of

cyclic bounded-operator �-representations.

Proof. Let � 2 Dð�Þ. Let !� on A be the positive functional !�ðxÞ ¼ h�ðxÞ�; �i for x 2 A.

By Lemma 2.1, !� is representable and admissible. Hence the closed GNS representation

(�!� , Dð�!�Þ, H!� ) associated with !� is a cyclic, norm-continuous bounded operator
�-representation with Dð�!�Þ ¼ H!� . Let �! denote the cyclic vector for �!�. Let

Dð��Þ ¼ ð�ðAÞ�Þÿt� and H� ¼ ½�ðAÞ��ÿ. Since � is closed, Dð��Þ � Dð�Þ. The �-

invariant subspace Dð��Þ defines a closed subrepresentation h��;Dð��Þ;H�i of � as

��ðxÞ ¼ �ðxÞjDð��Þ. Since h�!�ðxÞ�!� ; �!�i ¼ !�ðxÞ ¼ h��ðxÞ�; �i for all x 2 A, it follows

that �!� and �� are unitarily equivalent. Thus �� is a bounded operator representation, and

Dð��Þ ¼ H� � Bð�Þ. This also implies that H� is reducing in the sense of ([37], § 8.3).

Thus the following is established.

Assertion I. For any � in Dð�Þ, ½�ðAÞ��ÿt� ¼ ½�ðAÞ��ÿ � Bð�Þ.

It follows that �ðAÞDð�Þ � Bð�Þ, hence Bð�Þ is dense in ðDð�Þ; t�Þ and norm dense in

H. Since Bð�Þ forms a set of common analytic vectors for �ðAÞ, the conclusion (2)

follows, using ([40], Theorem 2). Also, a standard Zorn’s lemma argument gives

� ¼ ��i, with each �i a cyclic, continuous, bounded operator representation.

Assertion II. For each bounded subset M of ðDð�Þ; t�Þ, there exists p 2 KsðAÞ such that

jj�ðxÞ�jj � jj�jjpðxÞ for all x 2 A, � 2 M.
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By continuity, given M as above, there is k > 0 and p 2 KsðAÞ such that qMð�ðxÞÞ �
kpðxÞ for all x 2 A. Hence, for each � 2 M and x 2 A; jj�ðxÞ�jj2 � kpðx�xÞ � kpðxÞ2. By

Corollary 2.3, jj�ðxÞ�jj2 � lpðxÞ2, where l ¼ lim sup!�ðe
e�
Þ � jj�jj
2
. Hence jj�ðxÞ�jj �

jj�jjpðxÞ for all x 2 A, all � 2 M.

Now let � 2 Dð�Þ. By (II) above, there exists p 2 KsðAÞ such that for all n 2 N,

jj�ðxÞn�jj2 ¼ h�ðx�n

xnÞ�; �i � jj�jj2pðxÞ2n

showing that � 2 Bð�ðxÞÞ. Thus Dð�Þ ¼ Bð�Þ proving (1).

The proof of (3) is based on arguments in ([35], Theorem 1). Let F be the collection of

all subspaces (linear manifolds) K of Dð�Þ such that K is �-invariant, and �jK is a

bounded operator �-representation. For K 2 F , let sK be the C�-seminorm

sKð�ðxÞÞ ¼ supfjj�ðxÞ�jj : � 2 K; jj�jj � 1g:

Let �1 be the topology on �ðAÞ defined by fsK : K 2 Fg. We show that �D ¼ �1. Clearly

�1 � �D. Let M be a bounded subset of ðDð�Þ; t�Þ. Choose k and p as in assertion (II)

above. By Corollary 2.3, j!�ðxÞj � jj�jjpðxÞ for all x 2 A, all � 2 M. Thus

M � Dp :¼ f� 2 Dð�Þ : jh�ðxÞ�; �ij � jj�jj2pðxÞ for all x in Ag:

Then Dp 2 F ; jj�ðxÞ�jj � jj�jj2pðxÞ2 for all � 2 Dp; and, as � is closed, ([35], Lemma 3)

implies that Dp is jj jj-closed. Let S ¼ f� 2 Dp : jj�jj � 1g. As M is also jj � jj bounded,

jj�jj � r for all � 2 M; and M � rS. Then, for all x 2 A, qMð�ðxÞÞ � r2sDp
ð�ðxÞÞ. Thus

�D � � . This gives (3). Finally (4) is consequence of the fact that the topology of a

metrizable A is determined by a countable cofinal subfamily of KsðAÞ. This completes the

proof of Lemma 2.8.

Now let A be commutative. LetMðAÞ be the Gelfand space consisting of all non-zero

continuous multiplicative linear functionals on A. Let M�ðAÞ ¼ f’ 2 MðAÞ : ’ ¼ ’�g
and ’�ðxÞ ¼ ’ðx�Þ. For each x 2 A, let x̂ :M�ðAÞ ! C be the map x̂ð’Þ ¼ ’ðxÞ. The

following, which incorporates the spectral theorem for unbounded normal operators,

describes all unbounded �-representations of A. The proof can be constructed using

Lemma 2.8 and ([9], Theorem 7.3), in which all bounded �-representations of A have

been realized.

COROLLARY 2.9

Let A be a commutative complete locally m-convex �-algebra. Let ð�;Dð�Þ;HÞ be a

closed �-representation of A continuous in the uniform topology. Then there exist a

positive regular Borel measure � onM�ðAÞ and a spectral measure E on the Borel sets in

M�ðAÞ with values in BðHÞ such that the following hold.

(1) � is a unitarily equivalent to the representation ð�;Dð�Þ;H�Þ by multiplication

operators in H� ¼ L2ðM�ðAÞ; �Þ with domain

Dð�Þ ¼ f f 2 H� : ’! x̂ð’Þf ð’Þis in H� for all x 2 Ag

defined as ð�ðxÞ f Þð’Þ ¼ x̂ð’Þf ð’Þ.
(2) For each x 2 A, �ðxÞ ¼

R
M�ðAÞ x̂ð’ÞdEð’Þ.

We say that a locally convex �-algebra A is an algebra with a C�-enveloping algebra if

the pro-C�-algebra EðAÞ is a C�-algebra. In view of Lemma 2.5, we do not need to

assume A to be complete or unital. In [5], A is further assumed to be m-convex. The
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following extends the main results in ([5], § 2) to the present more general set up, and can

be proved as in [5]. A is called an sQ-algebra if for some k > 0, p 2 KðAÞ, the spectral

radius r satisfies rðx�xÞ1=2 � kpðxÞ for all x 2 A; A is �-sb if rðx�xÞ <1 for each x,

equivalently, rðhÞ <1 for all h ¼ h�. Thus Q ¼> sQ ¼> � -sb.

Lemma 2.10. Let A be a complete locally convex �-algebra with jointly continuous

multiplication.

(1) A is an algebra with a C�-enveloping algebra if and only if A admits greatest

continuous C�-seminorm.

(2) If A is sQ, then A admits a greatest C�-seminorm, which is also continuous.

(3) Let A be an F�-algebra. If A is �-sb, then A has a C�-enveloping algebra; but the

converse does not hold (see ([5], Example 2.4)).

The enveloping AO�-algebra OðAÞ
For a locally convex �-algebra ðA; tÞ (t denoting the topology of A), let PcðA; tÞ
(respectively PcaðA; tÞ) be the set of all continuous (respectively continuous admissible)

representable positive functionals on A. For each f in PcðA; tÞ, let ð�f ;Dð�f Þ;Hf Þ denote

the strongly cyclic GNS representation defined by f as in Lemma 2.1. Let I ¼ \fker �f :
f 2 PcaðA; tÞg and J ¼ \fker �f : f 2 PcðA; tÞg. Then I and J are closed �-ideal of A,

J � I, and I ¼ srad ðAÞ in view of the cyclic decomposability of any � 2 RðAÞ. The

universal representation of ðA; tÞ is �u ¼ �f�f : f 2 PcðA; tÞg. This is a slight variation of

([37], p. 228). Then �uðxþ JÞ ¼ �uðxÞ define a one–one �-homomorphism of A=J into

the maximal O�-algebra LþðDð�uÞÞ. Let �uðtÞ be the topology on A=J induced by the

uniform topology on �uðAÞ; viz. �uðtÞ is determined by the seminorms fqM : M is a

bounded subset of ðDð�uÞ; t�u
Þg, where qMðxþ JÞ ¼ supfjh�uðxÞ�; �ij : �; � in Mg. Then

(A=J, �uðtÞ) is an AO�-algebra [36] in the sense that it is algebraically and topologically
�-isomorphic to an O�-algebra with uniform topology [37]. We call (A=J, �uðtÞ the

enveloping AO�-algebra of A, denoted by OðAÞ.

Lemma 2.11. Let A be as above.

(1) Every �-representation of A which is continuous in the uniform topology and which is

a direct sum of strongly cyclic representations factors through OðAÞ. When A is either

complete and m-convex, or is countably dominated, every �-representation of A

continuous in the uniform topology factors through OðAÞ.
(2) Let A be barrelled. Then �uðtÞ is coarser than the quotient topology tq on A=J.

(3) There exists a continuous �-homomorphism from OðAÞ into the pro-C�-algebra EðAÞ.
(4) The following are equivalent.

(i) �uðtÞ is normable.

(ii) �uðtÞ is C�-normable.

(iii) There exists a linear norm on A=J defining a topology finer than �uðtÞ.

When any of these conditions hold, and if A is barrelled, then A has a C�-enveloping

algebra; but the converse does not hold.

Proof. (1) follows from the construction of OðAÞ and Lemma 2.8. (2) Let A be barrelled.

Since J is closed. ðA=J; tqÞ is barrelled ([32], ch. II, §7, Corollary 1, p. 61). Further, �u is
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weakly continuous. Hence, �u is continuous in the uniform topology ([20], Theorem 4.1).

(3) Since J � srad A, the map

� : A=J ! A=srad A! EðAÞ; �ðxþ JÞ ¼ xþ srad A

is a well defined �-homomorphism. Now, as EðAÞ is a pro-C�-algebra, EðAÞ= ker qp is a

C�-algebra for any p 2 KðAÞ, denoted by EpðAÞ, with the norm jjzþ ker qpjj ¼ qpðzÞ and

EðAÞ ¼ proj lim EpðAÞ, inverse limit of C�-algebras [26]. Let ’p : EðAÞ ! EpðAÞ be

’pðzÞ ¼ zþ ker qp. For the continuity of � : ðOðAÞ, �uðtÞÞ ! ðEðAÞ; �Þ, it is sufficient to

show the continuity of the �-homomorphism �p ¼ ’p � � : OðAÞ ! EpðAÞ. Now the map

 : A! A=srad ðAÞ ! EðAÞ ! EpðAÞ;  ðxÞ ¼ ðxþ srad ðAÞÞ þ ker qp

is a continuous bounded operator �-representation; and  ¼ �p � ju, juðxÞ ¼ xþ I. Hence

�p is continuous for each p 2 KðAÞ.
(4) (i) if and only if (ii) if and only if (iii) follows from ([20], Theorems 3.2, 3.3). Let A be

barrelled. Let j j be a norm on A=J determining �uðtÞ. Since tq � �uðtÞ, p1ðxÞ ¼ jxþ Jj
defines a continuous C�-seminorm on A. Let p be any continuous C�-seminorm on A. Let

Ap be the completion of A= ker p in the C�-norm jxþ ker pj ¼ pðxÞ. Then �p : A! Ap,

�pðxÞ ¼ xþ ker p defines a continuous bounded operator �-representation. By (1), there

exists a continuous �-homomorphism �p such that �p � ju ¼ �p. Since the uniform

topology on Ap is the j jp-topology, and since �uðtÞ is determined by j j, it follows that for

some k > 0, j�pðzÞj � kjzj for all z 2 A=J. Thus pðxÞ � kp1ðxÞ; and so pðxÞ � p1ðxÞ for

all x 2 A, both being C�-seminorms. Thus p1 is the greatest continuous C�-seminorm on

A. By Lemma 2.8, EðAÞ is a C�-algebra. That the converse does not hold is illustrated by

Arens’ algebra A ¼ L!½0; 1�, wherein EðAÞ ¼ ðoÞ, OðAÞ ¼ A topologically as well.

3. Proofs of theorems 1.1, 1.2 and 1.4

Proof of Theorem 1.2. First we prove the following.

Assertion I. Given a bounded subset M of ðDð�Þ; t�Þ, there exists p 2 KsðAÞ and k > 0

such that qMð�ðxÞÞ � krpðxÞ for all x 2 A.

By the continuity of �, given M, there exists k > 0 and p 2 KsðAÞ such that

qMð�ðxÞÞ � k pðxÞ for all x 2 A. Let � 2 M. Then

j!�ðxÞj ¼ jh�ðxÞ�; �ij � qMð�ðxÞÞ � k pðxÞ

for all x. Since !� is representable, it is extendable to A1. The arguments in the proof of

Corollary 2.3(1) applied to the extension of !� to A1 give

!�ðx�xÞ � jj�jj2pðx�xÞ � jj�jj2pðxÞ2

for all x in A. Thus jj�!�ðxÞ�jj � jj�jjpðxÞ: and by the definition of rp, jj�!�ðxÞ�jj �
jj�jjrpðxÞ for all x in A. Since M is jj jj-bounded, there exists l > 0 such that for all � in

M, all x in A,

j!�ðx�xÞj ¼ jj�!�ðxÞ�jj
2 � l2rpðxÞ2:

It follows that for all x in A, and all �, � in M,

jh�ðxÞ�; �ij � jj�jj!�ðx�xÞ1=2 � l2rpðxÞ:

Thus qMð�ðxÞÞ � l2rpðxÞ for all x in A.

78 S J Bhatt



Now, by Lemma 2.8, � ¼ ��i, with each �i : A! BðHiÞ norm continuous. By Lemma

2.6, there exists a closed representation (�0, Dð�0Þ;H) �0 ¼ ��i of EðAÞ, with each

�i : EðAÞ ! BðHiÞ norm continuous, �i � j ¼ �i for all i. We shall eventually show

Dð�Þ ¼ Dð�0Þ.
On the other hand, consider the �-representation ð�;Dð�Þ;HÞ of A=srad ðAÞ having

domain Dð�Þ ¼ Dð�Þ, and given by �ð jðxÞÞ ¼ �ðxÞ for all x 2 A. By ([37], Proposition

2.2.3, p. 39), on Dð�Þ, t� ¼ tLþðDð�ÞÞ which is the graph topology on Dð�Þ due to the

maximal O�-algebra LþðDð�ÞÞ. Hence, on �ðAÞ, the uniform topology �
�ðAÞ
D ¼ �L

þðDð�ÞÞ
D

j�ðAÞ ¼ �1 (say), which, by lemma 2.8, is a pro-C�-topology. By ([37], Proposition 3.3.20,

p. 85), �ðA=srad ðAÞÞ is contained in a �
LþðDð�ÞÞ
D -complete �-subalgebra of LþðDð�ÞÞ; and

� can be extended as a continuous �-homomorphism �ðEðAÞ; �Þ ! ½LþðDð�ÞÞ; �L
þðDð�ÞÞ
D �

giving a closed �-representation � of EðAÞ on H with domain Dð�Þ ¼ Dð�Þ. Next we

prove the following.

Assertion II. As representations of EðAÞ, � ¼ �0.
This, we do, in the following steps.

(a) � is an extension of �0.
Clearly, Dð�0Þ � Dð�Þ ¼ Dð�Þ. We show �ðzÞjDð�0Þ ¼ �0ðzÞ for all z 2 EðAÞ. Fix z 2

EðAÞ. Let � 2 Dð�Þ. Choose a net ðxrÞ in A such that for all p 2 KsðAÞ,
qpð jðxrÞ ÿ zÞ ! 0. Choose an appropriate p by (I) above. Then

jj�ð jðxrÞÞ� ÿ �ð jðxr0 ÞÞ�jj2 ¼ jj�ðxrÞ� ÿ �ðxr0 Þ�jj2

¼ !�ððxr ÿ xr0 Þ�ðxr ÿ xr0 ÞÞ
� k rpðxr ÿ xr0 Þ
¼ k qpð jðxÞrÞ ÿ jðxr0 ÞÞ ! 0:

Hence �ðxrÞ� is norm Cauchy in Dð�Þ; and similarly, �ðxÞ�ðxrÞ� is norm Cauchy in Dð�Þ
for all x 2 A. Thus �ðxrÞ� is Cauchy in ðDð�Þ; t�Þ, which is complete as � is closed. Thus

there exists � 2 Dð�Þ such that limðxrÞ� ¼ � in t�. This defines �ðzÞ as �ðzÞ� ¼ �, which

gives �ðzÞjDð�0Þ ¼ �0ðzÞ.
(b) � is a closed representation of EðAÞ.

Indeed, as � is closed.

Dð�Þ ¼ Dð�Þ ¼
\
fDð�eðxÞÞ : x 2 A1g

¼
\
fDð�eð jðxÞÞ : jðxÞ 2 jðA1Þ ¼ ð jðAÞ1Þg

� fDð�eðzÞÞ : z 2 ðEðAÞÞ1g
¼ Dð��Þ � Dð�Þ;

hence Dð�Þ ¼ Dð�0Þ. This also follows from the fact that � is closed: on Dð�Þ ¼ Dð�Þ,
t� ¼ tLþðDð�ÞÞ ¼ t�ððEðAÞ1ÞÞ; as well as �ðAÞ � �ðEðAÞÞ � LþðDð�ÞÞ. This further implies

�
LþðDð�ÞÞ
D j�ðEðAÞÞ ¼ �

�ðEðAÞÞ
D ; which, in turn gives the following.

(c) �0 is continuous in the uniform topology as a �-representation of ðEðAÞ; �Þ.
Now, by (c), Lemma 2.8 implies that the closed representation �0 is standard; hence

self-adjoint, and so maximal hermitian ([31], (I), Lemma 4.2). Then (a) gives �0 ¼ �,

thereby verifying (II). This completes the proof of Theorem 1.2.
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If � is irreducible, then � is irreducible, hence is a bounded operator representation by

[3], ([6], Theorem 4.7). This gives Corollary 1.3.

Proof of Theorem 1.1. Let A be Frechet. Then A ¼ proj lim An, an inverse limit of a

sequence of Banach �-algebras An. Assume that each �-representation (and hence the

universal representation �u) of A is a bounded operator representation. Since A is Frechet,

�u is continuous. Let � be the representation of EðAÞ defined by Theorem 1.2

corresponding to �u. Then � is also a bounded operator �-representation. Further, as A is

Frechet, EðAÞ ¼ proj lim C�ðAnÞ is also Frechet. Thus � is continuous and there exists a

continuous C�-seminorm q� on EðAÞ such that jj�ðzÞjj � q�ðzÞ for all z 2 EðAÞ. Now the

bounded part of EðAÞ

bðEðAÞÞ ¼ fz 2 EðAÞ : qðzÞ <1 for all continuous C�-seminorm qg

is a C�-algebra with the norm

jjzjj1 ¼ supfqðzÞ : q is a continuous C�-seminorm on EðAÞg
¼ supfqpðzÞ : p 2 KsðAÞg:

Since � is one–one, the restriction �0 ¼ �jbðEðAÞÞ is a �-isomorphism of the C�-algebra

bðEðAÞÞ into BðH�Þ. Hence, for all z 2 bðEðAÞÞ,

jj�0ðzÞjj ¼ jjzjj1 � q�ðzÞ � jj�ðzÞjj:

It follows that bðEðAÞÞ ¼ EðAÞ. As EðAÞ is Frechet, the continuous inclusion map

ðbðAÞ; jj jj1Þ ! ðEðAÞ; �Þ is a homeomorphism. The converse follows from Theorem 1.2.

Proof of Theorem 1.4. By Corollary 2.3, I ¼ J ¼ srad ðAÞ in the notations of Lemma 2.9.

Let K ¼ A=J, a Frechet �-algebra in the quotient topology from A. By Lemma 2.8, the

uniform topology �D on �uðAÞ is a �-C�-topology; and the topology �uðtÞ on K is

determined by the (continuous) C�-seminorms fsGð�Þ : G 2 Fg, where F is the collection

of all subspaces D of Dð�uÞ such that D is �u-invariant and �ujD is a bounded operator
�-representation; and sGðzÞ ¼ jj�ujGðxÞjj for all z ¼ xþ J, x 2 A. Thus �uðtÞ � � where �
is the relative topology from EðAÞ defined by all C�-seminorms on EðAÞ. To show that

� � suðtÞ, let zn ¼ xn þ J 2 K, zn ! 0 in �uðtÞ. Let q be any C�-seminorm on A. There

exists � 2 RðAÞ such that qðxÞ ¼ jj�ðxÞjj, and � ¼ �f�f j f 2 F�g for a suitable

F� � PcðA; tÞ. Now H� ¼ � f2F�H f � Dð�uÞ, H� 2 F , and jj�ðxnÞjj ¼ sH�
ðznÞ ! 0.

Hence zn ! 0 in � . Thus � ¼ �uðtÞ, and EðAÞ ¼ ðOðAÞ; �uðtÞÞ, the completion. The

remaining assertion follows from Lemma 2.11.

4. Remarks

PROPOSITION 4.1

Let A be a �-sb Frechet �-algebra. If A is hermitian, then A is a Q-algebra.

Proof. We can assume that A is unital. Let P be a sequence of submultiplicative
�-seminorms defining the topology of A. Let A ¼ proj lim Aq be the Arens–Michael

decomposition expressing A as an inverse limit of a sequence of Banach �-algebras;

where, for q 2 P, Aq is the Banach �-algebra obtained by completing A= ker q in the norm

jjxþ ker qjj ¼ qðxÞ. Let �q : A! Aq be �qðxÞ ¼ xþ ker q.
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Case 1. Assume that A is commutative. By hermiticity, spAðhÞ ¼ f�ðhÞ : � 2 MðAÞg �
R for all h ¼ h� 2 A. Note that since A is hermitian. MðAÞ ¼ M�ðAÞ. Using ([23],

Proposition 7.5), it follows that for each q, MðAqÞ ¼ M�ðAqÞ; hence by ([7], Theorem

35.3, p. 188), each Aq is hermitian. Now by ([17], Lemma 41.2, p. 225), for each z 2 Aq,

the spectral radius satisfies

rAq
ðzÞ � rAq

ðz�zÞ1=2 ¼ jzqjq;

j jq denoting the Gelfand–Naimark pseudonorm on Aq. Then mqðxÞ ¼ j�qðxÞjq defines a

continuous C�-seminorm on A. By Lemma 2.10, there exists a greatest continuous C�-
seminorm p1ð Þ on A. By ([23], Corollary 5.3), for each x 2 A,

rAðxÞ ¼ supfrAq
ð�qðxÞÞg � supfmqðxÞg � p1ðxÞ:

By the continuity of p1, there exists a p 2 KsðAÞ and k > 0 such that for all x in A,

rðxÞ � p1ðxÞ � kpðxÞ. It follows from ([23], Proposition 13.5) that A is a Q-algebra.

Case 2. Let A be non-commutative. Let M be a maximal commutative �-subalgebra of A

containing the identity of A. Since M is spectrally invariant in A, M is also hermitian. By
�-spectral boundedness and hermiticity, each positive functional on M can be extended to

a positive functional on A ([17], Theorem 9.3, p. 49). It follows from ([15], Corollary 2.8)

and the continuity of positive functionals on unital Frechet �-algebras, that for all z 2 M,

p1ðzÞ ¼ pM
1ðzÞ � rMðz�zÞ1=2

, pM
1 being the greatest C�-seminorm on M and rMð�Þ

denoting the spectral radius in M. Thus M is a commutative hermitian algebra with a C�-
enveloping algebra. By case 1, M is a Q-algebra. Further, M being hermitian, the Ptak’s

function x! rMðx�xÞ1=2
is a C�-seminorm on M ([17], Corollary 8.3, p. 38; Theorem

8.17, p. 45).

Now let x 2 A, and take M to be the maximal commutative �-subalgebra containing

x�x. Let rKð�Þ denote the spectral radius in an algebra K. Then by Ptak’s inequality in

hermitian Frechet �-algebras ([17], Theorem 8.17, p. 45)

rAðxÞ � rAðx�xÞ1=2 ¼ rMðx�xÞ1=2 ¼ pM
1ðx�xÞ

1=2 ¼ p1ðx�xÞ1=2 � qðxÞ;

q being a �-algebra seminorm on A depending on p1 only. It follows from ([23],

Proposition 13.5) that A is a Q-algebra.

(4.2) (i) It is claimed in ([5], Corollary 2.4) that a complete hermitian m-convex �-algebra

with a C�-enveloping algebra is a Q-algebra. Regrettably, there is a gap in the proof. The

author sincerely thanks Prof. M Fragoulopoulou for pointing out this. It is implicitely

used in the ‘proof’ therein that the completion of a hermitian normed algebra is

hermitian. By Gelfand theory, this is certainly true in the commutative case, but is not

true in non-commutative case (see ([17], p. 18)). Thus ([15], Corollary 2.4) remains valid

in commutative case; and the above proposition partially repairs the gap in the non-

commutative case. Consequently ([15], Lemma 2.15, Theorem 2.14) remains valid for

Frechet algebras. Is a hermitian Frechet algebra with a C�-enveloping algebra a

Q-algebra? (ii) The algebra CðRÞ of continuous functions on R exhibits that the condition
�-sb can not be omitted from the above proposition. It also follows from above that a �-sb

�-C�-algebra is a C�-algebra.

(4.3) In Theorem 1.2, the assumption that � is closed can not be omitted. Let A ¼ C1ðRÞ,
the Frechet �-algebra of C1 functions on R, with pointwise operations and the topology

C�-enveloping algebras 81



of uniform convergence on compact subsets of R of functions as well as their derivatives.

Then EðAÞ ¼ CðRÞ, the algebra of continuous functions on R with the compact open

topology. On the Hilbert space H ¼ L2ðRÞ, the �-representation � of A with

Dð�Þ ¼ C1c ðRÞ, �ðaÞf ¼ af , cannot be extended to a �-representation of CðRÞ with

the same domain ([10], Example 4.7).

(4.4) Theorem 1.1 means that a Fechet �-algebra has a C�-enveloping algebra if and only

if it is a BG�-algebra [24]. In the non-metrizable case, it follows from Theorem 1.2 that if

A is a complete topological m-convex �-algebra with a C�-enveloping algebra, then every
�-representation of A which is continuous in the uniform topology is a bounded operator

representation. However, the converse does not hold. This is exhibited by the BG�-algebra

C½0; 1� of continuous functions on [0,1] with the pro-C�-topology � of uniform

convergence on all countable compact subsets of [0,1]. Thus Theorem 1.1 is false without

the assumption that A is Frechet. It would be of interest to find an example of a

topological algebra with a C�-enveloping algebra which is not a BG�-algebra.

(4.5) Yood [42] has shown that a �-algebra A admits a greatest C�-seminorm if and only if

sup j f ðxÞj <1 for each x, where the sup is taken over all admissible states S; and by

Lemma 2.10, this happens for a Frechet A if and only if A has a C�-enveloping algebra.

Yood’s result is an algebraic version of ([5], Corollary 2.9) that states that a complete

m-convex algebra has a C�-enveloping algebra if and only if S is equicontinuous.

(4.6) (i) Let � be a �-representation of a complete locally m-convex �-algebra A with a

bounded approximate identity. Let A have a C�-enveloping algebra. Is � continuous in the

uniform topology? In particular, let � be a bounded operator �-representation. Is � norm-

continuous?

(ii) Let A be a pro-C�-algebra (more generally, a complete m-convex �-algebra with a

bounded approximate identity). Let f be a representable, not necessarily continuous,

positive functional on A. Is the GNS representation �f a bounded operator representation?

Is every �-representation of A weakly unbounded?

These are motivated by the point of view ([5], Remark 2.11, p. 207) that a topological
�-algebras with a C�-enveloping algebra provide a hermitian analogue of a commutative

Q-algebra. It is easy to see that a �-representation � of a locally convex Q-algebra is a

bounded operator representation and is norm continuous.

5. Crossed product constructions

We recall the crossed product of a C�-dynamical system ðG;A; �Þ. Let � be a strongly

continuous action of a locally compact group G by �-automorphisms of a C�-algebra A.

Let CcðG;AÞ be the vector space of all continuous A-valued functions with compact

supports. It is a �-algebra with twisted convolution

x � yðgÞ ¼
Z

G

xðhÞ�hðyðhÿ1gÞÞdh

and the involution x�ðgÞ ¼ �ðgÞÿ1�gðxðgÿ1ÞÞ�. The Banach �-algebra L1ðG;AÞ is the

completion of CcðG;AÞ in the norm jjxjj1 ¼
R

G
jjxðhÞjjdh; and the crossed product C�-

algebra C�ðG;A; �Þ is the completion of L1ðG;AÞ in its Gelfand–Naimark pseudonorm

jjxjj ¼ supfjj�ðxÞjj : � 2 RðL1ðG;AÞÞg, which is, in fact, a norm. Thus it is the

enveloping C�-algebra of the Banach �-algebra L1ðG;AÞ. The C�-algebra C�ðG;A; �Þ

82 S J Bhatt



can also be realized as the enveloping C�-algebra of non-normed topological �-algebras

smaller than L1ðG;AÞ.
Let K be the collection of all compact, symmetric neighbourhoods of the identity in G.

For K 2K, let CKðG;AÞ ¼ f f 2 CcðG;AÞ : supp f � Kg, a Banach space with the norm

jj f jj ¼ supfjj f ðxÞjj : x 2 Kg. The inductive limit topology � on CcðG;AÞ is the finest

locally convex topology on CcðG;AÞ making each of the embeddings CKðG;AÞ !
CcðG;AÞ, for all K 2K, continuous. Then CcðG;AÞ is a locally convex, non- m-convex,

topological �-algebra with jointly continuous multiplication and continuous involution.

From ([18], p. 203), EðCcðG;AÞÞ ¼ C�ðG;A; �Þ. This immediately leads to the following.

PROPOSITION 5.1

Let ðG;A; �Þ be a C�-dynamical system. Let B be any topological �-algebra containing

CcðG;AÞ as a dense �-subalgebra and satisfying CcðG;AÞ � B � C�ðG;A; �Þ. Then

EðBÞ ¼ C�ðG;A; �Þ.

For 1 � p <1, let ApðG;AÞ ¼ L1ðG;AÞ \ LpðG;AÞ, a Banach �-algebra with the norm

jxjp ¼ jjxjj1 þ jjxjjp. The above applies to B ¼
T
fApðG;AÞ : 1 � p <1g, a locally m-

convex Q-Frechet �-algebra with the topology of j jp-convergence for each p.

Smooth elements of a Lie group action

Let A be a unital C�-algebra and G be a Lie group acting on A. Let � denote the

infinitesimal generators of actions of 1-parameter subgroups of G on A, viz.,

� ¼ fðd=dtÞ�uðtÞjt¼0 : t! uðtÞ
is a continuous homomorphism of R into Gg:

Then � consists of derivations and it is a finite dimensional vector space ([11], p. 40)

having basis, say �1; �2; . . . ; �d. Then Cn-elements (1 � n <1) and C1-elements of A for

the action � are defined as follows.

CnðAÞ ¼fx 2 A : x 2 Dom ð�i1�i2 . . . �inÞ for all n-tuples f�i1 ; . . . ; �ing in �g
C1ðAÞ ¼

\
fCnðAÞ : n 2 Ng:

By ([11], Proposition 2.2.1), each CnðAÞ and C1ðAÞ are dense �-subalgebras of A; and

CnðAÞ is a Banach �-algebra with the norm

jjxjjn ¼ jjxjj þ
Xn

k¼1

Xd

i1;i2;...;ik¼1

jj�i1�i2 . . . �ikðxÞjj=k!:

Then C1ðAÞ ¼ proj lim CnðAÞ is a Frechet �-algebra with the topology defined by the

norms fjj jjn : n ¼ 1; 2; . . .g.

Lemma 5.2. C1ðAÞ has a C�-enveloping algebra and EðC1ðAÞÞ ¼ A.

Proof. It is well known that CnðAÞ and C1ðAÞ are spectrally invariant in A. Hence

ðCnðAÞ; jj jjÞ and ðC1ðAÞ; jj jjÞ are Q-algebras in the norm jj jj from the C�-algebra A.

Since jj jj � jj jjn, ðC1ðAÞ; �Þ is also a Q-algebra. By Lemma 2.10, ðC1ðAÞ; �Þ is an

algebra with a C�-enveloping algebra. Let � : B! BðHÞ, where B ¼ CnðAÞ or C1ðAÞ, be
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a bounded operator �-representation on a Hilbert space H. Then for all x 2 B,

jj�ðxÞjj2 ¼ jj�ðx�xÞjj ¼ rBðHÞð�ðx�xÞÞ � r�ðBÞð�ðx�xÞÞ
� rBðx�xÞ � jjxjj2:

Hence � is jj jj-continuous; and by the density of C1ðAÞ in A, � extends uniquely to a
�-representation of A on H. It follows that EðC1ðAÞÞ ¼ C�ðCnðAÞÞ ¼ A for all n.

An element x 2 A is analytic if x 2 C1ðAÞ and there exists a scalar t > 0 such thatX1
k¼0

Xd

i1;i2;...;ik¼1

jj�i1�i2 � � � �ikðxÞjj=k!

 !
tk <1;

whereas x is entire if x 2 C1ðAÞ and for all t > 0, it holds thatX1
k¼0

Xd

i1;i2;...;ik¼1

jj�i1�i2 � � � �ikðxÞjj=k!

 !
tk <1:

Let C!ðAÞ (respectively Ce!ðAÞ) denote the set of all analytic (respectively entire)

elements of A. Then each of C!ðAÞ and Ce!ðAÞ is a �-subalgebra of A and

Ce!ðAÞ � C!ðAÞ � C1ðAÞ. For each t > 0 and x 2 CnðAÞ, define

pt
nðxÞ ¼ jjxjj þ

Xn

k¼1

Xd

i1;i2;...;ik¼1

jj�i1 � � � �ikðxÞjj=k!

 !
tk:

Then jj jjn and pt
nð Þ are equivalent norms. Hence Pt ¼ ðpt

nð ÞÞ and p ¼ ðjj jjnÞ define

the same C1-topology � on C1ðAÞ. Let At ¼ fx 2 C1ðAÞ : ptðxÞ ¼ supk pt
kðxÞ <1g, a

�-subalgebra of C1ðAÞ, which is a Banach �-algebra with norm ptð Þ, and which

consists of elements of C1ðAÞ whose numerical ranges defined with respect to Pt are

bounded. For t < s, the inclusion As ! At is norm decreasing. Thus

Ce!ðAÞ ¼
\
fAt : t > 0g ¼

\1
n¼1

An ¼ proj lim An;

a Frechet m-convex, �-algebra with the topology �e! defined by the family of norms

fptð Þ : t 2 Ng (setting p�ð Þ ¼ jj jj). Further,

C!ðAÞ ¼
[
t>0

At ¼
[1
n¼1

A1=n ¼ ind lim A1=n

with the linear inductive limit topology �!. By ([21], Corollary 10.2, Lemma 10.2, p. 317)

and ([32], Proposition 6.6, p. 59), ðC!ðAÞ; �!Þ is a complete m-convex �-algebra which is

a Q-algebra. Thus C!ðAÞ is an algebra with a C�-enveloping algebra. Further if each At is

dense and spectrally invariant in C1ðAÞ, then Ce!ðAÞ is an algebra with a C�-enveloping

algebra and EðCe!ðAÞÞ ¼ EðC!ðAÞÞ ¼ A.

The smooth crossed product

We recall the smooth Frechet algebra crossed product [29]. Let B be a Frechet �-algebra.

Let ðpnÞ be a sequence of submultiplicative �-seminorms defining the topology of B. Let

� be a strongly continuous action of R by continuous �-automorphisms of B. Then � is

called m-tempered (respectively isometric) if for each m 2 N, there exists a polynomial
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PðXÞ such that pmð�rðxÞÞ � PðrÞpmðxÞ for all x 2 B, r 2 R (respectively for each m 2 N,

pmð�rðxÞÞ ¼ pmðxÞ for all x 2 B, all r 2 R). Let SðRÞ be the Schwartz space consisting of

the rapidly decreasing C1-functions on R. It is a Frechet space with the Schwartz

topology. The completed projective tensor product SðRÞ 
 B ¼ SðR;BÞ consists of

B-valued Schwartz functions on R. If � is m-tempered, then SðR;BÞ becomes an m-

convex Frechet algebra with twisted convolution

ð f � gÞðrÞ ¼
Z

R

f ðsÞ�sðgðr ÿ sÞÞds:

This Frechet algebra is called the smooth Schwartz crossed product of B by the action �
of R, and is denoted by SðR;B; �Þ. In general, SðR;B; �Þ need not be a �-algebra ([34],

x 4). If � is isometric, then the completed projective tensor product

L1ðRÞ 
 B ¼ L1ðR;BÞ

¼ f f : R! B measurable function :

Z
R

pmð f ðrÞÞdr <1 for all m 2 Ng

is a Frechet �-algebra with twisted convolution and the involution f �ðrÞ ¼ �rð f ðÿrÞ�Þ,
denoted by L1ðR;B; �Þ. One has SðR;B; �Þ � L1ðR;B; �Þ.

The following is closely related with ([29], Lemma 1.1.9).

Lemma 5.3. Let A be a dense Frechet �-subalgebra of a Frechet �-algebra B. Assume that

A and B can be expressed as inverse limits of Banach �-algebras An and Bn respectively,

where An is dense in Bn for all n; the inclusions A! An , B! Bn have dense ranges for

all n; and each An is spectrally invariant in Bn. Then A is spectrally invariant in B and

EðAÞ ¼ EðBÞ.

Proof. By ([15], Theorem 4.3), EðAÞ ¼ proj lim EðAnÞ and EðBnÞ ¼ proj lim EðBnÞ.
Since An ! Bn is spectrally invariant with dense range, An is a Q-normed algebra in the

norm of Bn. Hence every C�-seminorm on An is continuous in the norm of Bn; and

extends uniquely to Bn. Thus An and Bn have the same collection of C�-seminorms. It

follows that EðAnÞ ¼ EðBnÞ for all n; and so EðAÞ ¼ EðBÞ.

PROPOSITION 5.4

Let � be an m-tempered strongly continuous action of R by continuous �-automorphisms

of a Frechet �-algebra B contained as a dense �-subalgebra of a C�-algebra A such that

EðBÞ ¼ A. Then EðC1ðBÞÞ ¼ A.

Proof. Let jj jj denote the C�-norm on A. Let ðpnÞ be an increasing sequence of

submultiplicative �-seminorms defining the topology of B. In view of the continuity of the

inclusion B! A, the increasing sequence qnð Þ ¼ pnð Þ þ jj jj of norms also deter-

mines the topology of B. Let Bn ¼ðB; qnÞ be the completion, which is a Banach �-algebra.

Then B ¼ proj: lim Bn ¼
T

Bn. Now, for any n 2 N, r 2 R, and x 2 B,

qnð�rðxÞÞ ¼ jj�rðxÞjj þ pnð�rðxÞÞ
¼ jjxjj þ poly ðrÞpnðxÞ ¼ poly0 ðrÞqnðxÞ

for some polynomial poly’( ). It follows that � is m-tempered for ðqnð ÞÞ also; and it

induces an action �ðnÞ of R by continuous �-automorphisms of Bn. Let Bn;m be the Banach
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�-algebra consisting of all Cm-vectors in Bn for �ðnÞ. By ([33], Theorem 2.2), Bn;m ! Bn

are spectrally invariant embeddings with dense ranges. Also, C1ðBÞ ¼ proj limn;m

Bn;m ¼ proj limn Bn;n. Now Lemma 5.2 implies that C1ðBÞ is spectrally invariant in B

and EðC1ðBÞÞ ¼ A.

PROPOSITION 5.5

Let � be a strongly continuous action of R by �-automorphisms of a C�-algebra A. The

following hold.

(a) The Frechet algebras SðR;A; �Þ and SðR;C1ðAÞ; �Þ are Q-algebras.

(b) The embeddings SðR;C1ðAÞ; �Þ ! SðR;A; �Þ ! C�ðR;A; �Þ are continuous, spec-

trally invariant and have dense ranges.

(c) The Frechet algebra SðR;C1ðAÞ; �Þ is �-algebra and EðSðR;C1ðAÞ; �Þ ¼
C�ðR;A; �Þ.

Proof. By ([34], Theorem A.2), � leaves C1ðAÞ invariant. In ([34], Corollary 4.9), taking

the scale � to be the weight wðrÞ ¼ 1þ jrj on G ¼ R ¼ H, it follows that SðR;C1
ðAÞ; �Þ, is a Frechet �-algebra. Now ~�sð f ÞðrÞ ¼ �sð f ðrÞÞ defines an action ~� of R on the

Frechet algebra SðR;A; �Þ for which, by ([29], p. 189), C1ðSðR;A; �ÞÞ ¼ SðR;
C1ðAÞ; �Þ homeomorphically. Note that the embeddings

SðR;C1ðAÞ; �Þ ! SðR;A; �Þ ! L1ðR;A; �Þ ! C�ðR;A; �Þ

are continuous; SðR;C1ðAÞ; �Þ is dense in SðR;A; �Þ by ([34], Theorem A.2); and

SðR;A; �Þ is dense in L1ðR;A; �Þ; which, in turn, is dense in C�ðR;A; �Þ.
Now let fj jng be an increasing sequence of submultiplicative seminorms defining the

topology of SðR;A; �Þ. Let ðBn; j jnÞ be the Hausdorff completion of SðR;A; �Þ in j jn.

Then Bn is a Banach algebra and SðR;A; �Þ ¼ proj: lim Bn. Since jj�rðxÞjj ¼ jjxjj, the

action ~� of R on SðR;A; �Þ extends to a strongly continuous action ~�ðnÞ of R by

automorphisms of Bn. Let CmðBnÞ be the Banach algebra of all Cm-vectors in Bn for the

action of ~�ðnÞ. As noted in ([29], p. 189), CnðBnÞ is dense and spectrally invariant in Bn;

and SðR;C1ðAÞ; �Þ ¼ proj lim CnðBnÞ. Let x 2 SðR;C1ðAÞ; �Þ, x ¼ ðxnÞ being a cohe-

rent sequence with xn 2 CnðBnÞ for all n 2 N. Now

spSðR;C1ðAÞ;�ÞðxÞ ¼
[

n

spCnðBnÞðxnÞ ¼
[

n

spBn
ðxnÞ ¼ spSðR;A;�ÞðxÞ:

Thus SðR;C1ðAÞ; �Þ is spectrally invariant in SðR;A; �Þ; which in turn is spectrally

invariant in C�ðR;A; �Þ by ([33], Corollary 7.16). Thus each of SðR;C1ðAÞ; �Þ and

SðR;A; �Þ are Q-normed algebras in the C�-norm of C�ðR;A; �Þ; and hence are Q-

algebras in their respective Frechet topologies. Using Lemma 2.10, EðSðR;C1
ðAÞ; �ÞÞ ¼ C�ðR;A; �Þ.

Proof of Theorem 1.5. Since C1ðBÞ ¼ B, the Frechet m-convex algebra SðR;B; �Þ is a
�-algebra by ([34], Corollary 4.9). Since B is Frechet and sits in the C�-algebra A, B is
�-semisimple. Similarly, since the inclusion SðR;B; �Þ ! C�ðR;A; �Þ is continuous and

one–one, SðR;B; �Þ is also �-semisimple. To prove that EðSðR;B; �ÞÞ ¼ C�ðR;A; �Þ, it is

sufficient to prove that any �-representation � : SðR;B; �Þ ! BðH�Þ extends to a
�-representation ð~�Þ : C�ðR;A; �Þ ! BðH�Þ. This would imply that the C�-norm on

SðR;B; �Þ induced by the C�-algebra norm on C�ðR;A; �Þ is the greatest (automatically
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continuous) C�-seminorm on SðR;B; �Þ. This is shown below by arguments analogous to

those in ([25], Proposition 7.6.4, p. 255).

Let ðx�Þ be a bounded approximate identity for A contained in B and which is also a

bounded approximate identity for B. For each n 2 N, let fn 2 C1c ðRÞ be such that

0 � fn � 1, fnðxÞ ¼ 1 for all x 2 ½ÿn; n�, and supp fn � ½ÿnÿ 1; nþ 1�. Then ð fnÞ is a

bounded approximate identity for SðRÞ (pointwise multiplication) contained in C1c ðRÞ.
The inverse Fourier transforms gn of fn constitute a bounded approximate identity for

SðRÞ with convolution. Thus yn;� ¼ gn 
 x� constitute a bounded approximate identity

for SðR;B; �Þ. Given a �-representation � : SðR;B; �Þ ! BðH�Þ automatically contin-

uous, let UðH�Þ be the group of all unitary operators on H�. Define � : B! BðH�Þ and

U : R! UðH�Þ by

�ðxÞ ¼ lim
ðn;�Þ

�ðxyðn;�Þð ÞÞ;

Ut ¼ lim
ðn;�Þ

�ð�tðyð� ÿ tÞÞÞ:

The limits are taken in the weak sense; and they exist. As in ([25], § 7.6, p. 256), it is

verified that � is a �-representation of B; U is a unitary representation of R;

Ut�ðxÞU�t ¼ �ð�tðxÞÞ for all t 2 R, all x 2 B; and for all y 2 SðR;B; �Þ, �ðyÞ ¼
R
�ðyðtÞÞ

Utdt. Now, since EðBÞ ¼ A; � extends to a �-representation ~� : A! BðH�Þ so that

ð~�;U;H�Þ is a covariant representation of the C�-dynamical system ðR;A; �Þ. Then

~�ðyÞ ¼
R

~�ðyðtÞÞUt dt defines a non-degenerate �-representation of the Banach �-algebra

L1ðR;B; �Þ; and hence extends uniquely to a �-representation ~� of C�ðR;B; �Þ. This ~� is

the desired extension of �. This shows that EðSðR;B; �ÞÞ ¼ C�ðR;A; �Þ.
Further, suppose that the action � of R on B is isometric. Then by [29], L1ðR;B; �Þ is a

�-algebra, which is a Frechet m-convex �-algebra; and

SðR;B; �Þ ! L1ðR;B; �Þ ! L1ðR;A; �Þ ! C�ðR;A; �Þ

are continuous embeddings with dense ranges. It follows that EðL1ðR;B; �Þ ¼
C�ðR;A; �Þ. This completes the proof of the theorem.

Actions on topological spaces

(a) Let M be a locally compact Hausdorff space. Let � : M ! ½0;1Þ be a Borel function,

�ðmÞ � 1 for all m 2 M. Assume that � is bounded on compact subsets of M. Following

([34], § 5), let

C�ðMÞ ¼ f f 2 C0ðMÞ : jj�df jj <1 for all d 2 Ng;

called the algebra of continuous functions on M vanishing at infinity �-rapidly. It is

shown in [34] that C�ðMÞ is a Frechet m-convex �-algebra with the topology defined by

seminorms

jj�df jj ¼ supfjð�ðxÞÞdf ðxÞj : x 2 Mg; d 2 N;

and that CcðMÞ ! C�ðMÞ ! C0ðMÞ are continuous embeddings with dense ranges. Thus

EðC�ðMÞÞ ¼ C0ðMÞ. In fact, C�ðMÞ is an ideal in C0ðMÞ; hence inverse closed in C0ðMÞ;
and so is a Q-algebra.

(b) Let G be a Lie group acting on M. If f 2 C�ðMÞ, define �gð f ÞðmÞ ¼ f ðgÿ1mÞ. By

([34], § 5), if � is uniformly G-translationally equivalent (in the sense that for every
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compact K � G, there exists l 2 N and C > 0 such that �ðgmÞ � C�ðmÞl for all g 2 G,

m 2 M), then g! �g defines a strongly continuous action of G by continuous
�-automorphisms of C�ðMÞ. Then the space C1ðC�ðMÞÞ consisting of C1-vectors for the

action � of G on C�ðMÞ is an m-convex Frechet �-algebra with a C�-enveloping algebra

and EðC1ðC�ðMÞÞ ¼ C0ðMÞ.
(c) In particular, let G ¼ R, M be a compact C1-manifold, and let the action of R on M

be smooth. Then the induced action � on CðMÞ is smooth, so that �rðC1ðMÞÞ � C1ðMÞ
for all r 2 R. It follows from Theorem 5.1 that EðSðR;C1ðMÞ; �Þ ¼ C�ðR;CðMÞ; �Þ the

covariance C�-algebra.

6. The Pedersen ideal of a C�-algebra

Let A be a non-unital C�-algebra. Let KA be its Pedersen ideal. It is a hereditary, minimal

dense �-ideal of A. For a 2 A, let La ¼ ðAaÞÿ, Ra ¼ ðaAÞÿ, Ia be the closed �-ideal of A

generated by aa�. Since a 2 La

T
Ra, aa� 2 Ia. Let KþA ¼ KA

T
Aþ be the positive part of

KA endowed with the order relation induced from that of Aþ. Let Knc
A ¼

S
fIa : a 2 KþA g.

Lemma 6.1. Knc
A is a dense �-ideal of A containing KA; and A ¼ C�-ind lim fIa : a 2 KþA g.

Proof. Let a 2 KþA . Then a2 ¼ aa� 2 Ia; and Ia being a C�-algebra, a ¼ ða2Þ1=2 2 Ia.

Thus KþA � Knc
A . Observe that for any x ¼ x� 2 KA, x 2 Ix. Indeed, x2 2 Kþa ; hence

x2 2 Ix and jxj 2 Ix. But than taking the Jordan decomposition x ¼ xþ ÿ xÿ in A,

ðxþÞ2 ¼ ðxþÞ2 þ xþxÿ ¼ xþjxj 2 Ix; so that xþ 2 Ix, xÿ 2 Ix, and x 2 Ix. In particular,

x2 2 Ix2 and jxj 2 Ix2 . By repeating this argument, x 2 Ix2 � Knc
A for any x ¼ x� 2 KA. It

follows that KA � Knc
A . Now, by ([28], Lemma 1), 0 � a � b in A implies La � Lb,

Ra � Rb and Ia � Ib; and KA ¼
S
fLa : a 2 KþA g ¼

S
fRa : a 2 KþA g. The family fIa :

a 2 KþA g forms an inductive system of C�-algebras; and C�-ind limfIa : a 2 KþA g ¼
ð
S
fIa : a 2 KþA gÞ

ÿ ¼ A, ð Þÿ denoting the norm closure. This proves the lemma.

Let t1 (respectively t2) be the finest locally convex linear topology (respectively finest

locally m-convex topology) on Knc
A making continuous the embeddings Ia ! Knc

A , where

a 2 KþA . Then ðKnc
A ; t1Þ (respectively ðKnc

A ; t2Þ) is the linear topological inductive limit

(respectively topological algebraic inductive limit) of fIa : a 2 KþA g ([21], ch. IV).

Proof of Theorem 1.6. In the present set up, ([21], p. 115, 118, 125) implies that t1 ¼ t2;
equal to � say, and ðKnc

A ; �Þ is a complete m-barrelled locally m-convex �-algebra; and the

jj jj-topology on Knc
A is coarser than � . Since Knc

A is an ideal, it is inverse closed in its

jj jj-completion A, and hence ðKnc
A ; jj jjÞ and ðKA; jj jjÞ are Q-algebras. This implies that

any �-homomorphism from Knc
A into BðHÞ for a Hilbert space H is jj jj-continuous and

extends uniquely to A. Thus jj jj is the greatest C�-seminorm on Knc
A . To show that jj jj is

the greatest �-continuous C�-seminorm on Knc
A so that EðKnc

A Þ ¼ A, it is sufficient to show

that ðKnc
A ; �Þ is a Q-algebra. To that end, in view of ([23], Lemma E.2), we show that 0 is

a �-interior point of the set ðKnc
A Þÿ1 of quasiregular elements of Knc

A . Note that, by ([21],

p. 114), basic �-neighbourhoods of 0 in Knc
A are precisely of the form V ¼ jc o j

f
S
ðUa : a 2 KþA Þg, where jc o j denotes the absolutely convex hull and Ua denotes a

convex balanced neighbourhood of 0 in ðIa; jj jjÞ. For any a 2 KþA , ðIa; jj jjÞ is a Q-

algebra, and being an ideal in A, ðIaÞÿ1 ¼ Aÿ1

T
Ia. Hence, for the zero neighbourhood

Ua ¼ fx 2 Ia : jjxjj � 1g in ðIa; jj jjÞ,
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Ua � ðIaÞÿ1 ¼ ðKnc
A Þÿ1

\
Ia � ðKnc

A Þÿ1; and

jc o j
[
ðUa : a 2 KþA Þg ¼ fx 2 Knc

A : jjxjj � 1
n o

¼ U ðsayÞ

is a zero neighbourhood in ðKnc
A ; �Þ contained in ðKnc

A Þÿ1. It follows that ðKnc
A ; �Þ and

ðKA; �Þ are Q-algebras. Now, as in the proof of ([28], Theorem 4), Knc
A ¼ [fIe�g, ðe�Þ

being a bounded approximate identity for A contained in KA. Thus if A has countable

bounded approximate identity, then Knc
A is an LFQ-algebra; and � is the finest (unique)

locally convex topology on Knc
A such that for each �, � jIe�

is the norm topology.

7. The groupoid C�-algebra

We follow the terminology and notations of [31]. Let G be a locally compact groupoid,

i.e., a locally compact space G with a specified subset G2 � G� G so that two conti-

nuous maps G! G, x! xÿ1, and G2 ! G, ðx; yÞ ! xy are defined satisfying

ðxyÞz ¼ xðyzÞ, xÿ1ðxyÞ ¼ y and ðzxÞxÿ1 ¼ z. The unit space of G is Go ¼ fxxÿ1 :
x 2 Gg ¼ fxÿ1x : x 2 Gg. Let rðxÞ ¼ xxÿ1 and dðxÞ ¼ xÿ1x. Assume that there exists a

left Haar system f�u : u 2 Gog on G, i.e., a family of measures �u on G such that

supp �u ¼ rÿ1ðuÞ; for each f � CcðGÞ, u!
R

f d�u is continuous; and for all x 2 G and

f 2 CcðGÞ,
R

f ðxyÞd�dðxÞðyÞ ¼
R

f ðyÞd�rðxÞðyÞ. Let � be a continuous 2-cocycle in

Z2ðG; TÞ. Let t denote the usual inductive limit topology on CcðGÞ. Then ðCcðGÞ; tÞ is a

topological �-algebra with jointly continuous multiplication

f � gðxÞ ¼
Z

f ðxyÞgðyÿ1Þ�ðxy; yÿ1Þd�dðxÞðyÞ

and the involution f �ðxÞ ¼ ð f ðxÿ1Þ�ðx; xÿ1ÞÞÿ ([31], Proposition II.1.1, p. 48). The I-

norm on CcðG; �Þ is jj f jjI ¼ maxðjj f jjI;r; jj f jjI;lÞ, where

jj f jjI;r ¼ sup

Z
j f jd�u : u 2 Go

� �
; jj f jjI;l ¼ sup

Z
j f jd�u : u 2 Go

� �
;

�u ¼ ð�uÞÿ1
being the image of �u by the inverse map x! xÿ1 ([31], p. 50). Then jj jjI

is a submultiplicative �-norm on CcðG; �Þ. The L1-algebra of ðG; �Þ is the completion

A ¼ ðCcðG; �Þ; jj jjIÞ, a Banach �-algebra. For f in CcðG; �Þ, define jj f jj ¼ supfjj�ð f Þjjg,
� running over all weakly continuous, non-degenerate �-representations � : ðCcðG; �Þ;
tÞ ! BðH�Þ satisfying jj�ð f Þjj � jj f jjI for all f . Then jj jj defines a C�-norm on CcðG; �Þ;
and the groupoid C�-algebra of ðG; �Þ is C�ðG; �Þ ¼ ðCcðG; �Þ; jj jjÞÿ, the completion.

The following can be proved using cyclic decomposition and ([31], Corollary II.1.22,

p. 72).

PROPOSITION 7.1

Let G be second countable having sufficiently many non-singular G-Borel sets. Then

EðCcðG; �ÞÞ ¼ C�ðG; �Þ.

8. The universal �-algebra on generators with relations

Let G be any set. Let FðGÞ be the free associative �-algebra on generators G, viz., the
�-algebra of all polynomials in non-commuting variables G

‘
G� where G� ¼

fx� : x 2 Gg. Let R be a collection of statements about elements of G, called relations
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on G, assumed throughout to be such that they make sense for elements of a locally

m-convex �-algebra. A Banach (respectively C�-) representation of ðG;RÞ is a function �
from G to a Banach �-algebra (respectively a C�-algebra) � : G! A such that

f�ðgÞ : g 2 Gg satisfies the relations R in A. Let RepBðG;RÞ (respectively RepðG;RÞ)
be the set of all Banach representations (respectively C�-representations) of ðG;RÞ.
Motivated by ([27], Definition 1.3.4), it is assumed that R satisfies the following.

(i) The function � : G! f0g is a Banach representation of ðG;RÞ.
(ii) Let � : G! A be a representation of ðG;RÞ in a Banach �-algebra A. Let B be a

closed �-subalgebra of A containing �ðGÞ. Then � is a representation of ðG;RÞ in B.

(iii) Let � be a representation of ðG;RÞ in a complete locally m-convex �-algebra A. Let

� : A! B be a continuous �-homomorphism into a Banach �-algebra B. Then � � � is

a representation of ðG;RÞ in B.

(iv) Let A be a complete locally m-convex �-algebra expressed as an inverse limit of

Banach �-algebras viz. A ¼ proj: lim Ap. Let �p : A! Ap be the natural maps. Let

� : G! A be a function such that for all p, �p � � is a representation of ðG;RÞ. Then

� is a representation of ðG;RÞ.

DEFINITION 8.1

(a) (Blackadar) (G;R) is C�-bounded if for each g in G, there exists a scalar MðgÞ such

that jj�ðgÞjj � MðgÞ for all � 2 Rep ðG;RÞ.
(b) (Blackadar) ðG;RÞ is C�-admissible if it is C�-bounded and the following holds.

ðbC�Þ If ð��Þ is a family of representations �� : G! BðH�Þ of ðG;RÞ on Hilbert spaces

H�, then ��� : G! Bð�H�Þ is a representation of ðG;RÞ.
(c) (G;R) is weakly Banach admissible if given finitely many representations �i : G! Ai

ð1 � i � nÞ of G into Banach �-algebras, the map g! �1ðgÞ � �2ðgÞ � . . .� �nðgÞ is a

representation of ðG;RÞ in � Ai. (G;R) is weakly C�-admissible [27] if this holds with

Banach algebras replaced by C�-algebras.

The class of relations making sense for elements of a Banach �-algebra is smaller than

the class of relations making sense for elements of a C�-algebra. The usual algebraic

relations involving the four elementary arithmetic operations on elements of G and G� do

make sense for Banach �-algebras; but relations like xþ � xÿ for x ¼ x� in G, or like

jxj � jyj for elements x, y in G, which make sense for C�-algebras, fail to make sense for

Banach �-algebras. We refer to [27] for relations satisfying (i)–(iv) except (ii). The

relation (suggested by the referee). ‘‘The elements a, b and c generate A’’ fails to satisfy

Definition 8.1(c). Our definition of weakly Banach admissible relations is very much

ad hoc aimed at exploring a method of constructing non-abelian locally m-convex
�-algebras.

Lemma 8.2. (a) Let ðG;RÞ be weakly Banach admissible. Then there exists a complete

m-convex �-algebra AðG;RÞ and a representation � : G! AðG;RÞ such that given any

representation � : G! B into a complete m-convex �-algebra B, there exists a

continuous �-homomorphism � : AðG;RÞ ! B satisfying � � � ¼ �.

(b) ([27], Proposition 1.3.6). Let ðG;RÞ be weakly C�-admissible. Then there exists a pro-

C�-algebra C�ðG;RÞ and a representation �1 : G! C�ðG;RÞ such that given any

representation � : G! B of G into a pro-C�-algebra B, there exists a continuous
�-homomorphism � : C�ðG;RÞ ! B such that � � �1 ¼ �.
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Proof. (a) Let K ¼ KðFðGÞÞ be the set of all submultiplicative �-seminorms p on FðGÞ of

the form pðxÞ ¼ jj�ðxÞjj, � running through all Banach representations of G. For p 2 K,

let Np ¼ fx 2 FðGÞ : pðxÞ ¼ 0g and Na ¼ \fNp : p 2 Kg a �-ideal of FðGÞ. Let

B ¼ FðGÞ=Na. Take ~pðxþ NaÞ ¼ pðxÞ. Let t be the Hausdorff topology defined by

f~p : p 2 Kg. Let AðG;RÞ be the completion of ðB; tÞ. Let � : G! AðG;RÞ be

�ðgÞ ¼ gþ Na.

Claim 1. � is a representation of G in AðG;RÞ.

Let q be any t-continuous submultiplicative �-seminorm on AðG;RÞ. Let Aq be the

Banach �-algebra obtained by the Hausdorff completion of ðAðG;RÞ; qÞ. By (iv) above, it

is sufficient to prove that �q � � : G! Aq is a representation of ðG;RÞ. Since q is t-

continuous, there exists p1; p2; . . . ; pk in K such that qðxÞ � c max piðxÞ for all x 2 FðGÞ;
and each pi is of form piðxÞ ¼ jj�iðxÞjj, �i : G! AðiÞ being a representation into some

Banach algebra AðiÞ. By (c) of Definition 8.1, there exists a Banach �-algebra B and a

representation � : G! B such that qðxÞ � jj�ðxÞjj for all x 2 FðGÞ. In view of (ii), we

assume that B is generated by �ðGÞ. Let � : B! Aq be �ð�ðxÞÞ ¼ ðxþ NaÞþ
ker q ¼ �qð�ðxÞÞ. Then � is well defined, continuous and � � � ¼ �q � �. By the

assumption (iii) above, � � � is a representation of G.

Claim 2. Given any representation � : G! C into a complete m-convex �-algebra C,

there exists a unique continuous �-homomorphism � : AðG;RÞ ! C such that � � � ¼ �.

Let C ¼ proj: lim C�, an inverse limit of Banach �-algebras C�, �� : C ! C� being the

projection maps. By (iii) of above, � � � is a Banach representation of ðG;RÞ. By the

construction of AðG;RÞ, there exist continuous �-homomorphisms �� : AðG;RÞ ! C�

such that �� � � ¼ �� � �. Hence by the definition of an inverse limit, there exists a

continuous �-homomorphism � : AðG;RÞ ! C such that � � � ¼ �.

(b) We only outline the (needed) construction of C�ðG;RÞ from [27]. Let S be the set of

all C�-seminorms on FðGÞ of form qðxÞ ¼ jj�ðxÞjj, � running over all representations of

G into C�-algebras. Let Nq ¼ fx 2 FðGÞ : qðxÞ ¼ 0g and N ¼ \fNq : q 2 Sg. Let � be

the pro-C�-topology on FðGÞ=N defined by ~qðxþ NÞ ¼ qðxÞ, q 2 S. Then C�ðG;RÞ is

the completion of ðFðGÞ=N; �Þ. The map �1 : G! C�ðG;RÞ where �1ðxÞ ¼ xþ N is

the canonical representation.

The following brings out the essential point in arguments in claim 1 above.

Lemma 8.3. There exists a natural one-to-one correspondence between RepBðG;RÞ
(respectively Rep ðG;RÞ) and t-continuous Banach �-representations (respectively C�-
algebra representations) of AðG;RÞ.

Lemma 8.4. srad ðAðG;RÞÞ
T
ðFðGÞ=NaÞ ¼ srad ðFðGÞ=NaÞ ¼ fxþ Na : x 2 Ng.

Proof. Let C ¼ FðGÞ=Na. Let xþ Na 2 C
T

srad A. Then �ðxþ NaÞ ¼ 0 for all

continuous �-homomorphisms � : A! BðH�Þ. By Lemma 8.3, pðxÞ ¼ 0 for all p 2 S.

Hence x 2 N, and xþ Na 2 srad ðFðGÞ=NaÞ. Conversely, let x 2 N. Then qðxÞ ¼ 0 for all

q 2 S. Again by Lemma 8.3, jj�ðxþ NaÞjj ¼ 0 for all � 2 RðAÞ, hence xþ Na 2 srad A.

Proof of Theorem 1.7. (1) Let A ¼ AðG;RÞ. Let � : ðFðGÞ=Na; tÞ ! ðFðGÞ=Na; �Þ be

�ðX þ NaÞ ¼ xþ N. Then � is a well defined, continuous �-homomorphism; hence
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extends as a continuous surjective �-homomorphism � : A! C�ðG;RÞ. The universal

property of C�ðG;RÞ, Lemma 8.3 and weak Banach admissibility of R imply the follow-

ing whose proof we omit.

Assertion 1. Given any continuous �-homomorphism � : AðG;RÞ ! B to a pro-C�-
algebra B, there exists a continuous �-homomorphism ~� : C�ðG;RÞ ! B such that

� ¼ ~� � �.

By applying the above to the maps � and j : A! EðAÞ, jðxÞ ¼ xþ srad ðAÞ, it follows

that there exist continuous �-homomorphisms ~� : EðAÞ ! C�ðG;RÞ and ~j : C�ðG;RÞ !
EðAÞ such that the following diagrams commute.

Assertion 2. The maps ~� and ~j are inverse of each other.

Indeed, ~j is one–one on FðGÞ=N. For given x 2 FðGÞ,

0 ¼ ~jðxþ NÞ ¼ ~j � �ðxþ NaÞ ¼ jðxþ NaÞ

which implies ðxþ NaÞ þ srad ðAÞ ¼ 0 and ðxþ NaÞ 2 srad ðAÞ. Hence x 2 N by

Lemma 8.4, so that xþ N ¼ 0. Similarly ~� is one–one on FðGÞ=N. Also,

ð ~� �~jÞðxþ NÞ ¼ ~� �~j � �ðxþ NaÞ
¼ ~� � jðxþ NaÞ ¼ �ðxþ NaÞ ¼ xþ N;

which implies that ~� ¼ ~jÿ1 on FðGÞ=Na; and ~j ¼ ~�ÿ1 on FðGÞ=Na þ srad A. By

continuity and density, ~� establishes a homeomorphic �-isomorphism ~� : EðAÞ ! C�

ðG;RÞ with ~�ÿ1 ¼ ~j.
(2) Let ðG;RÞ be C�-admissible. Then supfjj�ðxÞjj : � 2 Rep ðG;RÞg <1; and � ¼
�f� : � 2 Rep ðG;RÞg 2 Rep ðG;RÞ. Thus qðxÞ ¼ jj�ðxÞjj defines the greatest member

of SðFðGÞÞ, q is a C�-norm, and it is the greatest t-continuous C�-seminorm on FðGÞ=N.

Thus the topology � on C�ðG;RÞ is determined by q. Conversely suppose that C�ðG;RÞ is

a C�-algebra so that jjzjj1 ¼ supfqðzÞ : q is a continuous C�-seminorm on

C�ðG;RÞg <1 for all z 2 C�ðG;RÞ, and � is determined by the C�-norm jj jj1. Let

p1ðxÞ ¼ jjxþ Njj1 ¼ supfqðxÞ : q 2 Sg for all x 2 FðGÞ. Then p1 2 S and ker p1 ¼ N.

There exists a C�-representation � : G! C such that p1ðgÞ ¼ jj�ðgÞjj for all g 2 G; and

this defines a continuous C�-representation � : C�ðG;RÞ ! C. It is clear that R is C�-
bounded. We verify (bC�) of Definition 8.1. Let f��g � Rep ðG;RÞ with �� : G! BðH�Þ
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for some Hilbert space H�. Let H ¼ �H�. For x 2 FðGÞ, let �ðxÞ ¼ ���ðxÞ. By the C�-
boundedness of ðG;RÞ, �ðxÞ 2 BðHÞ. This defines a �-homomorphism � : FðGÞ ! BðHÞ
satisfying jj�ðxÞjj ¼ sup jj��ðxÞjj � p1ðxÞ for all x 2 FðGÞ. Since ker p1 ¼ N, � factors

to a �-representation ~� : FðGÞ=N ! BðHÞ satisfying jj ~�ðzÞjj � jjzjj1. As jj jj1 is �-

continuous, so is ~�. By lemma 8.3, f�ðgÞ : g 2 Gg satisfies the relations R in BðHÞ. Thus

ðG;RÞ is C�-admissible.
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