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Abstract

A two chain ladder model is considered described by the strong

coupling t− t
′−J −J

′ Hamiltonian. For the case of two holes moving

in a background of antiferromagnetically interacting spins, exact, an-

alytical results are derived for the ground state energy and low-lying

excitation spectrum. The ground state is a bound state of two holes

with total spin S=0. The charge excitation is gapless and the spin

excitation has a gap. The corresponding wavefunctions are also ex-

actly determined. The bound hole pair is found to have symmetry

of the d-wave type. In the limit of strong rung coupling, the model

maps onto an effective hard core boson model which exhibits dominant

superconducting pairing correlations.

I. Introduction

In the last few years, ladder systems have been studied extensively [1, 2, 3].
Interacting electron systems in one dimension (1d) are more or less well
understood. There are several rigorous results available for such systems
[3]. Powerful techniques like the Bethe Ansatz [4] and bosonization [5] have
yielded much useful information about such systems. After the discovery of
high-Tc cuprate superconductivity, 2d interacting electron systems acquired
new significance due to the fact that the dominant electronic and magnetic
properties of the cuprate systems are associated with the CuO2 plane [6, 7].
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There are, however, very few rigorous results available for 2d systems. Lad-
ders, consisting of n-chains coupled by rungs, interpolate between 1d and 2d
and their study is expected to be useful for a proper understanding of inter-
acting many body systems. The possibility of deriving rigorous results is also
more. A number of ladder systems have been discovered recently exhibiting a
variety of interesting phenomena[1, 2, 3]. Physical insight obtained from the
study of ladders is also expected to be relevant for high-Tc cuprate systems.
The cuprates, in the spin-disordered phase, are doped spin liquids. Below
optimal doping levels and well above the superconducting transition temper-
ature Tc, there are experimental signatures of a spin gap(SG)[7] opening up.
The ’gap’ has been ascribed to pre-formed Cooper pairs of holes which lack
the long-range phase coherence of the superconducting state. The Cooper
pairs become phase coherent only below Tc giving rise to superconductivity.
Dagotto et al[8] were the first to show that a two-chain ladder has a spin
liquid ground state and a SG in the excitation spectrum. On doping the sys-
tem with holes, binding of holes in pairs is possible, giving rise to dominant
superconducting(SC) pairing correlations. A few years later, a hole doped
two-chain ladder system Sr0.4Ca13.6Cu24O41.84 was discovered which exhibits
superconductivity under pressure[9].

The relationship between ‘pseudo’ spin-gap, pre-formed hole pairs and
superconductivity is not well-understood in the case of cuprate systems. For
the ladder system, the SG is a real gap and the binding of holes leading to
SC pairing correlations can be explicitly demonstrated. Resistivity measure-
ments of the ladder compound (Sr, Ca)14Cu24O41 show unusual temperature
dependence as in the case of cuprates [10]highlighting further similarities be-
tween the two systems. Bose and Gayen [11, 12, 13, 14]have constructed a
two-chain t-J type ladder model for which several exact, analytical results
can be derived in the undoped as well as doped cases. For two holes, the
possibility of binding of holes was suggested but the bound state spectrum
was not derived. In Section II of this paper, we give a detailed derivation
of the low-lying spin and charge excitation spectrum of the ladder model in
the two-hole sector. We show that the ground state consists of a bound pair
of holes. The spin excitation spectrum has a gap and the charge excitation
is gapless. The two-hole wave functions are also computed. The two-hole
bound state wave function is shown to have modified d-wave symmetry. All
these results are exact and analytic in nature. The dominance of SC pair-
ing correlations in the ladder model is shown in an approximate, analytical
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manner.

II. Exact two-hole excitation spectrum

The two-chain ladder model consists of two chains, each described by a t-
J Hamiltonian, coupled by t′ − J ′ interactions between them (Fig.1). The
model is described by the t− t′ − J − J ′ Hamiltonian:

H = −
∑

i,j,σ

tij (1 − ni−σ )C†
i,σ Cj,σ (1 − nj−σ) +H.C.+

∑

<ij>

Jij
~Si · ~Sj

= Ht +Ht′ +HJ +HJ ′ (1)

The constraint that no site can be doubly occupied is implied in the model.
The hopping integral tij has the value t for nearest-neighbour(NN) hopping
within a chain and also for diagonal transfer between chains (solid lines in
Fig.1). The corresponding spin-spin interactions Jij are of strength J. The
spins have magnitude 1/2. The hopping integral across vertical links (broken
lines) connecting two chains has the strength t′. The corresponding spin-
spin interaction strength Jij is J ′. We assume t and t′ to be positive. In
the conventional two-chain spin-ladder, the diagonal interaction and hopping
terms are absent. The inclusion of the diagonal terms of the same strength
as the intra-chain ones enables one to reduce the difficult N-body problem to
an easily solvable few body problem. The conventional spin ladder model, in
the absence of diagonal terms, constitutes a many-body problem for which
no simplification occurs. The only exact results, which are available, are
numerical results based on exact diagonalization of finite ladders [1, 2, 15].

In the half-filled limit, i.e, in the absence of holes, the t − t′ − J − J ′-
Hamiltonian in (1) reduces to HJ+HJ ′. The exact ground state ψg ( for
J ′ ≥ 2J ) consists of singlets along the rungs of the ladder [11]. The ground
state energy Eg = −(3J ′/4)N , where N is the number of rungs. An exact
excited state can be constructed by replacing a singlet by a triplet. Creation
of a triplet costs an amount of energy J ′/4 so that the spin gap ∆SG = J ′.
The excitation is localised and has no dynamics. Let us now consider the
case of a single hole doped into the ladder. In the presence of holes a single
rung can exist in nine possible states: (i) empty, (ii) two bonding states, (iii)
two anti-bonding states, (iv) one singlet state and (v) three triplet states.
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These states are shown below.

(i)
(

O
O

)

(ii)
1√
2

(

↑
O + O

↑

)

,
1√
2

(

↓
O + O

↓

)

(iii)
1√
2

(

↓
O − O

↓

)

,
1√
2

(

↑
O − O

↑

)

(iv)
1√
2

(

↑
↓ − ↓

↑

)

(v) ↑
↑ ,

↓
↓ ,

1√
2

(

↑
↓ + ↓

↑

)

A single hole hops in a background of antiferromagnetically interacting
spins. This, in general, is a difficult many body problem because as the
hole hops it gives rise to spin excitations in the system. The inclusion of
diagonal hopping terms in our model leads to a cancellation of all the terms
containing spin excitations, resulting in a perfect, coherent motion of the
hole. We illustrate this through an explicit example. Consider a single hole
in a bonding state, located in the m-th rung. All other rungs are in singlet
spin configurations. A pictorial representation of the state is

| | | · · · 1√
2

(

↑
O + O

↑

)

m
|
(m+1)

· ·· (2)

1√
2

(

↑
O + O

↑

)

m
|
(m+1)

≡ 1

2

(

↑ ↑
O↓ − ↑ ↓

O↑ + O↑
↑ ↓ − O↓

↑ ↑

)

(3)

The state is an exact eigenstate of the J, J ′, t′ part of the t − t′ − J − J ′

Hamiltonian. Let us now apply Ht on the state. Since background electrons
are fermions, their ordering is important and one has to keep track of signs
during interchanges. The ordering of fermions follows the convention

1 3 5 · ·
2 4 6 · ·

On operating with Ht on the state shown in (3), one gets

Ht

(

↑ ↑
O ↓

)

= t ↑ ↑↓O − t ↑O
↑ ↓

−Ht

(

↑ ↓
O ↑

)

= −t ↑ ↓↑O + t ↑O
↓ ↑

Ht

(

O ↑
↑ ↓

)

= t ↑O
↑ ↓ − t ↓ ↑↑O

−Ht

(

O ↓
↑ ↑

)

= −t ↓O
↑ ↑ + t ↑ ↓↑O
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The states in the second column are obtained due to diagonal hopping of
the hole. There is a cancellation of the terms containing parallel spin pairs
and the final state is given by

|m
1√
2

(

↑
O + O

↑

)

m+1
(4)

One finds that the hole accompanied by a free spin-1/2 moves coherently
by one lattice unit(compare with Eqn.(3)). The eigenvalue problem now
becomes very easy to solve. Let

Ψ(m) = | | | · · · 1√
2

(

↑
O + O

↑

)

m
|
(m+1)

· ·· (5)

Ψ =
1√
N

N
∑

m=1

ei k m Ψ(m) (6)

Ψ is an exact eigenstate of the t − t′ − J − J ′ Hamiltonian with the energy
eigenvalue

E1 = 2 t cos(k) − t′ + 3 J ′/4 (7)

The energy is measured with respect to that of the ground state energy in
the undoped state. Refs.[11, 12] give a detailed discussion of the single hole
spectrum for both bonding and antibonding hole states. For conventional
spin ladders, Troyer et al [15] have found numerical evidence of quasi-particle
(QP) excitations carrying charge +e and spin-1/2. The charge and spin
may be located on different rungs. In the exact eigenstate of Eqn.(6), the
positively charged hole and the spin-1/2 are always located on the same rung.
We refer to the composite object as hole -QP.

Let us now consider the case of two holes. The two holes can be introduced
on the same rung or on separate rungs. Other rungs are in the singlet spin
configurations. If the holes are located on two separate rungs, there are two
free spins which can combine to give either a triplet or a singlet. In the
triplet sector, the two hole-QPs can scatter against each other giving rise to
a continuum of scattering states with energy

Econt = 4 t cos (K/2) cos q − 2 t′ + 3 J ′/2 (8)

K(= k1 +k2) and q(= (k1−k2)/2) are the centre of mass momentum and
the relative momentum wave vectors. The two-hole ground state belongs to
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the singlet sector. The exact eigenvalue equations have already been derived
in Ref.[13] but a full analysis of these equations has so far not been done.
Define the wave functions

φ(m1, m2) =
1

2
√

2
[| · · · |

(

↑
O + O

↑

)

m1

| · · ·
(

↓
O + O

↓

)

m2

| · · · |

−| · · · |
(

↓
O + O

↓

)

| · · ·
(

↑
O + O

↑

)

| · · · |] (9)

and
φ(m,m) = | | · · · O

O
m

· · · | |. (10)

Define also the Fourier transforms

φ(m,m+ r) =
1√
N

∑

K

exp[iK(m + r/2)]φK(r) (11)

for 0 ≤ r ≤ N/2 − 1 and

φ(m,m+N/2) =

√

2

N

∑

K

exp[iK(m +N/2)]φK(N/2) (12)

The two holes are separated by a distance r. From the periodic boundary
condition and for r 6= N/2, the allowed values of K are K = (2π/N)λ, with
λ = 0, 1, 2, ..., N − 1. For r=N/2, the allowed values of K are odd multiples
of 2π/N . An eigenfunction in the momentum space is given by

ΨK
e =

N/2−1
∑

r=0

a(r)φr
K (13)

where K is an even multiple of 2π/N . When K is an odd multiple of 2π/N ,
the eigenfunction is ΨK

0 and the sum in Eq.(13) runs from 0 to N/2. The
exact eigenvalue equations for both the cases are given in Ref.[13]. When K
is an even multiple of 2π/N , the amplitudes a(r) have the form

a(r) = sin[q(N/2 − r)] for 1 ≤ r ≤ N/2 − 1 (14)

The energy eigenvalues are obtained by simultaneously solving the equations

ǫ = 2T cos q (15)
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ǫ +
3J

4
=

4 T 2

ǫ+ 3J ′

4
− 2 t′

+
T sin[q(N/2 − 2)]

sin[q(N/2 − 1)]
(16)

where ǫ = E − 3J ′/2 + 2t′ and ,as before, energy E is measured w.r.t. that
of the ground state in the undoped case. The energies for real values of
q correspond to free hole states. Energies for bound and antibound states
are obtained by making q complex. When T is +ve, making the changes
q → iq and q → π + iq, one gets the energies for antibound and bound
states, respectively. When T is negative, the reverse is true. Similar results
are obtained when K is an odd multiple of 2π/N .

We now study the eigenvalue problem in the limit N → ∞. The contin-
uum of hole excited states, for real q, is given by Eqn.(15). For complex q
bound and antibound states are obtained. Let us now replace q by π+ iq in
Eqns.(15,16). Since N is large, Eqn.(16) reduces to

ǫ +
3J

4
=

4 T 2

ǫ + 3J ′

4
− 2 t′

− T e−q (17)

From a simultaneous solution of Eqn.(15) (with q replaced by π + iq) and
Eqn.(17), one gets the following cubic equation in eq,

e3q − e2q [
3J + 3J ′

4T
− 2 t′

T
] + eq [

3J

4T 2
(− 2 t′ + 3J ′/4) − 3] − (

3J

4T
) = 0 (18)

The exact, analytic solutions of a cubic equation are given in Ref.[16]. For
a physical solution, eq is greater than or equal to 1. There are at most two
physical solutions of the cubic equation in (18). Once a solution for eq is
obtained, the energy eigenvalue is obtained from Eqn.(15) (with q replaced
by π + iq). For positive values of T, one gets the solution for a bound state
of two holes and for T -ve, a solution for the antibound state is obtained.
The other values of the excitation branches are obtained by symmetry. Fig.2
shows the exact energy spectrum for the bound state, continuum of scattering
states and antibound states of two holes for J = t = t′ = 1 and J ′ = 2J .
Fig.3 shows the same for the parameter values J/t = 0.25, t = t′ = 1 and
J ′ = 2J . The bound state of holes is obtained irrespective of the value of J/t
being less than or greater than 1. Dagotto et al [8] were the first to show the
binding of two holes in a two-chain ladder system. Their finding was based
on exact diagonalization of finite-sized ladder systems. Later, Troyer et al
[15] also found evidence for the binding of holes in finite ladder systems. In
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the case of our model, we have shown exactly and analytically the binding of
two holes for N → ∞. For finite systems also, one can solve the eigenvalye
problem exactly.

The two-hole ground state is the bound state of two holes with centre of
mass momentum wave vector K=0. The exact bound state wave function
is given by (13) with K=0 and q replaced by π + iq in (14). In the limit
N → ∞, one obtains

a(n)

a(0)
= (−1)(n−1) e−(n−1)q a(1)

a(0)
(19)

This result shows explicitly that the bound state wave function has an ex-
ponential decay as the separation between the two holes increases. With the
knowledge of the eigenvalue ǫ, the ratio a(1)

a(0)
can be computed from the exact

eigenvalue equations derived in Ref.[13]. Fig.4 shows a plot of | a(r)
a(0)

|2 versus

r for the ground state wave function with parameter values J = t = t′ = 1.0
and J ′ = 2J(dotted line), J ′ = 10J (solid line). When J ′ is much larger than
J , the holes prefer to be on the same rung to minimise the loss in exchange
interaction enrgy. The hole delocalization energy along the rung is, however,
lost. When J ′ and J are comparable, | a(r)

a(0)
|2 has maximum value when holes

are separated by approximately one lattice constant. The exchange energy
loss is less when two holes are on NN rungs than when they are further
apart. Being on separate rungs, the holes gain in delocalization energy. The
bound state is also more extended. These results are in agreement with the
numerical results of Troyer et al [15].

The low energy modes of a ladder system are characterised by their spin.
Singlet and triplet excitations correspond to charge and spin modes respec-
tively. The two hole ground state is in the singlet sector and, as already
discussed, corresponds to a bound state of two holes for K=0. Since a hole
bound state branch exists in the singlet sector, excitations with energy in-
finitesimally close to the ground state energy are possible. These excitations
are the charge excitations since the total spin is still zero and the charge
excitation spectrum is gapless.

There are two distinct types of spin excitations. The first is the magnon
(S=1) excitation of the undoped ladder with energy J ′ measured with respect
to the ground state energy. The spin triplet excitation appears on doping
the ladder. For a pair of holes, the lowest triplet excitation energy is −4t−
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2t′+3J ′/2 from Eqn.(8). The lowest triplet excitation energy depends on the
values of t, t′ and J ′. The spin gap energy ∆SG is the difference in energies
of the lowest triplet excitation and the ground state (two hole bound state
in the singlet sector) energy. Fig.5 shows ∆SG versus J/t for t = t′ = 1.0 and
J ′ = 2J . Thus, the two-chain ladder model has the feature that the charge
excitation is gapless but the spin excitation has a gap. The same result holds
true for the conventional spin ladder [2, 15]. In the notation CxSy [17](x
gapless charge and y gapless spin excitations), the t-J type ladder model
exists in the C1S0(Luther-Emery) phase.

The experimental evidence of hole based superconductivity [9] in a ladder
system provides the motivation to look for superconducting pairing correla-
tions in our ladder model. We have already shown the existence of the
two-hole bound state. Define the pairing operator

∆ij = ci↓ cj↑ − ci↑ cj↓ (20)

and consider the quantity

∆̃ij = 〈 2|∆ij|0 〉 (21)

|0〉 and |2〉 are the ground states in the case of zero and two holes respectively.
For our ladder model, both of those ground states are exactly known and
one can verify that ∆̃i i+x̂ and ∆̃i i+ŷ have opposite signs, x̂ and ŷ denote
unit vectors in the x(along chain) and y(along rung) directions. This is a
signature of d-wave pairing and shows that the bound state of two holes has
symmetry of the d-wave type. In the case of cuprate superconductors, there
is much experimental evidence that the pairing wave function has d-wave
symmetry [18].

In the large J ′ limit, the ladder model can be mapped onto an effective
boson model [15]. The physical picture is that of bound hole pairs existing
along rungs and moving in a background of rung spin singlets. The hole pairs
can be considered as hard core bosons. The pair hopping matrix element to
second order in perturbation theory is

tb =
2 t2

3J ′

4
− 2 t′

(22)

There is also an interaction Vb between two hole pairs on NN rungs. To
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second order in perturbation theory,

Vb =
4 t2

3J ′

4
− 2 t′

(23)

Both tb, Vb << J ′ and one can map the ladder model onto an effective hard-
core boson model on a chain with NN interaction:

Heff = − tb
∑

i

(b†ibi+1 + H.C.) + Vb

∑

i

nini+1 (24)

bi
† is the hard core boson creation operator, creating a hole pair on the

rung i and ni=bi
† bi is the corresponding number operator. There is a well

known mapping between the effective boson model and the quantum XXZ
spin model in a magnetic field [19], the Hamiltonian of which is given by

Hxxz =
∑

i

[JzS
z
i S

z
i+1 + Jxy(S

x
i S

x
i+1 + Sy

i S
y
i+1)] − h

∑

i

Sz
i (25)

The operator transformations connecting Heff and Hxxz are

bj = S†
j , b

†
j = S−

j , nj = 1/2 − Sz
j (26)

There is a one-to-one correspondence between the phases of the spin model
and those of the boson model. The disordered paramagnetic phase corre-
sponds to the metallic phase for charged bosons. The AFM Ne′el-type order
in the z direction (when Jz > Jxy) describes the ordering of bosons on the
lattice. For charged bosons, one obtains an insulating charge-ordered phase.
The transition from the paramagnetic to the AFM phase represents a metal-
insulator transition. The AFM XY order (Jxy > Jz) is characterised by a
two-component order parameter and in the bosonic language corresponds to
the off-diagonal long range order of a superfluid condensate. For charged
bosons, this is the SC phase.

For the XXZ chain, the asymptotic forms of the correlation functions
have been obtained by Luther and Peschel using bosonization theory [20].
For | Jz

Jxy

| ≤ 1, the expressions for the correlation functions in the limit of

large x and zero magnetic field are:

< Sz(x, t)Sz >∼ cos(2kFx) x
(−1/θ) (27)
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< S†(x, t)S− > + < S−(x, t)S† >∼ x−θ (28)

where the exponent

θ =
1

2
− π−1arc sin(Jz/Jxy) (29)

For the equivalent bosonic model, the correlation functions corresponding
to (27) and (28) are the charge density wave(CDW) correlation < nrn0 >
and the superconducting(SC) correlation < b+r b0 >. The SC correlations
are dominant if θ < 1. For our ladder model, Jz = Vb and Jxy = −2tb =
−Vb, i.e., for large r both the CDW and SC pairing correlations exist. The
transformed Hamiltonian(Eqn.(25)), however, contains a magnetic field term.
In the presence of the magnetic field h(h = Vb), the spin chain with |Jz/Jxy| =
1 is in a spin-flop phase [21] which is equivalent to the SC phase in the bosonic
theory. Thus for our ladder model, the SC pairing correlations are dominant
for large J ′.

III.Conclusion

We have considered a two-chain t-J ladder model for which several exact,
analytical results can be derived for the case of two holes. Inclusion of the
diagonal exchange and hopping terms enables us to reduce the original N-
body ( N-2 spins and two holes) problem to an effective two-body problem
which is easily solved. The ground state is a bound state of two holes with
centre of mass momentum wave vector K=0 and total spin S=0. The bound
state wave function has modified d-wave symmetry. The charge excitation is
gapless whereas the spin excitation has a gap. All the results derived by us
are in agreement with the numerical results for the conventional two-chain
spin-ladder. In the strong coupling limit, our results are the only exact,
analytical results for the lightly doped two-chain t-J ladder. For more than
two holes, we have not been able, as yet, to calculate the ground state and
low lying excitation spectrum exactly and analytically.

Recently, in a remarkable paper [22], Lin, Balents and Fisher have studied
weakly interacting electrons hopping on a two-chain ladder. Using bosoniza-
tion and perturbative renormalisation-group(RG) analysis, they have shown
that at half-filling the model scales onto the Gross-Neveu(GN) model. The
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GN model happens to be integrable and has SO(8) symmetry. For repul-
sive interactions, the two-chain ladder exhibits a Mott insulating phase at
half-filling with d-wave pairing correlations. The exact energies of all the
low-lying excited states can be calculated because of the integrability of the
GN model. Lin et al further studied the effects of doping a small density of
holes into the d-Mott spin liquid phase at half-filling. Again, for a pair of
holes, the ladder system exists in a SG phase with hole binding in the ground
state and gapless charge excitations. Scalapino, Zhang and Hanke [23] have
considered the strong coupling limit of a two-chain ladder model with local
interactions designed to exhibit exact SO(5) symmetry. This model too has
a SG phase with hole pairs in the ground state. Numerical calculations on
the t-J [15] and Hubbard ladders [24] also show the existence of such a phase.
Thus, the SG phase with bound hole pairs appears to be a universal feature
of the two-chain ladder system irrespective of the strength of the coupling.
This phase also exhibits superconducting pairing correlations. For ladder
systems the existence of a SG is favourable for the binding of holes. As men-
tioned in the Introduction, the existence of a ‘pseudo-SG’ in the cuprates
is conjectured to be associated with pre-formed Cooper pairs of holes. This
conjecture is supported by our rigorous demonstration that the ground state
in the SG phase consists of a bound pair of holes.
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Figure Captions

Fig. 1 The spin ladder model described by the t− t′ − J − J ′ Hamiltonian
(Eqn.1).

Fig. 2 Exact energy spectrum (ǫ vs K) for the bound state, continuum of
scattering states and anti-bound states of two holes (J = t = t′ =
1, J ′ = 2J).

Fig. 3 Exact energy spectrum (ǫ vs K) for the bound state, continuum of
scattering states and anti-bound states of two holes (J = 0.25, J ′ =
2J, t = t′=1).

Fig.4 A plot of | a(r)
a(0)

|2 vs. r for the ground state wave function of two holes

(Eqn.(13)) (J ′ = 2J (dotted line), J ′ = 10J (solid line)).

Fig. 5 The spin gap ∆SG vs. J/t (t = t′ = 1.0, J ′ = 2J).
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