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Abstract. A completely positive operator valued linear map ¢ on a (not necessarily
unital) Banach -algebra with continuous involution admits minimal Stinespring
B dilation iff for some scalar k > 0, ¢(x)*¢(x) < k¢(x*x) for all x iff ¢ is hermitian and
satisfies Kadison’s Schwarz inequality ¢(h)” < ké(h?) for all hermitian k1 iff extends
as a completely positive map on the unitization A, of A. A similar result holds for
positive linear maps. These provide operator state analogues of the corresponding well-
known results for representable positive functionals. Further, they are used to discuss
() automatic Stinespring representability in Banach *-algebras, (b) operator valued
analogue of Bochner-Weil-Raikov inte gral representation theorem, (c) operator valued
analogue of the classical Bochner theorem in locally compact abelian group G, and
(d) extendability of completely positive maps from *-subalgebras. Evans’ result on
Stinespring respresentability in the presence of bounded approximate identity (BAI) is
deduced. A number of examples of Banach *-algebras without BAI are discussed to
illustrate above results.
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1. Introduction

Let ¢: A — B(H) be a completely positive linear map from, a not-necessarily unital,
Banach -algebra A to bounded linear operators on a Hilbert space H. Theorem 2_.1
asserts that ¢ admits a minimal Stinespring dilation iff ¢ satisfies CP-Schwarz inquahty
d(x)* p(x) < kp(x*x) (x€ A) for some scalar k>0 iff ¢ is hermitian and satisfies
Kadison’s Schwarz inequality o(h)* <k(n*) (h=H € A) iff ¢ is extendable as 3
completely positive map on the unitization A,. Theorem 2.2 is 2 positive map analogue (_)f
this. These operator state analogues of [4, Theorem 37.11; 25, Theorem 3.2] are proved in
§2 using elementary properties of CP-maps, Jordan order structure in Banach *—algebras
(which is distinct from usual order in non-C*-situation), enveloping 'C*—alg.ebra.C '(A) of
A and by creating operator state analogue, within the formalism of .Snm?sprmg dilation, of
the arguments in [24]. The results are appliedin §3to 2 variety of snuat.lons. Cc?rol'lary 3.1
contains several Cauchy—-Schwarz inequalities for CP-maps, including a dllat}on—free
proof of the CP-Schwarz inequality for a 2-positive map on a Banach x-algebra vs{1th BAL
A simple example shows that a positive map on a *_algebra need not satisfy CP-
Schwarz inequality, though Kadison’s Schawarz inequality df)es hold for such a map on a
Banach *-algebra with BAL This brings out an essential difference between these two
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inequalities in the non-commutative case. Sufficient conditions for automatic Stinespring
representability of CP-maps (as well as automatic representability of positive functionals)
are developed in Corollary 3.2. This operator valued version of [4, Theorem 37.15]
supplements automatic continuity phenomena even in scalar case. It is shown in
Corollaries 3.6, 3.7 that a CP-map on a *-subalgebra B of a Banach x-algebra A having
BAIJ extends as a CP-map on A iff it is Stinespring representable, provided (a) A is
hermitian and B is closed; or (b) B is Banachable and C*(B) — C*(A) injectively; or (c) B
is an abstract Segal algebra over A. It follows that if B has BAI and if (a) holds, then
every CP-map on B extends to A. This supplements Arveson extension theorem [1].
Corollary 3.8 implies that an operator valued positive linear map ¢ on a commutative
Banach x-algebra A is extendable to A, iff ¢ is an integral with respect to a semi-spectral
measure on the hermitian Gelfand space. This is an operator valued analogue of Bochner—
Weil-Raikov integral representation theorem [11, ch. VI, Theorem 21.2, p. 492]. It follows
(Corollary 3.8) that a weakly continuous operator valued function x on a locally compact
abelian group G is positive definite iff x is an integral with respect to a semi-spectral
measure on the dual group. This provides an operator valued version of the classical
Bochner Theorem [15, Sec. 33] as well as a linear version of Stone—Naimark—Ambrose—
Godament Theorem [20, ch. XV, Theorem 3.1, p. 489] occupying its proper place midway
between the two. Finally, the abstract results are illustrated in several concrete Banach
*-algebras like convolution algebras, the algebra C? (H) of von-Neumann Schatten class
operators and the Hardy space H?(U) with the Hadamard product.

2. Stinespring representability

Let (4, ||) be a complex Banach x-algebra, not necessarily having identity, assumed
throughout satisfying ||x*||=||x|(x € A). Let A, =A@ C be the Banach x-algebra
obtained by adjoining identity to A, [lx + Al||= [|x|| + |A|(x + Al € A.). For a Hilbert
. space H, let P(A,H) be the collection of all positive linear maps ¢ from A to the C*-
algebra B(H) of all bounded linear operators on H, positive in the sense that ¢(x*x) > 0
for all x € A. For n € N, let M,(A)=A ® M,(C) be the full matrix algebra over A, a
Banach *-algebra with projective cross-norm |z||= inf {3° x| lyill: z= % ®y; in
AR Mn(C)}. Let ¢, = ¢ ® id : M,(A) — M,(B(H)) C B(H,),H, = X% H(n times), be
$n([xs]) = [p(x)]. Then ¢ is completely positive if each @n is positive. Let CP(A,H) =
{¢ € P(A,H) : ¢ is completely positive }- If every positive functional on A is continuous,
then every ¢ € P(A, H) is continuous by a closed graph argument.

DEFINITION

A map ¢ € CP(A,H) is Stinespring representable if there exists a Hilbert space K, a
*-homomorphism 7 : A — B(K) and a bounded linear operator V : H — K such that (i)
¢(x)=V*m(x)V(x € A), and (i) K= [7(A)VH], the closed linear span of {r(x)V¢:x €A,
£ € H}.

The arguments in part (iii) of [27, ch. IV, Theorem 3.6] show that the Stinespring
representation {m, K, V} of ¢ is unique up to unitary equivalence. By a classic theorem of
Stinespring (in the unital case, and Lance in the non-unital case (see remarks in [9,
p- 891)), every completely positive map ¢ on a C*-algebra A is Stinespring representable
[27, ch. 4, Theorem 3.6]. Evans showed that this also holds when A is a Banach x-algebra
with BAI [9, Theorem 2.13]. In the absence of the requirement (ii) in the above definition,
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it is shown in [10] that given a not-necessarily bounded completely positive map ¢

defined on a subspace of form N*N of a C*-algebra A with N a left ideal, a *-representa-
tion 7 of A can be constructed satisfying above (i).

Theorem 2.1. Let ¢ € CP(A,H). The following are equivalent.

(1) ¢ is Stinespring representable.

(2) There exists a scalar k > 0 such that ¢(x)*¢(x) < k¢ (x*x) for all x in A.

(3) ¢ is hermitian (i.e. $(x*)=(x)" for all x) and there exists a scalar k > 0 such that
d(h)* < k(h?) for all h = h* in A.

(4) ¢ is extendable to ¢¢ € CP(A., H).

(5) ¢ is continuous in the Gelfand—Naimark pseudo-norm pe.

(6) There exists ¢ € CP(C*(A), H) such that ¢ = Gojwherej:A— C*(A)isj(x) = x+
srad A, srad A(= ker ps) being the star radical of A.

Further, if ¢ is Stinespring representable, then ¢ is continuous and B(x)"d(x) < l¢*(1)]]
¢(x*x) for all x in A.

A completely positive map is an operator valued analogue of a positive linear functional.
Then Stinespring construction {7, K, V} corresponds to the GNS construction; and the
above definition provides analogue of representability of positive functionals [4, Defn.
37.10, p. 199]. Thus Theorem 1 is a CP-analogue of [4, Theorem 37.11, p. 199]. Note that
there is a gap in the proof [4, Theorem 37.11] which has been repaired in [18] and [24]. If
A is a C*-algebra, then any ¢ € CP(A,H) satisfies the CP-Schwarz inequality
P(x)*(x) < ||Bl|¢(x*x)(x € A) [27, ch. IV, Corollary 3.8, p. 199]; whereas ¢ € P(A, H)
is known to satisfy Kadison’s Schwarz inequality o(h)> < ||pllp(h?)(h = h* € A)
[17, Ex.10.5.9, p. 770]. Thus Theorem 1.1, part (3) iff (4) of which is a CP-analogue of
[25, Theorem 3.2], shows that these inequalities are intimately connected with Stinespring
dilation. The following positive map analogue of the above theorem further clarifies the
role of Kadison’s inequality in extendability.

Theorem 2.2. Let ¢ € P(A,H). The following are equivalent.

(1) & is extendable to ¢¢ € P(A.,H). ‘
(2) ¢ is hermitian and for some scalar k > 0, ¢(h)2 < ko(h?) for all h = h* in A.
(3) ¢ is continuous in Pe. _

(4) There exists ¢ € P(C*(A),H) such that ¢ = $oj.

When ¢ is extendable, it is continuous and d(h)* < ll¢¢(1)||¢(h?) hold for lel h=h*€A

Examples in [14, §21.39, p. 332] show that, even in the scalar case, in the relevant
inequalities in above theorems, [|¢° (1)|| cannot be replaced by 4|l in general. When A
has BAI, every positive functional on A is reprcsentable [21, Theorem 4..5.14, p. 2191,
[25, Theorem 3.2]; and hence continuous. The following, part (b) of which recaptures
[9, Theorem 2.13], contains operator valued analogue.

COROLLARY 2.3

Let A have BAI (e;) with ||e;|| < 1.

P(A,H). Th is extendable and $(h)’ < ol (h?) for*alll h=h" irjz A;
g;)) ﬁz qu)EE C(P(A,}J). ’.Ie'I:left5 :; is Stinespring representable and o(x)*o(x) < llpllo(x"x)
for all x in A.




286 S J Bhatt

The proofs are based on several auxiliary results some of which appears to be of
independent interest. The positive elements of A is AT ={3" x'x; : x; in A, finite sums}.
We write x > 0 for x € A*. An n-state on A is f = [f] € M,(A’)(A’ = dual of A) such
that for each x = [xy] > 0 in M,(A), [f;(x5] > 0 in M,(C).

Lemma 2.4. (Banach %-algebra analogues of [27, Ch. 4,3.1-3.4])

(2) Let x € M, (A). Then x>0 iff x is a finite sum of elements of form [xix;] with
X1y..-5Xp Iin A,

(b) Let x = [x5] > 0 in M,(A). Then for all yy,...,y, in A, Zijy;"xijyj > 0.

(¢} Let B be a C*-algebra. Then ¢ : A — B is completely positive iff for each n, for all
X1y-- -y Xq in A and for all yy, ...y, in B, 3 yio(xix)y; > 0.

(d) Let B be an abelian C*-algebra. Then every positive linear map ¢:A — B is
completely positive. :

(e) (Analogue of [17, Ex. 11.5.21, p. 884]) Let ¢ € P(A,H) be continuous. Then ¢ € CP
(A, H) iff for each n and for each n-state [f;] on B(H), | fij o @] is an n-state on A.

Lemma 2.5. Let ¢ € P(A,H).

(@) o(y*x) = ¢(x*y)" holds for all x,y in A.
(b) Assume at least one of the following.

(1) There exists k > 0 such that ¢(x)*¢(x) < ko (x*x) for all x.
(i) A has BAI

Then ¢ is continuous and extendable as a positive linear map on A,.

Proof. Applying [4, Lemma 37.6, p. 147] to the functionals fs(x) = (¢(x)&, &), £ € H,
(2) follows. Assume (b(i)). Then |f;(x)|* < [|(x)¢|[I€]1> = €] (d(x)* (x)E, &) < JI€|*k
((x*x)€, &) = k||¢]]* fe(x*x). Hence by [24,18], f: is representable; hence is hermitian;
which in turn implies that f¢(x + A1) = f;(x) + Mk||¢||* gives a positive linear extension to
A, (using, e.g., the arguments in [4,Theorem 37.11, p. 199] wherein hermiticity is impli-
citly used). Thus ¢°(x + A1) = ¢(x) + Akl gives the desired extension of @. The conti-
nuity of ¢ follows from continuity of positive functionals on unital Banach x-algebras.
Assume (b(ii)) with (e;) a BAI for A. Then Je and ¢ are continuous by [4, Theorem 37.15,
P- 201]; and by Cauchy-Schwarz inequality, |f;(x)]*< (fim fe(efe)) fe(x*x)(x € A);
which gives the representability of Je, and hence continuity and extendability of 0.

Lemma 2.6. Let ¢ € CP(4,H). Let x,y in A. Then ¢(y')" (%) < [|6(y7y) | 6(x"2).

Proof. Let X =AQ®H. For x,y in X,x = Lu®&,y=Yy®n, let B(x,y) = >
(6(¥7x)&, m:)- Then B defines a sesquilinear form on X; and B(x,x) > 0 for all x, as ¢ is
completely positive. By Cauchy-Schwarz inequality [28, Theorem 1.4, p. 4], 16 (xx, y)}2 <
Bx, x)5(»,y). Taking x ® € and y @ in X, we get ($(y"x)*3(y*x) £, £) = [Ell
sup{[{¢(y )¢, m)” + || < 1 in H}=sup{|Bxr@ &,y @ n)* : [ml| <1 in H} < Bx & €,

J(f;izﬁz S;lg{gf(y © 0,y @n):llnll < 1}=sup{(6(*y)n, )| : Il < 1} {(x*x)€, &) = | (y*y) |

Lemma 2.7. Let ¢ € P(A,H) be_such that there exists ¢ € P(C* (A),H) satisfying
poj=¢. Then ¢ € CP(A,H) iff ¢ € CP(A,H)
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Proof. S'inc<?  has to be continuous, ¢ is also continuous. Also, ¢ oj = ¢ implies that
(), © (j ® id) = ¢, for each n. Indeed, for any [x;] € Ma(4), (8),([j(xy)]) =18 o j(xs)]=
(p,,([)f;j]). Since j is. a *—homomorphism, ¢n is positive implies that (¢), is positive on
M,(j(A)). As M, (j(A)) is dense in M, (C*(A)), and as (¢), is continuous on M,(C"(A4)),

it follows that (), : M,(C*(A)) — M, (B(H)) is positive if ¢ € CP(A,H). The converse
is similarily verified.

Lemma 2.8. Let A have BAI (e;). Let ||e;|| < 1 for all i. Let ¢ € P(A,H).

(2) There exists a unique ¢ € P(C*(A),H) such that ¢ = doj.

(b) ¢ is continuous, hermitian and satisfies d(h)* < ||9ll¢(h?)(h* = h € A). Further
|81l = sup ||p(e)l]-

(c) Let A be abelian. Then ¢ € CP(A,H) and ¢(x)"¢(x) < ||¢ll¢(x*x) for all x € A.

(d) Let A be unital, ||1)| = 1. Then |||y |I=lo(D)Il = lI4]l

Above (c) extends [27, ch. IV, Prop. 3.9, p. 199] to Banach x-algebras. Does it hold in .
the absence of BAI for continuous ¢?

Proof. (a) The functional f¢(x) = (¢(x)¢,€),§ € H, is continuous [4, Theorem 37.15,
p. 201]; and by [7, Prop. 2.7.5, p. 49], there exists a positive functional f¢ on C (A)
such that f; = f; o j. Define ¢ : A/srad A — B(H) by ¢(j(x)) = ¢(x). Then ¢ is well
defined. Indeed, x € srad A implies that f(x*x) = 0 for all positive functionals f on A
[4, Theorem 40.9, p. 223]. As A has BAI, each such f is representable [21, Theorem
45.14, p. 219], hence [4, Theorem 37.11, p. 199] gives f(x) = 0. Thus fe(x) =0 for
all £ in H; and so the operator numerical range_ [5, §9, p. 85] W(¢(x)) =0, so that
¢(x) = 0. Thus ¢ defines a positive map. Further, ¢ is || continuous, | | denoting the norm
on the C*-algebra C*(A). Indeed, let £ € H be such that [|¢]| < ||¢|\‘1/2. Then for all
% in A, |£(0)] = 6@)E )] < [lllIEl® < Il hence [Ifg 1. By the Cauchy-
Schwarx inequality, (U109, &) = (600, E)=lim | ()| lmfi(efen' i (x') "<
Tim|| fe l[le:ll[j(x)| < [j(x)|. Hence for all € with [ig[|=1, (6(i())E ) < Iglllit)l:
and so the numerical radius v(¢(j(x))< [l 1j(x)]. Since numerical radius is a
norm equivalent to the given norm [5, Theorem 9.8, p. 86 and Theorem 4.1, p. 34], it
follows that g{~> is continuous; and by extention, we get desired positive map ¢ : C*
(A)— B(H).
(b) The inequality follows from (a) and Kadison’s Schwarz inequality in C*-algebra.
(c) Let A be abelian. Then so is C*(A). By [27, ch. IV, Pfop. 3.9,p.199], ¢ js completely
positive. But then C* (M, (4)) =C*(A ® My(€))=C" (A®:M,(C))=C*(A)&.C” (M,(C))
= C*(A) ®, M,(C) = M,(C* (A)) shows that ¢ is also completely positive. !3y‘[27; f:h' v,
Corollary 3.8, p. 199], for any x € A, ¢(x)"¢(x) = S () < 1llg (=) T <
x*x)(x € A). ,
‘(Ic({s)”(lic()r al(y h =)h* € 4, above (b) and Lemma ﬁg‘(a) irﬁlzl}‘f‘ ;1(1'(11§HII¢I({11)111[;= !i‘l ji(h)_\;lﬁ
1 12| < o) | laea 1B so that {i @leell= . Hence ||@lpa)l =
P\%%“Hgémz!r, J‘(%(b)ell‘rl‘g !cﬁg )identity of C*(4), [17, Ex. 105.10, p. 770] implies that

161 = | 3G(1)[= |¢(1)]l. The conclusion follows from [[6] < lI¢ll

Lemma 2.9. Let ¢ € CP(A,H) be Stines.pring representable hazving Ath; Srgszl(’?)g
representation {m,K,V}. Then @ is continuous and loll < VI If A nas i)
led) < 1, then |6l =1IVII"
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Proof. Let ¢(x)=V*x(x)V. Then [4(x)]| < VI x(x)]|< [VIPl]; hence 6] < V1
If (e;) is a BAI for A, then m(e;) — 1 strongly. Hence, for a112§ €H, ||V =2(V§, %43}
< Il [v*vell =1l tim [[v*r(er)vell = ) im [|g(e) €l < Il l; hence [V < @]
A
Lemma 2.10. C*(A,) = (C*(A)), up to isometric x-isomorphism.

It is interesting to note that this does not mean that A has identity iff C*(A) has identity.

In fact, [2] contains an example of a non-unital Banach x-algebra A such that C*(A) has
identity.

Proof. As noted in [25, p. 145], Gelfand-Naimark pseudonorm pA on A = p|A =
restriction to A of the Gelfand-Naimark pseudonorm on A,. Since each %-representation
of A can be extended to A,, (srad A,)N A=srad A. Note that (x, \) € srad A, iff xesrad A
and A= 0. The map ¢ : A./srad A, — (A/srad A),, ¢((x, \)+ srad A,) = (x + srad A)+
Al = (x +srad A, )) is a bijective *-isomorphism, hence extends to the desired isometric
*-isomorphism between C*(A,) and (C*(4)),.

A positive linear functional f on A is representable [4,21] if there exists a cyclic
representation 7 of A into bounded linear operators on a Hilbert space such that
f(x) = (w(x)€,£)(x € A), where ¢ is a cyclic vector for 7.

Lemma 2.11. Let f be a positive functional on A.

(a) f is representable iff for some k > 0, f(x)| < kpoo(x) for all x.
(b) @) [25, Lemma 1.31 | f(y*xy)| < poo(x) F*y) (x, y in A).

(i) Let A be unital. Then | f(x)| < f(1)peo(x)(x € A).

(it) Lez A has BAI (e;). Then | f(x)| < (im f(e}e:))poo(x) (x € A).

A linear map ¢ : A — B(H) is J-positive if ¢(h?) > 0 for all h = h* € A. If each
¢n = ¢ ®id on M,(A) is J-positive, then ¢ is completely J-positive. Note that if A is a
C*-algebra, then ¢ is positive iff ¢ is J-positive.

Lemma 2.12. Let ¢ : A — B(H) be linear satisfying the following.

(1) ¢ is hermitian.
(i1) ¢ is J-positive.
(iii) There exists a scalar k>0 such that ¢(h)*< kp(h*)(h = h*'€ A). Then
¢°(x + A1) = ¢(x) + Mkl gives a J-positive extension of ¢.

Proof. Letu=h+ Al =u* € A,. Then h=h*, A= X". For all £ € H,

(B ()&, &) = (B(H)E, &) + 2M((h)E, &) + Nk |€]?
< (B(F)E, &) — 20N [{B(R)E, €)] + N2K|j¢]|?
< (8(m)%&, &) /k — 2N[[|p(R)EN €]l + X2Kl[€]] :
[le)el /K2 — 2Nl 12 > o.

Il

Lemma 2.13. Assume that A is symmetric and ¢ : A — B(H) is linear, J-positive. Then ¢
is positive.

By [21, Corollary 4.7.8, p. 233], every J-positive functional on a symmetric Banach
*-algebra is positive. The conclusion follows by applying this to f¢(x) = (¢(x)¢, £), £ € H.
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Lemma 2.14. [25] Let S denote the collection of all continuous positive linear func-
tionals f on A such that ||flgul < 1. Let A(x) =sup{f(;vc*;vc)1/2 . feF}r(x)=
max{A(x), \(x*)}. The following statements hold.

(a) \ and T are submultiplicative seminorms on A satisfying A(xy) < Poo () A(Y), Poo(¥) £
Ax) < T(x), 7(x) = 7(x") for all x,y in A.

(b) If A is *-semisimple, then T is a norm.

(c) If T is a norm, then the T-completion A of A is symmetric and 7(h?) < poo(h)T(h).

Lemma 2.15. Let ¢ € P(A, H) satisfy statement (2) of Theorem 2.2. Then ¢ is extendable
and ¢°(x + A1) = ¢(x) + Mkl defines a positive linear extension of ¢ to A,.

Proof. The positive functionals fe(x) = (p(x)¢,€), € € H, are hermitian and satisfy
lf,g(h)l2 < k||€])? fe(R*)(h = B* € A). By [25, Lemma 3.2], they are representable. By
Lemma 2.11, fe(x) =0 forall §, all x € srad A. This implies that ¢ vanishes on the star
radical srad A. Indeed, for any h=h* in srad A, h* €srad A and fg(hz) =0, hence
(qb(h)?‘f, £) =0 for all £ showing that ¢(h) = 0, p(srad A) = {0}. 1t follows that ¢
factors through the *-semisimple Banach x-algebra A/srad A with the quotient norm; and
continues to be positive and satisfying statement (2) of Theorem 2.2. Thus we can assume
that A is *-semisimple.

Next we show that ¢ is 7-continuous on A. Let { € H, p = k||€||*. For all h = h* € A,
one has | fg(h)f < p2r(h?), r denoting the spectral radius in A. Indeed, |fz(h) 2 = |((R)E,
£ < ||l o)El = lE2(6(R)€ € < KIEP (3(2)E ) = Kl felh) (= I €A). By [25,
Theorem 3.2], f; is representable, hence extendable to A,, with fz(e) = k\lﬁnz (e=(0,1),
the identity in A,). Then [4, Lemma 37.6 (iii), p. 197] applied to f; gives f¢(h*) = fe(eh?e) <
fe(e)r(h*)=pr(h?). It follows that | Fe(W)P< p2r(R). Thus fo/p € S and | fe(h)| < pr(h)
N h & 1 Then [ S(NEIL = (S(R6 &) < KGUAE €) = (k) < R[E[ (A7) < B
||£][>7(R)*. This ¢ is T-continuous on H (A), hence also on A.

Now the 7-completion A of A is symmetric by Lemma 2.14 (c); and by continuity, ¢
extends to a hermitian positive linear map ¢ : A — B(H) satisfying statement (2) of
Theorem 2.2 on A. By Lemma 2.12, ¢ : (A), — B(H), & (x + A1) =(x) + Mkl provides
a J-positive extension of ¢ to A.. But as A is symmetric, A, is also symmetric [21,
Theorem 4.7.9]. Lemma 2.13 implies that $ is positive on A,. It follows that ¢ is
positive on A,. ‘

Lemma 2.16. Let ¢ € CP(A,H).

(a) Statement (2) of Theorem 2.1 is equivalent to:

(2°) b (x)* Pn(x) < kepp(x*x) for all x & M,(A), all n € N.

(b) Statement (3) of Theorem 2.1 is equivalent to:

(3°) ¢ is hermitian and bu(h)* < kgn(H?) forall h="h" € M,(A), allneN.

In the above (2°) and (3°), the scalar k > 0 is same as in the corresponding statements
in Theorem 2.1.

Proof. (a) Assume ¢(x)*¢(x) < kop(x*x)(x € A). By Lemma 2.5 (b), ¢ is hermitian and
extends to the positive linear map ¢° : A, — B(H), ¢° (x+ A1) = ¢(x) -+ Al. By Lemma
2.8, there exists (¢°)~ in P(C*(A.), H) such that (¢°) o j¢=¢° where j° : A, —A,/srad A,
is the natural quotient map. In view of Lemma 2.10, C*(A.) = (C*(A)),, Fla =1J>

srad A = A N srad A,,p2 = pila- Hence ¢ given by ¢ = (¢°) lc-) € P(C*(A),H) such
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that ¢ oJ = ¢. Now by Lemma 2.7, ¢ € CP(C*(A), H). Thus ¢ is Stinespring repre-
sentable, and ¢(x) = V*x(x)V(x € C*(A)) (in the notations of the definition). Let
neN,V,=V@id: HeC'-K® C",Wn=7r® id : M,,(C*(A)) —M,(B(H)) a *-homo-
morphism. Then (¢),=¢ ® id=(V'r( )V) @ id= (V®id)"(7r®zd)(V® id) =Vim,( )V,
Hence for all x in M,(C*(A 2) b, (x)* gb,,( )= Vi (x) Vo Vi, (x)V, < ||VEV,|| Vi,
() Vs = |ValP (%) = V160 (%) = [| 816, (") using Lemma 2.9. (Altematively,
ea~ch_¢ is CP on M,(C*(A)), hence for all x in M,(C*(A)), ¢, (x)* qb,l( ) < H%Hf)n(x x)=
16118, (x%). As Goj=0,(8),0 (j @id) = 6y, We obtain du(x) () < 6] 6a(+5)
(reM,(4)), and [ <)1(#)” = (6" (Dl=l*(1)] = k.

(b) This can be proved using Lemma 2.15 instead of Lemma 2.5 (b).

Lemma 2.17. Let ¢ : A — B(H) be completely positive (resp. completely J-positive)
satisfying statement (2) (resp. statement (3)) of Theorem 2.1. Then ¢* (x+\1) = ¢(x) + k1
defines a completely positive (resp. completely J-positive) extension of ¢.

Proof. We detail out the case of complete J-positivity, the other one being similar. Let
(6),=¢° ® id : My(A,) —B(H) ® My (C). For x = [x;] €Mu(A.), 6a(x") = du(lry]") =
dn([53]) = [B()] = [805)'] = [B0)]" = $a(x)". Also, x; = hy + Xy, by € A, )y € C
so that x = h + X where h = [h;] € M,(A), A = [\;] € M,(C). Suppose x = x*. Then
hy = by, Ay = A for all i,j, i.e. h = h*, A = )" (hermitian adjoint). Let £ = > & ®¢; €
H ®C" (el) bemg the standard orthonormal basis in C". It is sufficient to show

that {(¢°),(2)¢,€) > 0. Now 2 = [ xy 5] =[5, (& it + Xa) (hy + Ay)] = (32, b hy+
22y Mhy] + 130 hady) + [, Audy] = h* + Mo+ BA + X2 Hence (¢°),(x%) = ¢u(h?)+
Agbn( ) + @u(h)A + X* (matrix multiplication). Using Lemma 2.16 (b), we obtain, for
each £ in H ® C",

(@0 (7)€ &) = (Du(H)E,€) + (Ada(R)E, €) + ($u(R)AE, &) + k(N2, €)
= ($n(F)6,€) + (Mn(R)E, &) + (€, Apu(R)E) + K(X2¢, )
= (6n(h)8,€) + (Adu(RE, €) + Agn(M)E, €)™ + K(NE,€)
> ($a(H")E,€) — 2/(Adn(R)E, £)] + K| AE]
2 (n(H)E,€) = 2[|dn(WENIAEN + Kl &N
> (1/k)(¢n(1)€,€) — 2] $n(R)E] ]| + EIAEN

[(1/k1/2)ll¢n(h)§|| K2 > o.

Proof of Theorem 2.1. (1) implies (2) and (1) implies (3). These are clear.

(2) implies (1). Our proof is a CP-analogue of the arguments in [24], applied within
the formalism of Stinespring dilation. The vector space A ® H is endowed with the
non-negative sesquilinear form B(¢,m)=3"7; ((b}a:)&, m)) = (¢n([bla]) (T &i®es),
2mi®e) for =% a;®&,n=3 b @ in A®H ThenN {¢= Zal REEARH:
B(& &) =>_(p(ajai)é;, &) =0} is a subspace. Let J: AQH — AQH/N, JE=£+ N.
Then (J¢,Jn) = ﬂ(g, n) makes A ® H/N into an inner product space whose completion is
denoted by K. Define an action 7, of Aon A ® H by m,(a)(}.x: ® &) = 3. ax; ® &. The
admissibility of a positive functional on a Banach *-algebra [21, Theorem. 4.5.2, p. 214]

is used to conclude that B(m,(a)¢, m,(a)€) < ||all*B(€, €). Indeed, taking & = [65a],% =
[(51in] in Mn(A),
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Blro(@)€, mo(@)e] = _ (d(xja"ax)4,, &)
i,J

'—'—“Z <¢((‘i*a*aic)j,i)£ia &)
—(E@TE® Y Goe)y o)
< ||21H2<¢,,(5c*5c) Y L@eny &O e,-> = [lall* B¢, 9),

the last inequality being a consequence of the fact that a positive linear functional f on a

Banach -algebra with isometric involution satisfies f(v*u*uv) < lle)|* f(v*v). One can
further verify 7, (ab) = m,(a)m, (b), B(mo(a)é,n) = B(§, mo(a*)n). It follows that for any
a € A, n(a)J€ = Jm,(a)¢ gives a well defined bounded linear operator m(a): K — K,
|m(a)|| < |lal, and 7 : A — B(K) is a *x-homomorphism.

Now consider the linear map F : A ® H/N—H, FI§=}_ ¢(x;)&; for =3 x® & in
A ® H. Then

1FrElr= {3 o) Y. #0)) = > 6) 6(:)86)
= {16y o Y@ en Y &S )
= <¢n(x)*¢vn(x) S &®eny 6® ei> (x = [Buix])
< k<¢,, W) S &®eny &® ei> (Lemma 2.16)

— k(oG5 Y& @en D 6 ©c)
= kS (B &) = k76 TE) = KL
i,j

This gives a bounded linear operator F : K — H satisfying ||Fnl| < k'/%{nl|(n € K). Now
let V — F*. Thenforall h € H, £ =Y % ® & € A®H,a €A, we have (3 ox)éih) =
(F(JE),h) = (JE VR) = (- % @ &is Vh) and (3 ¢(axi)&, h) = (S x; ® &, w(a*)Vh). Next
we claim that J(b® n) =7(b)Vn(b€ A, € H). Indeed, taking £ as above, (JE,J(b® n_)) =
T x®8),J(bon)) =3 ($(b™x)&; M) = (X p(b*x)&ym) = Do u®E, ™ (b)Vm). Since
¢ is arbitrary in A ® H, and since J (A®H) is dense in K, 1t follows that J(b®n) =
w(b)Vn (b € A,n € H). This immediately gives span (m(A)VH)= sEan J(A ®,H)’
[7(A)VH]|=K. Finally, for any a € A, and n and 7' in H,/ we have (V*m(a)Vn, 77—) =
(m(a)Vn, V) =(m(a ®n), Vr\=FI(a®n),7)= (¢(a)n,n/) showing that p(a)=V
m(a)V. It follows that ¢ is Stinespring representable. _

(3) implies (1). In the notations of the proof of Lemma 2.15, the T-continuous map
& : A — B(H) is hermitian, positive, and it satisfies statemen: §3) on A. Furfnher,u(gb)n
(denoted by ¢,) also satisfies &.(h)* < k¢, (h?) for all h="F"in M,(A). This fol ow;
from Lemma 2.16, together with the denseness of ME(A) — as well as the continuity 1(:
&, — in the projective cross-morm 7y = | on A @Mn(C)._By Lemma 2.;51,7t i:
map ¢’ : (A), — B(H), ¢ (x + A1) = o(x) + Akl 18 positive, which by Ler;nﬁa ) fr, is
completely J-positive. Now as A is symmetric, M,(A) is also symmetric. It o_ow; (zh
Lemma 2.13 that ¢ is completely positive on the unital Banach *-algebra Ae.. y 2e
result of Evans [9, Theorem 2.13], ¢° is Stinespring representable. Hence by (1) imp. (2)
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shown earlier, ¢°(x)*¢’(x)<m¢’(x*x)(x € A,) for some m>0. Thus ¢(x)*p(x) <
m¢(x*x)(x € A); and by (2) implies (1) shown earlier, ¢ is Stinespring representable.

(1) implies (4). This is clear.

(4) implies (1). The extension ¢° : A, — B(H) has to be of the form ¢(x + A1) = ¢(x)+
A¢?(1). Then ¢° is Stinespring representable, so that, in self-explanatory notations,
V*r(x)V = ¢*(x)(x € A,), [7(A.)VH] =K. Let K; = [n(A)VH]. Since m(A)K; C Kj,
the projection P: K—Kj is in the commutant m(A)" of 7(A). Let 0:A—B(K;) be
o(x)=7(x)|g,. Then 7(x)= Po(x)P = o(x)P. Let V= PV. Then for all x € A, ¢(x) =
V*n(x)V = V*Po(x) PV = V{o(x)V1. Further, o(A)V:H = o(A) PVH = Po(A) PVH =
n(A)VH, hence [0(A)V1H] = K;.

(5) implies (6). This is obvious.

(1) implies (3). If ¢(x) = V*m(x)V, then [|(x)|| < [[VI* 7 ()| < [V]Poo(x)-

(5) implies (1). The statement (5) implies that ¢ factors through C*(A) giving comple-
tely positive map ¢ : C*(A) — B(H) satisfying ¢ o j = ¢. The conclusion follows easily.

The remaining assertions follow from Lemma 2.8 (d) and Lemma 2.9.

(2.19) For the proof of Theorem 2.2, note that (2) implies (1) follows from Lemma
2.15. That (3) iff (4) is obvious; whereas (4) implies (2) follows from Kadison’s
inequality for ¢. That (1) implies (4) follows as in first paragraph in the proof of
Lemma 2.16.

(2.20) For the proof of Corollary 2.3, note that (a) follows from Lemma 2.8 and
Theorem 2.2. For (b), Lemma 2.6 implies that ¢(x)"¢(x) < (lim ¢(efe;))p(x*x) = ||| ¢
(x*x)(x € A); and Theorem 2.1 applies. .

Theorem 2.21. (The following is a slightly modified version of 2.1.) Let A be a

complex x-algebra. Let ¢ : A — B(H) be a completely positive map. The following are
equivalent.

(a) ¢ is Stinespring representable.

(b) (i) There exists a scalar k > 0 such that p(x*)p(x) < kp(x*x)(x € A).
(ii) There exists a scalar m > 0 and a submultiplicative seminorm p on A such that
@) < mp(x)(x € 4).

3. Applications and related results

(@) Cauchy-Schwarz inequalities: A positive functional f on A satisfies | f(y*x|* < f(y*y)
fix* x) (x,yin A). Let ¢ € P(A,H). If A is unital (or having a BAI), Kadison’s inequality
d(h)* < ||@ll6(h2)(h=h* € A) is an operator valued version. If ¢ € CP(A,H), then
Lemma 2.6 provides a CP-version, which, in the presence of BAI, reduces to Corollary
2.8 (c). The following contain some other versions of this inequality.

COROLLARY 3.1
(@) Let ¢ € CP(A,H). Let x,y,z be in A and t > 0 be a scalar.
(1) Let ¢ be Stinespring representable. Then the followmg hold.

@) 0" x)"(t+ ¢(r*y)) " oy x; < ¢ x'x).
(i) o(x*)o(x) < [l@°(1 )Hpoo ().
(iii) (x*x) < [[¢°(1)||Poo(x)*1

i
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(2) The following hold.

(@) $0yxy) ¢y xy) < Poo (X216 | 6(7*).
() ¢(y"xy) d(y*xy) < H¢(y*y}ll¢(y*x*xy) < o) IPoo (x)* 3 ().
(i) ¢(2*y) xz*[t + ¢(z*y*y2)]” d(2'y*xz) < P(2"x"xz).

®) If pEP(A,H), then ¢(y*hy)* < | o ») |0 H*y)(y€ A, h = k* in A); and $(y*x"xy)
< Peo(x)9(y*y)- Further, if ¢ € CP(A,H), then ¢(y*xy)"¢(y"xy) < |6(y*y)lls(x)"¢(y).
where s(x) = r(x*x)l/ 2 r() being the spectral radius.

(c) If ¢ € P(A,H) and has abelian range, then

d(y*x)*p(y*x) < d(y*y)p(x*x) for all x,y in A.

Does above (1) (i) hold if ¢ is not Stinespring representable ? Above (b) is an operator
valued version of the familiar [4, Lemma 37.6 (iii)].

Proof. (a) (1). Inequality (i) can be proved as in [9, Theorem 1.14, p. 15] for positive
definite kernels. Representability of fz, f: (x) = (¢(x)&, €), Theorem 2.1 and Lemma 2.11 ()
(i) give (3007608, &) < 161 (G E, &) < 6(1)l|poolx)(#(1)E, €) which gives (i
This in turn implies [9(x) ] < [|(1)[peo (1), Bence §(xx) < $(=x)[1< 16 lpoo (@)L
(2) For y € A, let ¢,(x) = ¢(y*xy). Then ¢, is completely positive, since (¢y),=(dn)Y
where ¥ = [6;y]. Thus ¢, (x -+ A1) = ¢(x) +A¢(y"y) gives a completely positive extension
to A,. Thus ¢, is Stinespring representable. Hence (2) follows from (1). Also (b) follows
as above from Lemma 2.11 (b) (i). (c) can be easily proved.

One may look for analogue of above inequalities for J-positive and completely
J-positive maps.

A dilation-free approach to the CP-Schwarz inequality

Let A be a C*-algebra. Let ¢ € CP(A, H). The only proof of the CP-Schwarz inequality
B(x)* d(x) < ||pl|p(x"x) (x € A) that the author knows is as in [27, ch. IV, Corollary 3.8,
p. 199], which is based on Stinespring dilation. The following provides a dilation-free
proof in a more general context. It uses Kadison’s Schwarz inequality in a crucial way via
Corollary 2.3; and exhibits the essential difference between these two inequalities.

COROLLARY 3.2

(a) Let A be a Banach *-algebra with BAL Let ¢ : A — B(H) be a 2-positive map. Then

B(x) p(x) < || Bl p(x*x) for all x in A.
(b) There exists a C*—algebra A and a positive, non-2-positive map ¢ : A — B(H) ].COI‘ an
appropriate H such that for no scalar k >0, d(x)*(x) < kep(x*x) hold for all x in A.

Proof. () The algebra My(A) has BAL By Corollary 2.3, ¢ is gxtendable, hence hermi-
tian; and the positive map ¢; : M2(A) —~M,(B(H) CBH®C ), ¢ = ¢ @ id, *satlsﬁes

0 x N
(bz(h)z < ||¢Hq’>2(h2) for all A = h* in Mp(A). Letx € A€ H Take h= « 0 } =h".
Then

[fﬁ(x);d)(x) sl M <110l [cpogx) ¢(gx*)}. -

Lo 2
Taking £ ={®e; +0@ e €H® C? ({e1, 2} =standard basis 1n Cc*),
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% s L )

<11{[*5” e [s][6]):

Hence (¢(x)"¢(x)¢, €) < [|¢]|{p(x"x)¢, £). ' '

(b) Let A = M>(C), ¢ : My(C) — M(C) =B(C?) be ¢(x) = tr(x)1 — x. Then ¢ is known
to be positive, but not 2-positive. Let k > 0. Suppose ¢(x)*$(x) < kp(x*x)(x € A). Then |
tr(x)"tr(x) 1 — tr(x)"x — tr(x)x* + x*x < k(tr(x*x)1 — x*x). Taking x = {8 (1)} ,tr(x) =

te(x*) = 0,x*x = [8 ﬂ ,tr(x*x) = 1. Thus (k + 1)x*x < k1. Hence for all z € C,

Lo B IGHED =48 AIELED)

giving (k + 1)|z” < k|z|%, a contradiction.

(I) Automatic Stinespring representability: There are three closely related aspects of
positive functionals viz. admissibility [21 p. 213], continuity and representability. Admis-
sibility is automatic in Banach *-algebras [4, Lemma 37.6, p. 197; 21. Theorem. 4.5.2]
(but not in topological *-algebras); automatic continuity has been considerably discussed
in the literature encompassing more general topological *-algebra case; whereas auto-
matic representability seems to have received least attention even in Banach x-algebras.
Note that representability is stronger than continuity.

COROLLARY 3.3
Assume that A = A%, i.e. A =span (yx : x,y in A).
(a) Assume the following:

(al) Every non-zero member of CP(A, H) dominates a non-zero Stinespring represen-
table member of CP(A,H).

(a2) Given ¢ € CP(A,H) and letting S(¢)= (v € CP(A,H) : v is Stinespring
representable and ¢ > ), there exists a scalar k = kg > 0 such that
Y(x)"Y(x) < kb (x*x) holds for all x and for all ¢ € S(¢)

Then évery ¢ in CP(A, H) is Stinespring representable.
(b) Assume the following:

.

(bl) Every non-zero member of P(A, H) dominates a non-zero extendable member of
P(A,H).

(b2) Given ¢ P(A, H) and letting P(¢) = (% € P(A,H): v is extendable and ¢ > ¥),
there exists k > 0 such that 1(h)* < kip(h?) for all h = h*, all  in P(¢)

Then every ¢ in P(A, H) is extendable.

(¢) Assume the following:

.

(c1) Every non-zero positive Junctional on A dominates a non-zero representable
positive functional,

(c2) Above (b2) holds with H = C.
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Then every positive functional on A is representable.

Even in the scalar case, above (c) gives representability analogue of the automatic
continuity theorem [4, Theorem 37.13]. In the following (V), we discuss (i) examples
showing that in above, assumptions (a2) (and similarily (b2) and (c2) can not be omitted;
and (ii) examples in which every positive functional is continuous, but not each such
functional is representable.

Lemma 3.4. Let ¢y and ¢ in CP(A,H) be Stinespring representable. Then ¢1 + ¢ is
also Stinespring representable. :

Proof. Clearly ¢ + ¢ € CP(A,H). By Theorem 2.1, there exists k; > 0,k > 0 such

that for all x € A, ¢1(x) 61 (%) < kid1(x"x), ¢2(x) $2(x) < koo (x*x). Let ¢ = 1+ 2.
Then

$(x)"6(x) = {(d1(x)" + B2(x) H(1(x) + $2()}
= 61 (1)1 (x) + $1(0) $2(x) + da(x) 1 (x) + ¢ (x)" 62 (x)-
Hence, for any £ € H,

(B SE, &) =11 WP+ G2(0EI + (226, 61 () + (61(2), £2(3)6)
< i I + G2 @E + 211 (x)E, 220
< 6 @EIP + b eI + 20161 @EN g2 (x)E
= (lg1 (<)l + lIg2(0EN)?
— ()61 WE O + (2(0) 2 (E Y
< (P (61 (06 & + 1M (06, 0Y
< max(l, k) { (61 (06 O + (92 (06,6 7Y
< max(k, ka){2(6 (026, &)%Y < 4max(in, ko) (B 26 &3-

The conclusion now follows from Theorem 2.1.

Proof of Corollary 3.3. We give details for part (a). Since A2 =A, eacha € Aisof fomj
a = ¥ ujv; with u;,v; in A. Also, for any %,V in A, duv = (v+u?)" (V+u) - (v — u¥)
(v—u*) +i(v+iu*)" (v+ ) —i{v - iu*)* (v — iu*). It follows that

A =span A%, (1)

Now consider the order relation ¢ < ¢ in CP(A,H), where ¥ < ¢ means ¢ —1p e CP
(A,H). Clearly, this is reflexive and transitive. Since A = span AT, it follows that <
is antisymmetric also, hence is a partial order. Let é € CP(A,H). Let S(¢)={y € CP
(A, H): 1 is Stinespring representable and ¢ < ¢}. We show that the partially ordered set
(8(¢), <) has maximal element.

Let C be any chain in (S(¢), L)- Letae A, saya=y, & bibj, finite sum, o; scalars.
Then for all b € A, 9 € C, £ € H, we have

(W(B*b)E, &) < (¢(b7D)E,E)- ()
We first show that
¢ (a) = }‘blélé P(a) (a€A) is defined. (3)
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By (2), limyec (¥(b*b)E, €) exists in R for all b € A, ¢ € H. Then
lim (9(a)¢, &)= lm(4 (3 o bi8y)6.€) = lim - o ((E78)6,€)
<Y o ($(B1B)E, ) = ($(a)é, €). (4)

This defines we(a) = limyec (1(a)¢,€). Clearly we is positive linear functional on A.
Now, the polarization identity, for any T € B(H),

HTEm) =T(E+n),E+m) —(T(E—n),&—n) +i(T(€+in), & + in)
— T (£ —in),& — in)

gives, using (4), that for any &,7 in H,a € A,
Bi(&,n) = };}ené (Y(a)é,n) exists. (5)

It is easily seen that (£,1) — B,(£,n) defines a sesquilinear form on H. Further, it is a
bounded sesquilinear form. Indeed, for any ¢ € C,a = 3 o; b}b; in A,

@l < oy lleEB) <Y o l@bib)|| = M(a, ) = M (say).

Hence, by the uniform boundedness principle, there is k > 0 such that ||| < k for all
1 € C. Hence, in (5), we get

[Ba(€,m)| < Kllal[[€]In]|- (6)

showing that B,(.,.) is a bounded sesquilinear form on H. This defines ¢/(a) € B(H)
such that (¢'(a)¢,n) = B,(¢,7), (€,n in H). This proves (3).

The mapping ¢' : A — B(H) defined above is linear. Since each ¢ € C is Stinespring
representable, hence hermitian, it follows that ¢/(a*) = ¢/(a)*(a € A). Further, (6)
implies that ¢’ is continuous. Lemma 2.4 (e) implies that ¢’ € CP(A, H) satisfying ¢/ < ¢.
Further, for all a € A,{ in H,

(@' ()¢ 3)6,€) = 19/ WEI" = im [$()¢]” = lim ()" w(x)¢; €)

< kglim (06, €) < ko(9/ (0%, ).

Hence ¢ is Stinespring representable by Theorem 2.1. Thus ¢ € C and is an upper
bound for C.

By Zorn’s lemma, $(¢) admits a maximal element, say 1,. We show that ¢ = ). If
®— 1, #0, then by assumption (al), there exists a Stinespring representable
Y1 € CP(A, H) such that ¢ — v, > 1. Thus ¢ > v, + 11; and ¢, + 2y is Stinespring
representable completely positive map by Lemma 3.4. Thus v = 1, + 1 € S(9), ¥ # 1,
contradicting the maximality of ),. Hence ¢ = 1), is Stinespring representable.

(Ill) Extension problem: By a celebrated extension theorem due to Arveson [1, Theorem
1.2.3], if B is a closed self-adjoint subspace of a unital C*-algebra A, and if 1 € B, then
any ¢ € CP(B, H) extends to a ¢ € CP(A, H). The following has a bearing with this.

COROLLARY 2.6

Let A be a Banach x-algebra with BAL Let B be a *-subalgebra of A. Assume that at least
one of the following holds. :

o

Aoa
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(2) A is hermitian (in particular, A is spectrally invariant in C* (A)) and B is closed in A.

(b) B is a Banach %-algebra with some norm such that C*(B)— C*(A) injectively. In
particular, the Banach x-algebra B is dense and spectrally invariant in A so that
C*(B) = C*(A).

Let ¢ € CP(B,H). Then ¢ extends to a ¢ € CP(AH)iff ¢ is Stinespring representable. If
A is unital and B contains identity of A, then under above assumption, any ¢ € CP(B,H)
extends to a ¢ € CP(A, H).

Proof. Let ¢ € CP(B,H). Assume (a). Let é € CP(A,H) be such that ¢|; = ¢. By
Corollary 2.3, ¢ is Stinespring representable; hence by Theorem 2.1, o(x)"p(x) <
k¢ (x*x)(x € B). Conversely, let ¢ be Stinespring representable, hence extends to a
#¢ € CP(B.,H); and there exists a Hilbert space K, a «-representation 7 : Be — B(K) and
a bounded linear V : H — K such that ¢*(x) = V*r(x)V(x € B,). Now A, is hermitian
[21, Theorem 4.7.9, p. 223]; and B, is a x-subalgebra of A, containing the identity. By
Lemma [21, Theorem 4.7.20], there exists a Hilbert space W containing K as a closed
subspace and a x-representation o : A, — B(W) such that o{x)|x = 7(x)(x € B). Let
id - K — W be the inclusion. Then P = (id)" : W — K is the orthogonal projection. Let
V' —idoV :H — W. Define ¢/(x) = (V) o(x)V'(x € A,). Then ¢' € CP(A.,H) and
for all x € B, (x) = V*a(x)V' = V*Po(x)id V! = Vr(x) V' = ¢(x).

Now assume (b). One way conclusion is obvious as in the above case. Let ¢ € CP(B,H)
be Stinespring representable, hence extends to ¢° € CP(B.,H). By Lemmas 2.7, 2.8, ¢
factors through C*(B.) as ¢*=¢ ojp with & ccp(C*(B.),H). By Lemma 2.10,
C*(B.)— C*(A.) injectively, and C*(B,) is a C*-subalgebra of C* (A.) ~ceontaining the
identity of C*(A.). By Arveson extension Theorem, [1, Theorem 1.2.3] ¢ extends as a
¥ € CP(C*(A.),H). Then A = Wojs|A € CP(AH) and ) is an extension of ¢. This
completes the proof.

Can the additional assumptions (a) or (b) in above Corollary 2.6 be weakened?
Corollary 2.6 (a) applies to closed *-subalgebras B of the group algebra A=L (G) of
a locally compact group G which is symmetric (i.e., L}(G) is symmetric). A Segal
x-algebra in a Banach *-algebra (4,|-]]) is a dense «ideal B of A that is a Banach
x-algebra with some norm | - | such that the inclusion (B, |- )— (4, |-) 1s continuous.
By [8, Theorem 31.5], B can not have BAL

COROLLARY 3.7

Let A have BAL Let B be a Segal *-dlgebra inA. Let ¢ € CP(B,H ). The following are
equivalent.

(1) ¢ extends to a ¢ € CP(A,H).
(2) ¢ is Stinespring representable.
(3) ¢ is continuous in the norm of A.
Further, if A= L' (G) for a locally compact group G, then each of above is equivalent to
(4) There exists a strongly continuous completely positive definite function X : 8 €G—

x(g) € B(H) such that $(f)= [ F(&)x(g)d8(f & B).

Let G be a locally compact group. Let x : G — B(H) be a weakly continuous function.
Recall that x is positive definite (resp. completely positive definite) if for every n € N,
each s1,...,s, in G and each scalars Ay, .. -, A, (resp. each Ti,..., T in B(H)), it holds
that 3 Nihx(s;tsi) = 0 (resp. > Trx(s; ' si)Ti 2 0) in B(H).
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Proof. Since B is an ideal in A,B_; = A_; N B, where K_; denote the set of all quasi-
regular elements of K. It follows that B is a Q-normed algebra in the norm || - I, of A,
ie. B_y is open in [|-|[,. By [12, Theorem 3.1], each «-representation 7 on B is
|||l continuous; and, by the density of B in A, 7 extends uniquely to a #-representation of
A. It follows that A, and B, have the same collection of *-representations, identified via
restriction. Thus srad B, = (srad A, N B,) [4, Theorem 40.9, p. 223], and pg‘él Bezpfg
(for Gelfand—Naimark pseudonorms). It follows that C* (B,) is canonically embedded as
a x-subalgebra of C*(A.). Then (2)« (1) by Corollary 3.5. That (1)< (3) is due to
continuity, as A has BAIL That (3) iff (4) follows from Stinespring representability
on L'(G) (as it has BAI), the correspondence between unitary representations of G
and x-representation of L'(G) and Naimark-Sz. Nagy characterization of completely
positive definite functions [9, Corollary 2.6, p. 17], [27, Ex. 2, p. 203]. This completes the
proof.

Let A be a *-subalgebra of L'(G). Suppose either G is symmetric and A is closed: or A
is a Banach x-algebra, dense and spectrally invariant in L! (G). It follows from Corollaries
3.6 and 3.7 that every completely positive map on A (in particular, on L'(G)) can be

extended to a completely positive map on the measure algebra M (G) and is given by a
completely positive definite function on G.

(V) Integral representations and operator valued Bochner Theorem: The classical
Bochner Theorem states that if ¢ is a positive definite function on R”, then there exists
a positive Radon measure x4 on R" having mass p(R") = ¢(0) such that ¢(g)= S
exp{i(g, §) }du(€)(g € R™). More generally, a positive definite function ¢ on a locally
compact abelian group G is determined as a positive Randon measure on the dual group
G by the formula ¢(g)= [; x(¢)du(x). Via L(G), this determines positive linear func-
tionals on the Banach #-algebra L'(G); and becomes a special case of the abstract
Bochner-Weil-Raikov integral representation [11, ch. IV, Theorem 21.2; 15, Theorem
33.2] stating that a continuous linear functional f on a commutative Banach x-algebra A
is positive and representable iff there exists a positive Borel measure 4 on the hermitian
Gelfand space M*(A) ={p € A" : ¢ is multiplicative, p(x*)= ¢(x)” for all x} such that
flx)= fsm*( n *()du(ep)(x € A),% denoting the Gelfand transform. The following is an
operator valued version of this. It also provides a commutative Banach *-algebra analogue
of the Naimark dilation theorem [26, Theorem 7.5, p. 153] which is a forerunner of
Stinespring theorem. Recall that a semispectral measure on a topological space X is a
mapping F' from Borel o-algebra B(X) into B(H),w € B(X)— F(w) € B(H) such that for
each £ in H,w — (F(w)¢,€) is a bounded positive Borel measure.

COROLLARY 3.8

Let A be a commutative Banach *-algebra. Let ¢ : A — B(H) be a linear map.

(A) Let ¢ be positive. The following are equivalent.

(1) ¢ is hermitian and for some scalar k > 0, ¢(h)? < k¢(h*) for all h = h* in A.

(2) There exists a scalar k > 0 such thar ¢(x)*$(x) < k ¢(x*x) for all x € A.

(3) There exists a semispectral measure F on W*(A) such that O(x) = fope () X(S)
dF(f), X denoting the Gelfand transform of x. _

(4) @ is completely positive and Stinespring representable.

(B) Let A have BAL Then (3) above is equivalent to
(5) ¢ is positive.

@q
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On the one hand, the following is an operator valued analogue of Bochner’s theorem;
on the other hand, it is a positive linear map analogue of Stone—Naimark—Ambrose—
Godement theorem [20, ch. XV, Theorem 3, p. 489] occupying its proper place midway
between the two.

COROLLARY 3.9

Let G be a locally compact abelian group. Let x: G — B(H) be a weakly continuous
function. The following are equivalent.

(1) x is positive definite.
(2) x is completely positive definite. _ A
(3) There exists a semispectral measure F on Borel subsets of the dual group G such that

x(s) = [ f(s)dF(f).

Proof of Corollary 3.8. (A) That (1) iff (2) iff (4) follow from the results in §2. Now
assume (4). Take extension ¢¢ € CP(A,, H). Let ¢ € CP(C*(A.),H) such that ¢ 0 j.=¢",
je(z) =z-+srad A,. Then J):éelC*(A)GCP(C*(A),H), $oj=¢. By Gelfand theory,
C*(A) =C, (T (4)). C*(A,)=C(X), X —9t*(4)U{oo} being one point compactification
of M*(A). By Naimark dilation theorem [26, Theorem 7.5, p- 153], there exists a
semispectral measure G on Borel sets of X such that ¢ (f) = [y F(0)dG(). f € C(X). By
restriction, G defines a semispectral measure F on Dt*(A) such that, for all x €A,
o(x) = (j(x)) = fop(a) F(£)AF (2). Thus (4) < (3). If (3) holds, then the positive é(f) =
Jowe WS (1)df(r) is completely positive and Stinespring representable, and (2) follows.

Proof of Corollary 3.9. Assume (1). Then ¢ : L'(G) — B(H), o(f)= [ F(s)x(s)ds
defines a positive linear map on L'(G) by (¢(f)&,m = [ £(5)(x(5)€,m)ds (€, m in H).
As G is abelian, the Banach x-algebra L'(G) is semisimple and symmetric. Hence
M (L(G)) = M(L'(G)) = G (dual group) by usual identification. Also, L' (G) has BAL

It follows from Corollary 3.7 that for some semispectral measure F' on G, o(f) = fc‘;
F()dF(¢). Then, for & n in H, for all f € LY(G),

]G £(5) ()€, s = (B(FEm)
- /G F@AF@E

, :/G</Gf(S)RS-)ds>d(F(t)g’n>
- [ s6)( [ @aere e

It follows that x(s)= [ t(s)dF (¢) and (3) holds. Now assume (3) viz. x(s)= [;1(s)dF (1)
for some semispectral measure F on G. Then ¢(f) = [; F(t)dF(r) defines a positive
linear map on L!(G). By Corollary 3.7, ¢ is completely positive and Stinespring repre-
sentable. Let {r,K,V} be a Stinespring representation of ¢. By reverting the steps
in previous proof, ¢(f)=Jcf (s)x(s)ds(f € L!(g)). Further, there exists a weakly
continuous unitary representation s— U(s) of G on K such that m(f)= [ f(s)U(s)ds
(f €L'(G)). Then, for all such f, and £, 7 in K,
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/G F(S)E m)ds = (B(F),m) = {x(F)VE, V)
[ Fouiove ves

- /G )V U(s)VE, mds.

Hence (x(s)¢,n) = (V*U(s)V&,n). Thus x is completely positive definite; and (2) follows.

(V) Examples and Remarks: (3.10) Consider the sequence space PP =P (N),1<p<oo.
It is a non-unital commutative Banach *~al§ebra with pointwise multiplication, complex
conjugation and the norm ||x|| = (3" |x,[F)'7%.

() P-P = {xylx,y in P} is a proper dense subset of /” [8, p. 113]. Thus # is not
factorizable, hence it fails to admit BAIL However, (u,),u,=(1,1,...,1,,0,0,...),
constitute unbounded approximate identity for ».

(i1) Every positive linear functional on P is continuous [23, ch. V, Theorem 5.5, p. 228],
and is of the form f = f, for some a = (a,) € 14,1/p + 1/q = 1, with a,, > 0 for all
n. where fy(x) = ) ax,. Not every such f is representable. In fact, f, is repre-
sentable iff a € I'. Indeed, |f,(x)|* < kfy(x*x)(x € PP) gives, taking x= u,, that
(an) €.

(ili) Above (i) and (ii) illustrate that the boundedness of approximate identity can not be
omitted from Corollary 2.3.

(iv) By [6], every positive functional on a separable commutative Banach «-algebra A is
continuous iff A%(= span A -A) is closed and of finite co-dimension. What is an

-analogous theorem for automatic representability? This result implies that (r )2 is
closed. Since (P - )™= P, (I’)* is dense in 7. Thus P =(IP)*. This illustrates that
in a commutative Banach x-algebra A, the condition A2 = A need not imply
automatic representability; though it does imply automatic continuity of positive
functionals [4, Theorem 37.14, p. 201].

(v) Let f be a positive functional on P, f = f,. Leth = (ai,...,a,,0,0,...,). Thenf is
representable and f > f,. This shows that Corollary 3.3 fails if the assumption (c2)
(and so (b2) and (a2)) are omitted. Thus, [4, Theorem 37.13, p- 200] does not hold if
‘continuity’ is replaced by ‘representability’.

(vi) Every continuous hermitian linear functional on P is a difference of two positive
linear functionals; though it need not be a difference of two representable positive
functionals. This illustrates the crucial role of representability in Grothendieck’s
well-known dual characterization of C*-algebras.

3.11. Here are some concrete examples to which Corollary 3.7 applies. (a) For a locally
compact abelian group G, take A = L'(G), let 1 < p < co. Take B; = L!(g) N L7(G) with
norm | flls, = 11l + 1f1},:B2 = {f € LI(G) : € L&)}, | flln, = I/ + I l,. Then
each B; is a convolution Segal algebra in L'(G) and having involution (s =
f(=s). (b) Take A = L!(R), B = {f € L'(R) N C*(R)| the kth derivative f®) € L!(R)},
A5, =l 71l;+1£® ||, By Corollaries 3.7, 3.8 and 3.9, Stinespring representable maps on

B(=any of above B;) are precisely those that are determined by semispectral measures on
the dual group G.

3.12. ‘Another abstract Segal *-algebra is this. Let A = K (H), C*-algebra of all compact
operators on a separable Hilbert space H, let B= C(H) = {x € K(H) : ||x|| »= [trace
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(x*x)P/*]"/P < 00}, 1 < p < o0, the Banach x-algebra with norm | - ||, of von Neumann—
Schatten class of operators, which is a dense *-ideal in A containing all finite rank
operators. Let (&,) be an orthonormal basis in H. Then (C?(H),|| - ||,) is a Hilbert space
with norm ||tz:(x,x)1/ 2 where (x,y)=3", (¥, &) By using [23, ch. IV, Theorem
5.5, p. 228], every positive linear functional f on C” (H) is || - || ,-continuous; and by the
well-known duality (C?P(H),C4(H)), 1/p+1/q=1, {x,y) = trace xy*, is of the form
f = fu fulx) = (x,a) with a > 0 in B(H) [22]. Further, f, is representable iff a € C!(H)
(= trace class operators) iff f is the restriction of a normal positive functional on B(H).
An appeal to Grothendieck’s result refered to in (3.10) implies that not every positive
functional is representable. Let ¢ € CP(C?(H),K) for some Hilbert space K. Then ¢ is
Stinespring representable iff ¢ extends as a completely positive map é : K(H) — B(K)
iff ¢ is the restriction of a normal completely positive map on B(H).

3.13. Corollary 3.6 applies to smooth subalgebras of a C*-algebra. A smooth subalgebra
B of a C*-algebra A is a dense *-subalgebra of A which is a Banach algebra with some
norm and is spectrally invariant in A. Then C* (B) = A. If B has BAI, then every com-
pletely positive map on B extends to a completely positive map on A. This, in particular,
applies to the Banach *-algebra C™ (A) of C™-elements (and to the Frechet algebra C*(A)
of C*®-elements) of an action of a Lie group on a C*-algebra A.

3.14. Banach x-algebras to which Theorems 2.1, 2.2 apply specifically are those that do
not admit BAL This includes non-factorizable Banach x-algebras [8], the algebra R (G)
which is linear span of positive definite functions on a compact group G, and the Fourier
algebra of a locally compact, non-compact group [19]. Let G be a compact Lie group.
The convolution Banach algebras C™(G)(C™-functions on G, 0 <m < o0) and LP(G),
1 < p < oo are non-unital, and not admitting BAI [15, (34.40) (b), p. 357]. They are
Banach x-algebras with involution f*(g) = f (g~7) [14, Theorem 15.14, p. 197]. A map
¢ € CP(C™(G),H) (or ¢ € CP(LP(G),H )) is Stinespring representable iff it extends as a
completely positive map on L'(G) iff it extends as a completely positive map on the

~group C*-algebra C*(G) of G iff it is determined by a completely positive definite

function on G [9, p. 20]. Note that continuous positive functionals on C™(G) are given by
distributions of the positive type of order m on G; whereas representable functionals are
given by continuous positive definite functions on G. A similar assertion for L7 (G)
explains [15, (34.42 (b)), p- 358]. '

Tn particular, consider G = T = {z € C| |z| = 1} Recall [16] that an orthogonal basis
in a Banach algebra A is a basis (en)q° such that exem = Onmen- A Banach algebra with an
orthogonal basis is commutative, non-unital (if infinite dimensional) and M(A) =
{e*}~N, e is the coefficient functional e, (x) = oy, Where x =35 aney is the expansion
of x in (e,). The convolution algebra L7 (T), 1 < p < oo, admits the sequence of trigono-
metric polynomials e,(t)=t",n2>1, as orthogonal basis, the Fourier series fe®)~
S ane, a,=f(n), provides expansion f (e?)="F(n)e™ in [|-||,. It is a Banach
salgebra with involution f*(e?)=f(e=¥). Now let U ={z € C||z| < 1}. The Hardy
space HP(U) is also a Banach *-algebra with Hadamard product (f * g)(x)=(1/2mi)
Jy=r F@ gz 1)z7'dz, |x|< r< 1, having involution f*(z)=f(%). The sequence
en(z)=7", n€N, is an orthogonal basis for HP(U) [16], the Taylor series
flz) =35( f®(0)/n!)z" being expansion of f in terms of (e,). Now, by [13, ch. 11,
§3, p. 59]. via the radial limit f(z) — f (e¥), HP(U) is isometric to a closed subspace K
of LP(T), where K =the space of boundary functions of HP (U)= the closure in L? (1)
of analytic polynomials. The Fourier series f(€¥) Nzane"”g of f € K is supported on
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non-negative integers; and the Fourier coefficients a, = £ (0) /n! = Taylor coefficients of
the HP-function f(z) = ) a,z". Thus the embedding preserves the multiplication and the

envolution. The Banach x-algebras AP (U) and LP(T) are hermitian; and their enveloping

C*-algebras are C*(H?(U))~ co(N) as in [3, Proposition 5.3], C*(L(T))=C*LY(T))
=C*(T)(=group C*-algebra of T)= Co(T)= Co(Z). Thus C*(HP(U))— C*(I’(T))
injectively. Let H be a Hilbert space and ¢ : H?(U)— B(H) be positive linear. Then ¢ is
extendable iff ¢ is completely positive Stinespring representable iff there exists a
sequence F(n),n € N, of positive operators in B(H) such that ¢(f) = > o, f—(%!@—)F (n).
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