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Abstract. Let A, be the algebra obtained by adjoining identity to a non-unital Banach
algebra (4, |- 1|). Unlike the case for a C*-normona Banach «-algebra, 4, admits exactly one

uniform norm (not necessarily complete) if so does 4. This is used to show that the spectral
extension property carries over from A to A, Norms on A, that extend the given complete
norm |||} on 4 are investigated. The operator seminorm |||, on 4, defined by | - || is a norm
(resp. a complete norm) iff A has trivial left annihilator (resp. I lop restricted to A is equivalent

g? o [-1).
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1. Introduction

Let A, = A + C1 be the algebra obtained by adjoining identity toa non-unital Banach
algebra (4, ||-|)) [8]. There are two natural problems associated with this elementary
unitification construction: (1) which are (all) algebra norms |-| on 4, that are closely
related with (e.g. extending) ||| on A? (2) Which properties of the Banach algebra
(A, ||-||) are shared by the normed algebra (4,, |-)? In the present paper, it is shown that
A has unique uniform norm (not necessarily complete) (resp. spectral extension
property [9]) iff A, has the same. This is interesting in view of the fact that for a Banach
«-algebra (4, ||[)) with a unique C*-norm, A, can admit more than one C*-norm [1,
Example 4.4, p. 850]. This holds in spite of apparent similarity between the defining
properties || x? | = | x| and [x*x| = i x|? of uniform norms and C*-norms respective-
ly. This main result, together with a couple of corollaries, is formulated and proved in
§ 3. Their proofs require some properties of norms on A that are regular [5]. There are
two standard constructs of norms on A, Viz. the It-norm | x +A1] L= [l + 14l and the
operator norm ||x + Alllop = sup{llxy + ayl:lyl €1, yed}. In general, | [ need
neither be a norm nor be complete [6, Example 4.2]. Also, in general, || *[lopi4 # I-||-Itis
easy to see that if p is any algebra seminorm on A, such that pau= |1, then
la+ Allep < p(a+ A1) < p(1)[a+ A1];. The norm |1l on A is regular (resp. weakly
regular) if the restriction of || op O A4 [+ lopia = Il-1l (resp. [I* llopa is €quivalent to -1
These are essentially non-unital phenomena, for if A is unital (resp. having a bai (),
then any norm |-| on A with [1] < 1(or le,| < 1)is regular [5].Itis shownin §2that || {lop
is a norm on A, iff the left annihilator lan(A) = {0};and in this case, || llop 18 complete iff
|1l is weakly regular iff |- || 18 equivalent to | -[lep O1 A,

Throughout, 4 is a non-unital algebra. By anormon A,wemeanan algebranorm;i.e.
a norm satisfying || xy|| < |/ x| |y | forall x, y. A uniform norm on A (resp- 2 C*-norm on
a x-algebra) is a norm satisfying the square property | x2| = x|? (resp. the C*-
property || x*x | = ||x|/*) for all x.
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2. Weakly regular norms

Let(4, |- ||) be a normed algebra. The following shows that if || - | op is @a norm on 4,, then

|'lop is also a norm on A4, for all norms |-| on 4. The left annihilator of A is lan(A)
- ={xed:xA={0}}.

PROPOSITION 2.1

The seminorm ||-||op is a norm on A, iff lan(A4) = {0}.

Proof. Let [|*[lop be a norm on A, Let ae lan(A4). Then ax=0 (xeA), hence
llallop =sup {|lax|i:|lx| < 1, xeA4} =0, so that a = 0. Hence lan (4) = {0}. Conversely,
assume that lan(4) = {0}. Let [|a+ A1]lop =0. Then ax + ix =0 for all xA. Suppos;
4#0.Then — /™! ax = x (xe 4). Define L,(x) = ex(xe A), wheree = — 4~ *a. Then L, is
an identity operator on A. Then, for xed, L L ,=L,L, ie. xey=L,L,(y)=
L.L.(y)=exy (yeA), ie. (xe—ex)y=0 (yeA). Hence, xe =ex = x. Thus A has an
identity which is a contradiction. Thus 4 = 0. This implies ax =0 for all xe A4, hence
a=0. This completes the proof.

PROPOSITION 2.2

(a) Let || be a uniform norm on A. Then || is regular and |-|op is a uniform norm on A..

(b) Let A be a x-algebra. Let || be a C*-norm on A. Then || is regular and |*|op is
a C*-norm on A,.

Note that if a Banach algebra admits a uniform norm, then it is commutative and
semisimple. In the above, the proof of (a) is similar to that of (b) in [4, Lemma 19, p. 67].

In the following, the proof of (1) implies (2) is along the lines of [ 7, Theorem 1]; whereas
that of the remaining part is simple.

PROPOSITION 2.3

Let (A4, -]) be a Banach algebra. Then the following are equivalent.

(1) -1l is weakly regular (so that lalep <llall <m|alop (acA), for some m > 0).
(2) lla+ 2y <lla+Alll; <22+ m)(expl)a+ A1]|,, (a+ Aled,)
(3) II*llop is @ complete norm on A,

If |||l is regular, thenm = 1 so that | a + il lop< la+ A1, < 6(expl)|a+ Alljop for
alla+ AleA, [7, Theorem 1].

3. Uniqueness of uniform norm and unitification

A Banach algebra (4, |- |) has unique uniform rorm property (UUNP) if A admits
exactly one (not necessarily complete) uniform norm. The uniform algebra C(X) has
_UUNP, whereas the disc algebra does not have. In [2] and [3], Banach algebras with
UUNP have been investigated. Such an 4 is necessarily commutative, semisimple and
the spectral radius r(=r,()) is the unique uniform norm. We denote the Hausdorff
completion of (4, r) by U(A). The spectral radius on U (A)1s the complete uniform norm
on U(A4). Anorm{-|on A4 is functionally continuous (FC) if every multiplicative linear
functional on A is |-|-continuous. A subset F of the Gelfand space of 4 is a set of
uniqueness for A if | x|, = sup {If(x)|: feF} defines a norm on A.
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Theorem 3.1. A Banach algebra (4, 1)) has UUNP iff A, has UUNP.

We shall need the following. The proofs are straightforward. For details we refer
to [3]. |

LemmaA. Let|-| be an FC normon any commutative algebra A. Let B be the completion
of (4,|]). Then the Gelfand space A(A) (resp. Silove boundary 0A) is homeomorphic to
A(B) (resp. 0B).

Lemma B. Let A be a semisimple commutative Banach algebra. Then the following are
equivalent.

(1) A has UUNP.

(2) U(A)has UUNP;and any closed set F in A(U (4)) whichis aset of uniquenessfor A,
is also a set of uniqueness for U(A).

(3) U(A) has UUNP; and for a non-zero closed ideal I of U(A) with I = k(h(1)) (kernel
of hull of I), I N A is non-zero.

Lemma C. Let A be a Banach algebra with UUNP, and I be a closed ideal such that
I = k(h(I)). Then I has UUNP.

Proof of Theorem 3.1. Assume that A has UUNP.

Case 1. Let || have the square property. By Proposition 2.2 (a) and Proposition 2.3,
(A,, || |op) is @ Banachalgebra, || [|op has square property and || | op is equivalent to 1l
Let |-| be any uniform norm on A, then|1-1|sis2 uniform norm on A. Since 4 has
GUNP, 1111 = -] Hence | fop < 11 < I < 6(exp1) - lop 01 A TUS [ and |
are equivalent uniform norms on A,. Since equivalent uniform norms are equal,
I*llop = || on A,. Thus A, has UUNP.

Case 2. In the general case, note that U(A) is an ideal of U(4,) and, by Lemma A, the
Gelfand space A(U(4,)) 1s homeomorphic to the one point compactifications of gach of
A(A4) and A(U(A)). Define K = {xeU(4.): xU(A) = {0}}. We prove that K = {0}. Let
xeK. Then its Gelfand transform X: A(U(4,)—~C is continuous. Since xeK, xy = 0
(yeU(A)). We prove that £ is zero on A(U(A,)). Since A(U(A4)) is dense in A(U(4,),it1s
enough to prove that X is zero on A(U(A)). Suppose there exists peA(U(4)) such that
é(x) # 0. Since ¢ is non-zero, there exists y in U(A) such that ¢(y) is non-zero. This
implies ¢ (xy) # 0, hence xy # 0 whichisa contradiction. Thus K = {0}. By Lemma B,it
is enough to prove that U(4,) has UUNP; and for every non-zero closed ideal I of
U(A,) with I = k(h(I)), A, NI is non-zero. Let I be a non-zero closed ideal of U(4,)such
that I = k(h(I)). WeprovethatI N4, # (0).LetJ=1In U(A). Then, first, we prove that
J =k(h(J))in U(4). Clearly J = k(h(J)). Let xeU(4) such that x¢J. Then x¢I, hence
there exists peh(l) < A(U(4,)) such that ¢(x)# 0. Then Y = v is zero on J and
W (x) 0. Thus x¢k(h(J)), and so J = k(h(J)). From K ={0},1#{0}and IU(4) S J, it
follows that J s {0}. Since A has UUNP and J is a non-zero closed ideal of U(4) such
that J = k(h(J)), AnI = AnJ # {0} by Lemma B. Hence I~ A, # {0}. Finally, we show
that U(4,) has. UUNP. Note that, by Proposition 2.2 (a) and Proposition 2.3, the
operator norm on U(4), is a complete uniform norm;: and is the spectral radius
ruca, itself. Further, U(A4),, i clearly isometrically isomorphic to U(4,) via the map
T:U(4),~ U(4,), T(a+ Al)=a+ e, where ¢ ‘s the identity of U(A,). By Lemma C,



408 SJ Bhattand Hy Dedania

U(4) has UUNP, hence by the isomorphism T and by Case 1, U (AQ has UUNP.
Conversely, if 4, have UUNP, then, 4 being a closed ideal of A, satisfying 4 = k(h(A))
in 4,, A has UUNP by Lemma C. This completes the proof,

b
Following [1], a Banach *-algebra B has unique C*-norm (ie. B has UC*NP) if
B admits exactly one C*-norm (not necessarily complete). In spite of the apparent '
similarity between the square property and the C*-property of norms the above _result
differs from the corresponding situation in B, viz. UC*NP for B need not imply
UC*NP for B, [1, Example 44, P 850]. In fact, by [1, Theorem 4.1, p. 8497, for
anon-unital B with UC* N P, B, has UC*NP iff the enveloping C*-algebra C*(_B) 18
non-unital. Like C*(B) for B, the uniform Banach algebra U (A) is universal fo_r Ainan
appropriate sense. Unlike the case of B, ithappens that 4 is unital iff U/ (A)is unital. This
. ' he corresponding result for B.
A Banach algebra (4, [11) has the spectral extension property (SEP) [9] (1.e.. A s
a permanent Q-algebrq [101), if for every Banach algebra B such that 4 is algebraically

embedded in B, r 4(X) =rg(x) for all x€A; equivalently, every norm [-| on A satisfies E;\
r4(x) < x| for all xe 4 [9, Proposition 1].

COROLLARY 32

Let(4, |- bea semisimple commutative Banach algebra. Then A has SEP iff A, has SEP.

Proof. Let A have SEP. Then, by [2, Proposition 2. 1]and Theorem 3.1, 4, has UUNP.
By [2, Proposition 2.6], it is enough to prove that A, has (P)-property; ie. every
non-zero closed ideal J of A, has an element g + 41 such that ria+Ail)>0, whefe
ri(@+ 1) =inf{|q 4 41 I:1"lis a norm on 4.}, called the permanent radius of + ./11 n
A,[9]- Let I be a non-zero closed idea] of A, Then J = I~ 4 is a non-zero closed ideal

has SEP, by [2, Proposition 2.6], it hgls
(P)-property, hence there exists aeJ such that the permanent radius, say r, (a), of a in
4 is positive. Then clearly r, (a) > 73(a)> 0. Thus A, has (P)-property. Conversely,
assume that 4, has SEP. Let I/ be any norm on 4. Then, since A4 is semisimple,
Proposition 2.1 implies the OPerator norm ||, is a norm on A4,. Since A, has SEP,

rda@)=rq(a)< lalop < |a] (ae 4). Thus r4@)<|alforall ain 4 and for any norm |-| on
A. Hence, 4 has SEP. This completes the proof. '

By [9, Corollary 2], aregular Banach algebra has SEP. In understanding the re_lation
between UUNP and SEP, a weaker notion of regularity has been found useful in [2],
Viz. a semisimple commutative Banach algebra (4, I-1) is weakly regular if for any

, there exists a non-zero element

COROLLARY 33

Let(A, |- beq semisimple commutatipe Banach algebra. Then 4 is weakly regular iff A,
is weakly regular.

Proof. Let A be weakly regular. Then, b
A(4)= 34, the Siloy boundary of 4. B
Ald) =04 < 6A,, A(A4) is dense in A(4)
Hence, again by[2, Corollary 2.4 (Ing,

¥ [2, Corollary 24(I1)], 4 has UUNP and
y Theorem 3.1, 4, has UUNP. Note that
and 84, is closed. These imply 64, = A(4,).
A, is weakly regular. Conversely, assume that A,
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is weakly regular. The proof of Lemma C will work for the following statement; If 4 is
weakly regular and [ is a closed ideal of A such that I = k(h(I)), then I is also weakly
regular. Since A4 is a closed ideal of 4, with k(h(4))=4, A is weakly regular.
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