Uniqueness of the uniform norm and adjoining identity in Banach algebras

S J BHATT and H V DEDANIA*

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India *Department of Mathematics, University of Leeds, Leeds LS2 9JT, UK

MS received 14 October 1994

Abstract. Let A_e be the algebra obtained by adjoining identity to a non-unital Banach algebra $(A, \|\cdot\|)$. Unlike the case for a C^* -norm on a Banach *-algebra, A_e admits exactly one uniform norm (not necessarily complete) if so does A. This is used to show that the spectral extension property carries over from A to A_e . Norms on A_e that extend the given complete norm $\|\cdot\|$ on A are investigated. The operator seminorm $\|\cdot\|_{op}$ on A_e defined by $\|\cdot\|$ is a norm (resp. a complete norm) iff A has trivial left annihilator (resp. $\|\cdot\|_{op}$ restricted to A is equivalent

Keywords. Adjoining identity to a Banach algebra; unique uniform norm property; spectral extension property; regular norm; weakly regular Banach algebra.

1. Introduction

Let $A_e = A + \mathbb{C}1$ be the algebra obtained by adjoining identity to a non-unital Banach algebra $(A, \|\cdot\|)$ [8]. There are two natural problems associated with this elementary unitification construction: (1) which are (all) algebra norms $|\cdot|$ on A_e that are closely related with (e.g. extending) $\|\cdot\|$ on A? (2) Which properties of the Banach algebra $(A, \|\cdot\|)$ are shared by the normed algebra $(A_e, |\cdot|)$? In the present paper, it is shown that A has unique uniform norm (not necessarily complete) (resp. spectral extension property [9]) iff A_e has the same. This is interesting in view of the fact that for a Banach *-algebra $(A, \|\cdot\|)$ with a unique C^* -norm, A_e can admit more than one C^* -norm [1, Example 4.4, p. 850]. This holds in spite of apparent similarity between the defining properties $||x^2|| = ||x||^2$ and $||x^*x|| = ||x||^2$ of uniform norms and C^* -norms respectively. This main result, together with a couple of corollaries, is formulated and proved in § 3. Their proofs require some properties of norms on A that are regular [5]. There are two standard constructs of norms on A_e , viz. the l^1 -norm $\|x + \lambda 1\|_1 = \|x\| + |\lambda|$ and the operator norm $\|x + \lambda 1\|_{\text{op}} = \sup\{\|xy + \lambda y\| : \|y\| \le 1, y \in A\}$. In general, $\|\cdot\|_{\text{op}}$ need neither be a norm nor be complete [6, Example 4.2]. Also, in general, $\|\cdot\|_{op|A} \neq \|\cdot\|$. It is easy to see that if p is any algebra seminorm on A_e such that $p_{|A} = \|\cdot\|$, then $||a + \lambda 1||_{\text{op}} \le p(a + \lambda 1) \le p(1) ||a + \lambda 1||_{1}$. The norm $||\cdot||$ on A is regular (resp. weakly regular) if the restriction of $\|\cdot\|_{op}$ on $A\|\cdot\|_{op|A} = \|\cdot\|$ (resp. $\|\cdot\|_{op|A}$ is equivalent to $\|\cdot\|$). These are essentially non-unital phenomena, for if A is unital (resp. having a bai (e_i)), then any norm $|\cdot|$ on A with $|1| \le 1$ (or $|e_i| \le 1$) is regular [5]. It is shown in § 2 that $||\cdot||_{op}$ is a norm on A_e iff the left annihilator $lan(A) = \{0\}$; and in this case, $\|\cdot\|_{op}$ is complete iff $\|\cdot\|$ is weakly regular iff $\|\cdot\|_1$ is equivalent to $\|\cdot\|_{op}$ on A_e .

Throughout, A is a non-unital algebra. By a norm on A, we mean an algebra norm; i.e. a norm satisfying $||xy|| \le ||x|| ||y||$ for all x, y. A uniform norm on A (resp. a C^* -norm on a *-algebra) is a norm satisfying the square property $||x^2|| = ||x||^2$ (resp. the C*property $||x^*x|| = ||x||^2$ for all x.

2. Weakly regular norms

Let $(A, \|\cdot\|)$ be a normed algebra. The following shows that if $\|\cdot\|_{op}$ is a norm on A_e , then $|\cdot|_{op}$ is also a norm on A_e for all norms $|\cdot|$ on A. The *left annihilator* of A is $lan(A) = \{x \in A : xA = \{0\}\}.$

PROPOSITION 2.1

The seminorm $\|\cdot\|_{op}$ is a norm on A_e iff $lan(A) = \{0\}$.

Proof. Let $\|\cdot\|_{op}$ be a norm on A_e . Let $a \in lan(A)$. Then ax = 0 $(x \in A)$, hence $\|a\|_{op} = \sup\{\|ax\|: \|x\| \le 1, x \in A\} = 0$, so that a = 0. Hence $lan(A) = \{0\}$. Conversely, assume that $lan(A) = \{0\}$. Let $\|a + \lambda 1\|_{op} = 0$. Then $ax + \lambda x = 0$ for all $x \in A$. Suppose $\lambda \ne 0$. Then $-\lambda^{-1}ax = x$ $(x \in A)$. Define $L_e(x) = ex(x \in A)$, where $e = -\lambda^{-1}a$. Then L_e is an identity operator on A. Then, for $x \in A$, $L_x L_e = L_e L_x$, i.e. $xey = L_x L_e(y) = L_e L_x(y) = exy$ $(y \in A)$, i.e. (xe - ex)y = 0 $(y \in A)$. Hence, xe = ex = x. Thus A has an identity which is a contradiction. Thus $\lambda = 0$. This implies ax = 0 for all $x \in A$, hence a = 0. This completes the proof.

PROPOSITION 2.2

(a) Let $|\cdot|$ be a uniform norm on A. Then $|\cdot|$ is regular and $|\cdot|_{op}$ is a uniform norm on A_e . (b) Let A be a *-algebra. Let $|\cdot|$ be a C^* -norm on A. Then $|\cdot|$ is regular and $|\cdot|_{op}$ is a C^* -norm on A_e .

Note that if a Banach algebra admits a uniform norm, then it is commutative and semisimple. In the above, the proof of (a) is similar to that of (b) in [4, Lemma 19, p. 67]. In the following, the proof of (1) implies (2) is along the lines of [7, Theorem 1]; whereas that of the remaining part is simple.

PROPOSITION 2.3

Let $(A, \|\cdot\|)$ be a Banach algebra. Then the following are equivalent.

- (1) $\|\cdot\|$ is weakly regular (so that $\|a\|_{op} \le \|a\| \le m \|a\|_{op} (a \in A)$, for some m > 0).
- (2) $||a + \lambda 1||_{\text{op}} \le ||a + \lambda 1||_{1} \le 2(2 + m)(\exp 1)||a + \lambda 1||_{\text{op}} (a + \lambda 1 \in A_e)$
- (3) $\|\cdot\|_{\text{op}}$ is a complete norm on A_e .

If $\|\cdot\|$ is regular, then m=1 so that $\|a+\lambda 1\|_{\operatorname{op}} \leq \|a+\lambda 1\|_1 \leq 6(\exp 1)\|a+\lambda 1\|_{\operatorname{op}}$ for all $a+\lambda 1 \in A_e$ [7, Theorem 1].

3. Uniqueness of uniform norm and unitification

A Banach algebra $(A, \|\cdot\|)$ has unique uniform norm property (UUNP) if A admits exactly one (not necessarily complete) uniform norm. The uniform algebra C(X) has UUNP, whereas the disc algebra does not have. In [2] and [3], Banach algebras with UUNP have been investigated. Such an A is necessarily commutative, semisimple and the spectral radius $r(=r_A(\cdot))$ is the unique uniform norm. We denote the Hausdorff completion of (A, r) by U(A). The spectral radius on U(A) is the complete uniform norm on U(A). A norm $|\cdot|$ on A is functionally continuous (FC) if every multiplicative linear functional on A is $|\cdot|$ -continuous. A subset F of the Gelfand space of A is a set of uniqueness for A if $|x|_F = \sup\{|f(x)|: f \in F\}$ defines a norm on A.

Theorem 3.1. A Banach algebra $(A, \|\cdot\|)$ has UUNP iff A_e has UUNP.

We shall need the following. The proofs are straightforward. For details we refer to [3].

Lemma A. Let $|\cdot|$ be an FC norm on any commutative algebra A. Let B be the completion of $(A, |\cdot|)$. Then the Gelfand space $\Delta(A)$ (resp. Silove boundary ∂A) is homeomorphic to $\Delta(B)$ (resp. ∂B).

Lemma B. Let A be a semisimple commutative Banach algebra. Then the following are equivalent.

(1) A has UUNP.

(2) U(A) has UUNP; and any closed set F in $\Delta(U(A))$ which is a set of uniqueness for A, is also a set of uniqueness for U(A).

(3) U(A) has UUNP; and for a non-zero closed ideal I of U(A) with I = k(h(I)) (kernel of hull of I), $I \cap A$ is non-zero.

Lemma C. Let A be a Banach algebra with UUNP, and I be a closed ideal such that I = k(h(I)). Then I has UUNP.

Proof of Theorem 3.1. Assume that A has UUNP.

Case 1. Let $\|\cdot\|$ have the square property. By Proposition 2.2 (a) and Proposition 2.3, $(A_e, \|\cdot\|_{op})$ is a Banach algebra, $\|\cdot\|_{op}$ has square property and $\|\cdot\|_{op}$ is equivalent to $\|\cdot\|_1$. Let $|\cdot|$ be any uniform norm on A_e , then $|1\cdot 1|_A$ is a uniform norm on A. Since A has $UUNP, |1\cdot 1|_A = \|\cdot\|. \text{ Hence } \|\cdot\|_{op} \leq |\cdot| \leq \|\cdot\|_1 \leq 6(\exp 1) \|\cdot\|_{op} \text{ on } A_e. \text{ Thus } \|\cdot\|_{op} \text{ and } |\cdot|$ are equivalent uniform norms on A_e . Since equivalent uniform norms are equal, $\|\cdot\|_{\text{op}} = |\cdot|$ on A_e . Thus A_e has UUNP.

Case 2. In the general case, note that U(A) is an ideal of $U(A_e)$ and, by Lemma A, the Gelfand space $\Delta(U(A_e))$ is homeomorphic to the one point compactifications of each of $\Delta(A)$ and $\Delta(U(A))$. Define $K = \{x \in U(A_e): xU(A) = \{0\}\}$. We prove that $K = \{0\}$. Let $x \in K$. Then its Gelfand transform $\hat{x}: \Delta(U(A_e)) \to \mathbb{C}$ is continuous. Since $x \in K$, xy = 0 $(y \in U(A))$. We prove that \hat{x} is zero on $\Delta(U(A_e))$. Since $\Delta(U(A))$ is dense in $\Delta(U(A_e))$, it is enough to prove that \hat{x} is zero on $\Delta(U(A))$. Suppose there exists $\phi \in \Delta(U(A))$ such that $\phi(x) \neq 0$. Since ϕ is non-zero, there exists y in U(A) such that $\phi(y)$ is non-zero. This implies $\phi(xy) \neq 0$, hence $xy \neq 0$ which is a contradiction. Thus $K = \{0\}$. By Lemma B, it is enough to prove that $U(A_e)$ has UUNP; and for every non-zero closed ideal I of $U(A_e)$ with $I=k(h(I)), A_e\cap I$ is non-zero. Let I be a non-zero closed ideal of $U(A_e)$ such that I = k(h(I)). We prove that $I \cap A_e \neq \{0\}$. Let $J = I \cap U(A)$. Then, first, we prove that J = k(h(J)) in U(A). Clearly $J \subseteq k(h(J))$. Let $x \in U(A)$ such that $x \notin J$. Then $x \notin I$, hence there exists $\phi \in h(I) \subseteq \Delta(U(A_e))$ such that $\phi(x) \neq 0$. Then $\psi = \phi|_{U(A)}$ is zero on J and $\psi(x) \neq 0$. Thus $x \notin k(h(J))$, and so J = k(h(J)). From $K = \{0\}$, $I \neq \{0\}$ and $IU(A) \subseteq J$, it follows that $J \neq \{0\}$. Since A has UUNP and J is a non-zero closed ideal of U(A) such that $J=k(h(J)), A\cap I=A\cap J\neq\{0\}$ by Lemma B. Hence $I\cap A_e\neq\{0\}$. Finally, we show that $U(A_e)$ has UUNP. Note that, by Proposition 2.2 (a) and Proposition 2.3, the operator norm on $U(A)_e$ is a complete uniform norm; and is the spectral radius $r_{U(A)_e}$ itself. Further, $U(A)_e$, is clearly isometrically isomorphic to $U(A_e)$ via the map $T: U(A)_e \to U(A_e), \ T(a+\lambda 1) = a + \lambda e$, where e is the identity of $U(A_e)$. By Lemma C, U(A) has UUNP, hence by the isomorphism T and by Case 1, $U(A_e)$ has UUNP. Conversely, if A_e have UUNP, then, A being a closed ideal of A_e satisfying A = k(h(A)) in A_e , A has UUNP by Lemma C. This completes the proof.

Following [1], a Banach *-algebra B has unique C^* -norm (i.e. B has UC^*NP) if B admits exactly one C^* -norm (not necessarily complete). In spite of the apparent similarity between the square property and the C^* -property of norms the above result differs from the corresponding situation in B, viz. UC^*NP for B need not imply UC^*NP for B_e [1, Example 4.4, p. 850]. In fact, by [1, Theorem 4.1, p. 849], for a non-unital B with UC^*NP , B_e has UC^*NP iff the enveloping C^* -algebra $C^*(B)$ is non-unital. Like $C^*(B)$ for B, the uniform Banach algebra U(A) is universal for A in an appropriate sense. Unlike the case of B, it happens that A is unital iff U(A) is unital. This explains why the above result for A differs from the corresponding result for B.

A Banach algebra $(A, \|\cdot\|)$ has the spectral extension property (SEP) [9] (i.e. A is a permanent Q-algebra [10]), if for every Banach algebra B such that A is algebraically embedded in B, $r_A(x) = r_B(x)$ for all $x \in A$; equivalently, every norm $|\cdot|$ on A satisfies $r_A(x) \le |x|$ for all $x \in A$ [9, Proposition 1].

COROLLARY 3.2

Let $(A, \|\cdot\|)$ be a semisimple commutative Banach algebra. Then A has SEP iff A_e has SEP.

Proof. Let A have SEP. Then, by [2, Proposition 2.1] and Theorem 3.1, A_e has UUNP. By [2, Proposition 2.6], it is enough to prove that A_e has (P)-property; i.e. every non-zero closed ideal I of A_e has an element $a + \lambda 1$ such that $r_1(a + \lambda 1) > 0$, where $r_1(a + \lambda 1) = \inf\{|a + \lambda 1|: |\cdot| \text{ is a norm on } A_e\}$, called the permanent radius of $a + \lambda 1$ in of A by [8, Theorem 1.1.6, p. 11]. Since A has SEP, by [2, Proposition 2.6], it has (P)-property, hence there exists $a \in J$ such that the permanent radius, say $r_2(a)$, of a in assume that A_e has SEP. Let $|\cdot|$ be any norm on A. Then, since A is semisimple, Proposition 2.1 implies the operator norm $|\cdot|_{op}$ is a norm on A_e . Since A_e has SEP, A_e has SEP. This completes the proof.

By [9, Corollary 2], a regular Banach algebra has SEP. In understanding the relation between UUNP and SEP, a weaker notion of regularity has been found useful in [2], viz. a semisimple commutative Banach algebra $(A, \|\cdot\|)$ is weakly regular if for any proper closed subset F of the Gelfand space $\Delta(A)$ of A, there exists a non-zero element a in A such that $\hat{a}|F=0$.

COROLLARY 3.3

Let $(A,\|\cdot\|)$ be a semisimple commutative Banach algebra. Then A is weakly regular iff A_e is weakly regular.

Proof. Let A be weakly regular. Then, by [2, Corollary 2.4(II)], A has UUNP and $\Delta(A) = \partial A$, the Silov boundary of A. By Theorem 3.1, A_e has UUNP. Note that $\Delta(A) = \partial A \subseteq \partial A_e$, $\Delta(A)$ is dense in $\Delta(A_e)$ and ∂A_e is closed. These imply $\partial A_e = \Delta(A_e)$. Hence, again by [2, Corollary 2.4(II)], A_e is weakly regular. Conversely, assume that A_e

is weakly regular. The proof of Lemma C will work for the following statement; If A is weakly regular and I is a closed ideal of A such that I = k(h(I)), then I is also weakly regular. Since A is a closed ideal of A_e with k(h(A)) = A, A is weakly regular.

Acknowledgement

One of the authors (HVD) is thankful to M H Vasavada for encouragement and to the National Board for Higher Mathematics, Government of India, for a research fellowship. The authors are also thankful to A K Gaur for making available reprints of his papers.

References

- [1] Barnes B A, The properties *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. Am. Math. Soc. 279 (1983) 841-859
- [2] Bhatt S J and Dedania H V, Banach algebras with unique uniform norm, Proc. Am. Math. Soc. (to
- [3] Bhatt S J and Dedania H V, Banach algebras with unique uniform norm II: permanence properties and tensor products, (communicated)
- [4] Bonsall F F and Duncan J, Complete Normed Algebras, (Berlin, Heidelberg, New York: Springer Verlag) (1973)
- [5] Gaur A K and Husain T, Relative numerical ranges, Math. Jpn. 36 (1991) 127-135
- [6] Gaur A K and Kovarik Z V, Norms, states and numerical ranges on direct sums, Analysis 11 (1991)
- [7] Gaur A K and Kovarik Z V, Norms on unitizations of Banach algebras, Proc. Am. Math. Soc. 117 (1993)
- [8] Larsen R, Banach Algebras, (New York: Marcel Dekker) (1973)
- [9] Meyer M J, The spectral extension property and extension of multiplicative linear functionals, Proc. Am. Math. Soc. 112 (1991) 855-861
- [10] Tomiuk B J and Yood B, Incomplete normed algebra norms on Banach algebras, Stud. Math. 95 (1989) 119-132