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ADMISSIBILITY OF WEIGHTS
ON NON-NORMED #ALGEBRAS

S. J. BHATT, A. INOUE, AND H. OGI

ABSTRACT. The notion of weights on (topological) x-algebras is defined and
studied. The primary purpose is to define the notions of admissibility and
approximate admissibility of weights, and to investigate when a weight is ad-
missible or approximately admissible. The results obtained are applied to
vector weights and tracial weight on unbounded operator algebras, as well as
to weights on smooth subalgebras of a C*-algebra.

1. INTRODUCTION

Non-commutative integration deals with positive linear functionals and weights
on a non-commutative x-algebra A as well as the #-representations of A4 induced
by them. When A is a von Neumann algebra or a C*-algebra, it has become an
essential part of the theory. In fact, much of the theory of these algebras can be
regarded as a non-commutative analogue of integration theory, the role of finite
(resp. infinite) measure being played by a positive linear functional (resp. weight).
Weights have also appeared naturally in unbounded operator algebras in the context
of unbounded Tomita-Takesaki theory [16], [17], as well as in quantum physics [3].
In the framework of unbounded representation theory [25], this leads to weights on
A. Though positive linear functionals and the GNS representations of A induced
by them have been greatly analyzed, no such attempt seems to have been made
for theory of weights. The purpose of the present paper is to initiate the study of
weights on abstract %-algebras. The paper is roughly devided into two parts. Part
I constitutes Sections 2 - 5, in which admissibility and approximate (and strict in-)
admissibility (a phenomena not found in C*-algebras) of weights are investigated.
Section 6 constitutes Part II, in which the abstract results of Part I are applied to
a number of concrete examples.

Let P(A) denote the positive cone of A. A weight on A is a map ¢ : P(A) —
R4 U {oo} such that (i) ¢(x +y) = p(z) + ¢(y), and (ii) ¢(Ax) = Ap(z) for
all 2,y in P(A) and all A > 0. Unlike C*-algebras, MY, = {x € A;p(a*z) < oo}
need not be a left ideal of A. However, N, = {z € A: ¢p(z*a*az) < 00,Va € A}
is a left ideal, and QOI_p(m‘P): 1 is a quasi-weight in the sense that v is defined
on the positive cone P(M,) of the left ideal M, such that ¢ : P(M,) — R4
satisfies (i) and (ii). The construction of the GNS-representation m, of A using
a quasi-weight ¢ on P(M,) summarized in Section 2. In general, 7, maps A
into unbounded operators in a Hilbert space. We call ¢ admissible if 7, is a
bounded operator representation. Such quasi-weights are characterized in Section
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3, and sufficient conditions for admissibility are investigated. Next we consider the
question: When is every (quasi-) weight on A admissible? In fact, the notion of
quasi-weights introduces a kind of boundedness structure in 4. This is investigated
and exhibited in several class of x-algebras like Banach *-algebras, the BG*-algebras
of Palmer [19], locally convex *-algebras, in particular, generalized B*-algebras [2],
[12], and pro-C*-algebras [21]. It is shown in Theorem 3.12 that if A is a pseudo-
complete locally convex *-algebra in which A = A (the Allan bounded elements of
A [1]), then every quasi-weight on .4 is admissible. In Section 4, conditions ensuring
A = Ay are investigated. A (quasi-) weight ¢ on a x-algebra A is approximately
admissible if ¢ = 1iin vo for a net {p,} of admissible (quasi-) weights. Such

(quasi-) weights are investigated in Section 5. It is shown in Theorem 5.6 that if
@ is a regular quasi-weight such that m, is self-adjoint, then ¢ is approximately
admissible iff m, is a direct sum of bounded operator representations. In Section
6, we discuss the following, exhibiting weights in a number of interesting non-C*-
algebra situations.

(1) Weight analogue of the Bochner-Weil-Raikov theorem: An integral repre-
sentation of quasi-weights on a commutative Banach x-algebra is obtained. This
provides weight analogue of the Bochner-Weil-Raikov Theorem, and is used to de-
fine the Fourier transform of unbounded measures on a locally compact abelian
group.

(2) Integration algebras, measures and tracial weights: A x-algebra A4 with a
faithful (quasi-) weight ¢ constitutes what we call an integration algebra. In the
framework of classical measure theory, admissibility of ¢ corresponds to finiteness
of measure, whereas approximate admissibility corresponds roughly to o-finiteness.
Let M be an O*-algebra (unbounded operator algebra) defined on a dense sub-
space D of a Hilbert space H. For Q a positive operator, p(XTX) = tr(XTX),
0a(XTX) = tr(XTX0?%) (X € M, X" = X*[p) define quasi-weights in M. Con-
ditions on M are investigated under which ¢ and g are admissible (resp. approx-
imately admissible, strictly inadmissible). Such quasi-weights ¢q appear in several
cases of interest in quantum theory.

(3) Vector (quasi-) weights defined by *-representations: Let (w, D(w), H) be
a *-representation of a x-algebra A into linear operators all defined on a dense
invariant subspace D(7) of a Hilbert space H. A vector £ € H \ D(r*) defines a
vector quasi-weight f¢, which is not necessarily a positive functional, as follows.
Take

Ny ={xc A:{€D(r(x")"), n(x")"¢ € D(m)}.
fe(aa) = [ln(@")"¢|, @ € Ny,

If A is the *-algebra of polynomially dominated measurable functions on R, and if
7 is the *-representation defined by the spectral theorem of a positive self-adjoint
operator h, then f¢ is approximately admissible, and it is admissible iff & is bounded.
On the other hand, for the Schrédinger representation of the CCR algebra, f¢ is
far away from admissibility.

(4) Point evalutions: Let C(X) be the algebra of all continuous complex func-
tions on X, and let Cp(X) = {f € C(X) : f is bounded}. Let vX and X be the
Hewitt real compactification and the Stone-Cech compactification of X, respec-
tively. Every x € X \ vX defines an admissible weight in a #-subalgebra A of
C(X) containing Cp(X).
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(5) Weights on smooth subalgebras of a C*-algebra: Let B be a smooth *-
subalgebra of a C*-algebra A. It is shown that every quasi-weight on B is admissible,
and under an additional assumption, it extends to a quasi-weight on A.

(6) Quasi-weights in non-commutative geometry: In the framework of the Connes
theory of non-commutative geometry, let Q(A) be the *-algebra of non-commutative
differential forms over a x-algebra A. Let (m,H,D) be a K-cycle, and let Tr,, de-
note the Dixmier trace on B(H). Then 7,(z*z) = Tr,(n(zx)*m(z)) (x € Q(A))
defines an admissible quasi-weight on ©(A). The d-dimensional volume integral
a — fm(a)|D|=¢ gives an admissible quasi-weight on A, which is finite iff the
K-cycle is d*-summable. The map t(z*z) = Lim._g tr(r(z*2)e~*2") (limit in
suitable Ceséro mean) gives an admisssible quasi-weight in Q(.A), and is finite iff
the K-cycle is #-summable. This provides a quasi-weight approach to these quan-
tized integrals. In Connes’ original approach, only finite cases (positive functionals)
are considered.

2. WEIGHTS AND QUASI-WEIGHTS ON A #*-ALGEBRA

Let A be a x-algebra, i.e. a linear associative involutive algebra. For a subspace
Nof A let PIN) = {>_ zjan: o €N (k=1,2,---,n),n € N}, and call it
the positive cone generated by N.

Definition 2.1. (a) A map ¢ : P(A) — Ry U{co} is said to be a weight on P(A)
in A if
() p(z+y) =) +e(y), zyecP(A),
(il) e(Az) = Ap(z), =€ P(A), A>0.
(b) Let 91 be a left ideal of A. A map ¢ : P(M) — R, is called a quasi-weight
on P(M) in A if it satisfies the above (i) and (ii) for P(91). In this case, we denote
N by N,

Lemma 2.2. Let ¢ be a weight on P(A) in A. Let N, = {z € A : p(z*a*ax)
<oo forallae A}, M), ={z € A: p(z*z) < co}. Then the following statements
hold:

(1) ‘ﬁg is a linear subspace of A, and it need not be a left ideal.
(ii) My is a left ideal of A, and @[pm,) is a quasi-weight (denoted by p, and
called a quasi-weight generated by ).
(i) If A has identity, then M, C N
(iv) If Ais a C*-algebra, then MY C N,.

We here state the basic theory of (unbounded) *-representations of A. Let D
be a dense subspace in a Hilbert space H and let £7(D) denote the set of all
linear operators X in H with the domain D for which XD C D, D(X*) D D
and X*D C D. Then LT(D) is a x-algebra under the usual operations and the
involution X — XT = X*[p. A x-subalgebra of the x-algebra £7(D) is said to
be an O*-algebra on D in H. A x-representation w of A on a Hilbert space H
with a domain D is a *homomorphism of A into £T(D), and then we replace
D and H by D(n) and H,, respectively. Let 7w be a *-representation of A. If
D(r) is complete with the graph topology ¢, defined by the family of seminorms
- Mr@ = -1+ l|w(x) - || : = € A}, then 7 is said to be closed. It is well known

that 7 is closed if and only if D(7) = (). 4 D(7(x)). The closure ™ of 7 is defined
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D(7) = ﬂ D(n(z)) and 7(z) = n(z)¢ for =z € A, € € D(T).

z€A

Then 7 is the smallest closed extension of w. We put

D*(w) = ﬂ D(r(x)*) and 7*(2)¢ = n(z*)"¢ for z € A, € € D*(n).
z€A

Then 7* is a representation of A4, but it is not necessarily a x-representation. If
7 = 7, then 7 is said to be self-adjoint. A weak commutant w(A),, of w is defined
by

m(A), ={C € B(Hx) : (Cr(x)§,n) = (C& m(a")n) Vo € A, V¢, n € D(m)},

where B(H) is the set of all bounded linear operators on H,, and it is a weakly
closed x-invariant subspace of B(H,), but it is not necessarily an algebra. It is
known that the self-adjointness of 7 implies 7(A),, D(7) C D(n) and w(A),, D(r) C
D(x) if and only if 7(A)/, is a von Neumann algebra and 7(z) is affiliated with the
von Neumann algebra (7(A), ) for each x € A. For more details we refer to [23],
[25].

Let ¢ be a quasi-weight on P(M,,) in A. Let D(¢p) be the subspace of A generated
by {z*z : © € M,}. Since N, is a left ideal, we have D(p) = linear span of
{y*z : 2,y € N,}. Thus each z = >, apyizr (ar € C, zx,yr € Ny) in D(p)
is represented as z = >, B;z7z; (B; € C,2; € N,). Hence a linear functional
on D(p) into C is defined by ¢(z) = 3, 6j§0(2;2j). Then ¢ satisfies the Cauchy—
Schwarz inequality : |o(y*z)* < o(y*y)p(x*z) (z,y € Ny,). Now N, = {z € N,
p(z*z) = 0} is a left ideal of M. Let Ay (z) = x—l—Ng,, x € N,. Then X, = ‘ﬂg,/N
is a pre-Hilbert space with inner product (A (), Ao (v)) = cp( x). Let H, be the
Hilbert space obtained by the completion of Xo. Let wg be the representation of
A on H, with domain D(n0) = X, as 7 (x )/\w(y) Ao (zy). Let (mp, D(my), Hy)
be the closure of 71' [25]. Note that p(z*zy) = (Tu(@)Ap(Y), Ap(2)) (z € A, y
and z in N,), and 1f A has identity, then H, = [71,(A)A,(M,)]~ (norm closure),
and D(m,) = [7r<p(A)/\<p(‘.YLp)]t“w(A) (closure in the graph topology tr_(4)). The
*-representation m, is called the GNS-representation for ¢. On the other hand, in
Example 6.3, we consider the quasi-weights defined by given *-representations of
A.

We shall need the concept of regular quasi-weights introduced in [18]. Let { f,} be
a net of positive linear functionals on A. Define sup,, fo : 2 € P(A) — sup,, fa(z) €
[0, 00]. Let Maup,, . = {2 € A:sup, fo(z*z) < 0o} a subspace of A. Tt is shown in
[18] that, for a subspace N of Neup. 1., SUP, fa(r +y) = sup, fo(z) + sup, fa(y)
for all z,y in P(N) iff {f,} has the net property for P(N) in the sense that, given

a finite set {1,792, -+, 2} in N, there exists a subsequence {a,} of {a} such
that lim f,, (zj2%) = sup, fo(zizk), k=1,2,---,m. In this case, the restriction
n—oo

of the map sup, fa to P(N) is denoted by Sup,falpnv). If {fa} has the net
property for P(° sup, f.)» then the restriction of sup,, fa to P(Msup, 1, ) is denoted
by Sup,, fa-

Definition 2.3. Let ¢ and % be quasi-weights in A. We write ¢ < ¢ if M, C Ny
and ¢ (z*z) < p(z*x) for all x € N,. We write ¢ < ¢ if N, =Ny, and P(z*z) <



ADMISSIBILITY OF WEIGHTS ON NON-NORMED #-ALGEBRAS 4633

p(z*z) for all z € M. A positive linear functional f on A is said to be p-majorized
if f<yand |f(z)]* < p(z*z) for all z € N,.

We have the following lemma.
Lemma 2.4. Let ¢ and v be quasi-weights in A. Suppose ¥ < . Then there
exists a continuous linear map Koy : Hy — Hy defined by Ky yAo(z) = Ap(x)
(x € My). Further, K, satisfies the following :

(i) K;7wKsa7w € My (A,

(ii) YP(z*z) = <K;)¢K¢,¢)\¢(x),)\¢(a:)>, for each x € N,.
Definition 2.5. A quasi-weight ¢ on P(A) is called regular if ¢ = sup,, fa[pn,)
for some net {f,} of y-majorized positive linear functionals on A. A weight ¢ is

regular if ¢ = sup,, fo for some net {f,} of ¢p-majorized positive linear functionals

on A.
The proof of the following lemma is similar to the proof of [18, Theorem 3.5].

Lemma 2.6. Let ¢ be a regular quasi-weight in A. Then there exist a net {Cg}
in m,(A)y, 0< Cg <1, and a net {{g} in D(m,*) such that
(1) CoAp(x) = my*(x)€p, for each x € N,
(ii) Cg — I strongly.
We need the following lemma in Section 5.

Lemma 2.7. Let ¢ be a regular quasi-weight in A such that w,(A),, is a von

Neumann algebra. For each C € m,(A),,, C >0, we put
pola*z) = (Chp(@), Ao (@), 7 € N,
Then pc is a quasi-weight on P(A).

Proof. By Lemma 2.6, there exist a net {C3} in 7, (A),, and a net {{g} in D(m,*)
satisfying the conditions in Lemma 2.6. For = € 91, we have

pc(r*T)

Il
Q
>~
A}
—
K
~
>
A}
—
&
=

where 7 is the induced extension of 7, [25, Section 8.5]. This implies that p¢ is
a quasi-weight on P(A). O

3. BOUNDEDNESS AND ADMISSIBILITY

Let ¢ be a quasi-weight on P(M,) in a x-algebra A. We define the ¢-bounded
part AZ, of A by

A?p = {a € A: 3k, > 0 such that p(z*a"azx) < k, p(z*z), Yo e N,}.
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For a € Al; we put

o(z*a*az)=

p(z*)

S
2

pg,(a,):sup{ cx €Ny, @(x*x);éO}

We have the following:
Lemma 3.1. (1) AL = {a € A: 7 (a) € B(H,)}, and A%, is a *-subalgebra of A.

(2) pp(a) =||my(a)l], a € AZ,, and py is a C*-seminorm on AZ,.

Definition 3.2. A quasi-weight ¢ on P(M,) in a x-algebra A is admissible if
A=A
©

Let ¢ be a weight on P(A) in a *-algebra A. We put
bs __ . * ok *
AJ ={a € A: 3k, > 0 such that p(z"a"az) < k, p(z*x), Vo € A}.

Then Al:f is a subalgebra of A contained in Al;q.
We do not know whether Al:f is x-invariant or not.

Definition 3.3. A weight ¢ on P(A) is said to be admissible if the quasi-weight
g = Plpm,) defined by ¢ is admissible, i.e. A = Aqu. Further, ¢ is said to be

strongly admissible if A = Agf.

Lemma 3.4. Let ¢ be a weight on P(A). Then the following are equivalent.

(i) ¢ is strongly admissible.
(ii) ¢ is admissilbe and NI, C N,.

Proposition 3.5. Let ¢ be a quasi-weight on P(Ny,) in a *-algebra A.
(1) The following are equivalent.

(i) ¢ is admissible.
(ii) There exist a submultiplicative seminorm p on A and a scalar v > 0 such
that |p(z*az)| < ypla)p(x*z) for each z €N, and a € A.

(2) ¢ is admissible if there exist a submultiplicative seminorm p on A and a
scalar v > 0 such that |p(z*az)| < yp(x*ax) for each a € A and x € N,,.

We do not know whether the converse of (2) holds or not. For the proof of (2),
we shall use the following [7, Proposition 2.8]:

Lemma 3.6. Let q be any submultiplicative seminorm on an algebra A. Then
1 1 1

lim g(z™)™ exists, and lim g(z")™ = inf g(z™)™ .

Proof of Proposition 3.5. (1) For a € A, © € N, we have ax € N, and z*ax €

D(p). Thus statement (ii) makes sense. Obviously (ii) implies (i). Suppose (i)

holds; then by the Cauchy-Schwartz inequality for ¢ in D(¢) we have

o(a*az)|* < p((az)*az)p(z*z) < py(a)®p(z*x)? (z € Ny, a € A),
which implies (ii).

(2) Define ¢q(z) = max(p(x),p(z*)), x € A. Then ¢ is a *-invariant submulti-
plicative seminorm on A , and |p(z*ax)| < yg(z*az) holds for all x € N, a € A.
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Then we have
p(z*a*ax) = p(z*(a*ax)

IA
>
Ay

R

e

8
e

= (Ag(a*ax
= p(z*(a*a
By induction, for any n € N we have
< p(a(aa)” w)p(at)
< yg(at(ata)* " )p(ax)
< y9((@a)” gla)plaa)® 1.

n+1 2n+1_1

p(z*(a*a)z)
gntl_q

Therefore we have

platatax) < 77 g((a’a)* ) T gla) P ip(ata)! T

Letting n — oo, we get p(z*a*ax) < re(a*a)p(z*z) (x € Ny, a € A), where
rq(a*a) = lim q((a*a)”)% < 00, which implies that ¢ is admissible. O

Next we consider when every quasi-weight on a *x-algebra A is admissible. The
notion of quasi-weights imposes a certain boundedness structure on A. Let W, (A)
denote the set of all quasi-weights on A. An element a € A is said to be quasi-weight
bounded if for each ¢ € W,(A), there is a scalar kq,, > 0 such that ¢(z*a*az) <
ka,pp(x*x) for all x € N,. Further, a is uniformly quasi-weight bounded if k, =
sup{ka., : ¢ € Wy(A)} < oo. Let A® (resp. A“Y) denote the set of all quasi-weight
bounded (resp. uniformly quasi-weight bounded) elements of A.

Proposition 3.7. (1) A® = m{Ag s € Wy(A)}, and it is a x-subalgebra of A
containing A"’ as a *-subalgebra.

(2) Let T denote the (not necessarily Hausdorff) topology on A® defined by the C*-
seminorms {py : ¢ € Wy(A)}. For a € A, let |alo = sup{py(a) : ¢ € W,(A)}.
Then | - | is a C*-seminorm on A", and (A",| - |oo) — (A®, T) is continuous.

(3) The following are equivalent.

(@) | - |oo i @ norm on AYP.
(b) 7 is Hausdorff on A°.
(c) There exists {¢x : X € A} C Wy (A) which is separating in the sense that
for any a € A, px(z*a*ax) =0 (Vo € N, , VA € A) implies a = 0.
(4) Every quasi-weight in A is admissible iff A = A®.

We omit the easy proof. In the following, we illustrate the above structures, and
show that the notion of Allan boundedness [1] is included in it.

Proposition 3.8. Let (A, || - ||) be a Banach x-algebra. Then each quasi-weight in
A is admissible, A= A", and | - | = poo(+) (the Gelfand-Naimark pseudonorm
on A). Further, if A is a C*-algebra, then || - || =| - |co-

Proof. For a quasi-weight ¢ on P(M,) in A, the s-representation m, : A —
L1(D(m,)) can be extended to the unitization A; of A. Hence we assume that
A has identity. Then for any £ € D(m,), the positive linear functional we(a) =
(mp(a)€, &) (a € A) is continuous [7, Corollary 37.9], and |we(a)| < ||lwe|| |a|| =
we(1)lal, Va € A. Hence ||m,(a)é]|] < |[all [[€]] (a € A& € D(my)). Thus ¢
is admissible, and py(a) < ||al|. Since the Gelfand-Naimark pseudonorm is the
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greatest C*-seminorm on A, we have p,(a) < pso(a) (a € A). Thus A = A and
|a]so < poo(a). On the other hand, since every positive linear functional f on A
defines a finite weight ¢ = f[p(4), it follows from [7, Corollary 39.12] that

Poc(a)? = sup {mp{% sz e A, f(z¥z) # 0}}
< sup{py(a)® : ¢ € Wy(A)}

— lal%. O

Following Palmer, a x-algebra A is a BG*-algebra if every x-representation
(m, D(n), H) of A necessarily maps A into bounded operators [5]. Then o = 3% 7
is also a bounded operator representation, and ¢ (a) = ||o(a)|| (a € A) defines the
greatest C*-seminorm on A. A U*-algebra is a x-algebra A which is a linear span
of its quasi-unitary elements. A Banach x-algebra is a U*-algebra, and a U*-algebra
is a BG*-algebra. The following proposition can be proved in the same way as the
previous one.

Proposition 3.9. Let A be a BG*-algebra. Then A = A" and | - |oo = Poo( ).
In particular, every quasi-weight in A is admissible.

Now let A be a locally convex #-algebra. An element a € A is called (Allan)
bounded [1] if there exists a A > 0 such that {(A\~!a)" : n € N} is bounded. Let
Ag be the bounded part of A, consisting of all Allan bounded elements of A. We
denote by A[A%] the x-subalgebra of A generated by (Ag), = {h € A: h = h*}.
Since Ag is not even a subspace in general, A[A}] ¢ Ao. If Ag is a *-sublagebra
of A (in particular, if A is commutative), then Ay = A[A}]. By B we denote
the collection of all subsets B of A such that B is bounded, closed and absolutely
convex, and B2 C B. For each B € B we put

AB) ={)\x: X e C,z € B},
[lz|lg = inf{A > 0: 2z € AB}, x € A(B).

Then A(B) is a normed algebra with the norm || - ||g. A locally convex algebra A
is said to be pseudo-complete if (A(B),|| - ||B) is complete for every B € B. If A
is sequentially complete, then it is pseudo-complete, but the converse doesn’t hold
in general [1, Example 1]. The radius of boundedness 5(x) of x € A is defined [1]
by

B(x) =inf{\A > 0: {(\"'z)" : n € N} is bounded},
where inf @ = oo.

Lemma 3.10. Let A be a pseudo-complete locally convex x-algebra. Then A[AR] C
A" and for all a € (Ao)n, | a|ee < B(a) (the radius of boundedness of a). Further,
if p is a weight on P(A), then A[Aj] C Al n (A%)*.

Proof. We first show the following

Statement. Let ¢ > 0. Let a = a*. Then there exists b=0b* in A such that
z*a*z + (B(a)? + &) (x — bx)*(x — bx) = (B(a)® + &)™

for all x € A.
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This is proved by a square root lemma argument. Let xg = Wu? Then

B(zg) < 1. Hence by [1, Corollary 2.17], there exists an element B in B such that
i L

xo € A(B) and ||zo||g < 1. The scalar series f(z) = —Z < 2 ) (—2)™ converges

n
n=1

for all z, | 2| < 1, and 2f(2) — f(2)? = 2. Since (A(B), || - ||s) is a Banach algebra,

1
this implies that Z ( % )(—;1;0)" converges in || - || to an element b € A(B) C Ap
n=1

such that 2b — bQ = Ty = W
r*a’z = (B(a)? + €)(22*bx — x*b?z). This immediately gives
z*a’x + (B(a)? +¢)(x — bx)* (x — bx) = (B(a)* + &)z*x.
This implies that ¢(z*a?z) < (B(a)? + €)p(z*z), for all ¢ € W,(A). Letting
e — 0, we get p(z%a’r) < B(a)?¢(x*r); hence pg,( a)? = py(a?) < B(a)?. Thus,

a € A“b with |a|e < B(a). It follows that A[A}] € A“’. The assertion about
weight can be proved similarly. O

a?. Since zo = xj, we have b = b*. Thus,

Lemma 3.11. Let ¢ be a quasi-weight on P(MN,) in a locally convex *-algebra A.
Assume that ¢ is continuous on D(p). Then A[AG] C AL

Proof. For each « € 91, we define a continuous positive linear functional ¢, on A
by ¢.(a) = p(z*ax), a € A. By arguments as in Proposition 3.5 (2) we have

e (W)*" < plaa)® "oy (h*")

for all h = h* in A and all n € N. Hence it follows from [1, Proposition 2.18] that
p(z*h*z) < p(a*x)B(h)?, which implies h € A% |

Lemmas 3.10 and 3.11 give the following.
Theorem 3.12. Let A be a locally convex x-algebra with A = Aj.

(1) If A is pseudo-complete, then every quasi-weight and every weight is admis-
sible, A = A", and |a|s < B(a*a)z for all a € A.

(2) If ¢ is a quasi-weight on P(Ny) in A such that ¢ is continuous on D(p),
then ¢ is admissible.

Corollary 3.13. Let A be a locally convex x-algebra with A = Ag. Let w be a
nondegenerate x-representation of A. If A is pseudo-complete or if w is weakly
continuous, then w is a bounded operator representation.

Proof. For £ € D(n), let fe(a) = (we om)(a) = (7(a)§, &), a € A. Let A be
pseudo-complete. By Lemma 3.10 we have ||m(a)m(z)¢]]? < B(a)?||n(x)€||? for all
a =a" € Aand all z € A Since 7 is non-degenerate, it follows that m(a) is
bounded for all ¢ € A. Now assume that 7 is weakly continuous. Then, since each
fe is continuous, it follows from Lemma 3.11 that ||7(a)m(2)¢]|?> = fe(x*a?z) <
B(a) fe(z*z) = Bla)?||n(x)E]||? for a = a* € A and = € A, which implies that
maps A into bounded operators. O

Given a locally convex x-algebra A, define B* = {B € B ; B* = B}. Then A is
said to be a GB*-algebra [2], [12] if the following hold:

(i) A is symmetric.
(ii) The collection B* admits the greatest member By.
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(iii) The *-subalgebra A(By) = {\x : A € C,z € By} is a C*-algebra with norm
||z, = inf{\ >0 : A1z € Bg}.
A particular case of GB*-algebras is a projective limit of C*-algebras called pro-C*-
algebras [21], i.e. a complete locally convex *-algebra whose topology is determined
by the family s(4) of all continuous C*seminorms. In this case,
Bo={acA: sup p(a) <1} and |la|lg, = sup p(a).
pes(A) pes(A)

Proposition 3.14. Let A be a pseudo-complete locally convexr GB*-algebra. Then
A = A(Bo) and | - |oo =] - ||,

Proof. By [12], A(Bo)n C (Ap)n. Hence by Lemma 3.10, A(By) C A[A}] C A%,
and by a standard C*-algebra argument, |a|oo = ||a||B, for all a € A(By). Now let
a € A%. Then for each positive linear functional f on A, f(z*a*ax) < |a|? f(z*7)
for all z € A. It follows that ms(a) is bounded, and sup||7s(a)|| < |a]e. Let T =
Zj‘? 7. By [12], 7 represents A faithfully as an extended C*-algebra with common
dense domain D(r) in the Hilbert space H = @ ; Hy. Then for all { = (£f) € D()
we have

Im(a)éll* = Z”Wf )ésll* < <SUP||7Tf ||>Z|I€f|l2<|a| €11

Thus 7(a) is bounded7 and [[7(a)|| < |a|cw. Since 7[ 4(B,) is one to one, we have
lalls, = lIm(a)||. Thus A(Bo) = A* and || - |lB, = | |- O

A complete locally m-convez x-algebra A is a complete topological x-algebra A
whose topology is determined by a family of *-invariant submultiplicative semi-
norms. By [6, Proposition 3.2], every continuous positive linear functional on A is
admissible. The following is an analogue of this result for quasi-weights.

Proposition 3.15. Let ¢ be a quasi-weight on P(M,) in a locally m-convex *-
algebra A. If ¢ is continuous on D(p), then ¢ is admissible.

Proof. This follows from Proposition 3.5 (2). |
The following can be easily proved.

Proposition 3.16. Let M be an O*-algebra on a dense subspace D of a Hilbert
space H. Let My = {T € M : T is bounded}. Then M* = My, and | - |00 = || - ||
(the operator norm on M).

We do not know whether in the above M? = M¥ or not.

4. THE CASE A = Ay IN A LOCALLY CONVEX *-ALGEBRA

Theorem 3.12 suggests that from the point of view of admissibility, it is important
to characterize locally convex x-algebras A such that A = Ay. In this section, we
consider this problem. An element x of A is quasi-regular (resp. quasi-invertible)
if (1 — z) has inverse belonging to the unitization 4; of A (resp. belonging to
(Ao)1). Let A" (resp. A%%) be the set of all quasi-regular (resp. quasi-invertible)
elements of A. For x € A7, 29 denotes the quasi-inverse of z, i.e. (1 —29)(1 —z) =
(1 —2)(1 —2%) =1.

Lemma 4.1. Let A be pseudo-complete. Let p be a continuous seminorm on A.
The following are equivalent.
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(1) {r € A:pla) < 1} C AT
(2) B(z) < p(x) for all z € A.

Proof. (1) = (2) Takez € A, A € C. Let |A| > p(z). Then by (1), A~z is quasi-
invertible, and so A1 —x has inverse in (Ap)1. From [1, Theorem 3.1], it follows that
there exist B € B and a neighbourhood N of A such that for each y € N, u1 — =z
is investible, R, = (ul —z)~! € A(B); and R is holomorphic at A in the sense of
norm convergence in A(B);. Hence | A |~ 2" — 0 in the norm of A(B);, which
implies, by [1, Proposition 2.14], that B(x) < |\|. Hence 3(z) < p(x).

(2) = (1) Let z € A. Let 6 > 0 be such that p(z) < ¢ < 1. Since 8(z) < p(z) <
J, there exists B € B such that x € A(B) and ||z ||g < d. Then we have

m m
<> lall< o
k=n k=n

Since (A(B), || - ||B) is complete, it follows that — "7, 2* converges to y in A(B).
Clearly, y = 9. Thus z € AZ. |

Y

k=n

’ m

B

Theorem 4.2. Let A be a pseudo-complete locally convex x-algebra. Consider the
following statements.

(1) A has continuous quasi-inverse, i.e. there exists a neighbourhood U of o such
that U C A9 and the quasi-inversion x — x4 is continuous at o.

(2) AT s open.

(3) There exists a continuous seminorm p on A such that 5(z) < p(x) for all
ze A

4) A = A.

Then the following implications hold.

(2)
M = 1T = @
(3)

If the multiplication of A is jointly continuous (e.g. A is a Fréchet x-algebra),
then the above statements (1), (2) and (3) are equivalent.

Proof. (2) < (3) follows from Lemma 4.1.

(1) = (3). By (1), there exists a continuous seminorm p on A4 such that
{r € A:p(x) <1} € A. Then z(x — A1)~! is a holomorphic function on
{AeC:|\|>p(x)} and

n n+1 —1

N gz = 1) = — {)\”_2;10+---+x"_1 + :ET} - xT (1 - i)

for all n € N. By the residue theorem,
1

" = ——— Nz (= A1)
2mi ‘/>‘|_5

for each 6 > p(x). Hence for each continuous seminorm ¢ on A, we have g(z") <
ad™ ! (o is a constant), and so lim, _..oq(z™)® < §. Hence it follows from [1,
Proposition 2.18] that §(x) = sup, iy, —ooq(z™) 7 < p(x).

(3) = (4) is trivial.
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Now suppose that the multiplication in A4 is jointly continuous. We show that
(3) = (1). By the equivalence of (2) and (3), we have

U={rcA:p(x) <1} Cc A" Cc AT
and 29 = — 3 77, z¥ for each x € U. Let ¢ be any continuous seminorm on .4 and
let z € U. Let p(z) < 6 < 1. Since B(z) < p(z), there exists n; € N such that

g(z™)w — + <6 foralln >ny. Let e > 0. Let ng € N be such that Y2 6" <e.
Take ng = max(ni,n3). Then we have

) no—1 ) no—1
q <—Zx‘“> < g@)+ D F < > gah) +e.
k=1 k=1 k=no k=1

This implies, by the joint continuity of multiplication, that x — x¢ is continuous.
This completes the proof. O

Corollary 4.3. Let A be a complete locally m-convex *-algebra. If A is a Q-
algebra (i.e., AY is open), then every quasi-weight in A is admissible.

5. APPROXIMATE ADMISSIBILITY

In this section, we define the notion of approximately admissible quasi-weights,
and characterize them. Throughout this section, let A be a x-algebra.

Definition 5.1. Let ¢ be a quasi-weight on A. If there exists a net {p,} of admis-
sible quasi weights on A such that ¢, < ¢, Va and p(z*z) = lim, o (z*2), Vz €
M, then ¢ is said to be approzimately admissible. If there do not exist any non-
zero admissible quasi-weights ¢ on A such that ¥ < ¢, then ¢ is called strictly
inadmissible.

Lemma 5.2. Let ¢ be a quasi-weight on A. Let 1 be an admissible quasi-weight
on A such that ¢ < ¢. Then there exists an element K € m,(A),, such that

() 0< K <1,

(ii) m,*(a)K= € B(H,) for each a € A,

(ili) Y(z*z) = (KAg(x), Ap(x)) for each x€N,.

Proof. Take K = K7 K, ¢ of Lemma 2.4. Since ¢ is admissible, it follows that
1 * ok *
IK= (@)X (2)|* = ¥(a"a az) < py(a)®P(z*2) < py(a)®||Ay ()]
for all x € 9, and all a € A, which implies that K%m,(a) € B(H,). Hence, we
have ww*(a)K% € B(H,), Va € A. The rest are trivial. O

Lemma 5.3. Let ¢ be a quasi-weight on A. The following statements hold.

(1) Suppose ¢ is admissible. Then every quasi-weight ¥ on A with ¥ < ¢ is
admissible.

(2) Suppose ¢ is a regular, approximately admissible quasi-weight on A such that
o (A, is a von Neumann algebra. Then every quasi-weight ¢ on A with
¥ < p is approximately admissible.

Proof. (1) Suppose that ¢ is admissible. By Lemma 5.2, we have
* % 1 /N *
bla*aar) = [|KFmp (@A (@)? < (@) (")
for all a € A and z € M, =Ny, which implies that ¢ is admissible.
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(2) Since ¢ is approximately admissible, there exists a net {¢,} of admissible
quasi-weights on A such that ¢, < ¢, Va and lim, ¢, = ¢. By Lemma 5.2, for
each «, there is K, € m,(A),, such that

0< K, <1,
@a(y*x) = <K04)\<P(z)a A«p(y» ) V$a y € m«pv
(5.1) |lmp" () K& €] < kol K& €[], Va € A £ € Hy.

Since 0 < Ko < I and limapq(z*2) = p(a*x), Vo € N, it follows that K, — T
weakly. Since ¢ < ¢, Lemma 2.4 implies that there is an element H of 7, (A);

w

such that 0 < H < I and ¢(y*z) = (H)y(x), A, (y)) for all ,y in N,. We now put
’@[Ja = SDH%KOCH%’

Since 7,(A), is a von Neumann algebra, we have H*K,H= € Tp(A)yy, 0 <
H=K,H?* < I. Hence it follows from Lemma 2.7 that 1y is a quasi-weight on A
such that My, =Ny =N, and Y, < ¢ (that is, ¥4 < 1V). Furthermore, we have,

for each a € A and x € Ny,

Yo (z*a*ax) = ||K0?H%7T<p(a))\<p(x)||2

Iy () KZ H¥ Ao()]?
k2| K2 H M ()]?
k24 (2 2)

(by 5.1)

IN

and

lim ¢, (x*z) = lim<KaH%/\¢(:1:),H%)\@(z)>

= (2 (@), HE 2, ()
= ("),
which implies that ¢ is approximately admissible. This completes the proof. O

Lemma 5.4. Let ¢ be a reqular approzimately admissible quasi-weight on A such
that m,(A),, ts a von Neumann algebra. Then there exists a net {Eq}aca of mutu-
ally orthogonal projections in w,(A)Y, such thaty ' Eq =1 and m,*(a)Es € B(H,)
for each a € A and o € A.

Proof. Let {E,} be a maximal set of mutually orthogonal projections in m,(.A)%,

such that 7,*(a)E, € B(H,) for each a € A and each o« € A. Suppose E =
I-3" ., Eq #0. Weput pp(z*z) = (EXy(2), Ap(2)) , © € Ny. By Lemma 5.3, ¢ is
an approximately admissible quasi-weight on A such that Ny, = N, and pp < ».
Hence there exists a non-zero admissible quasi-weight ¥ on A such that ¥ < ¢g.
By Lemma 5.2, there exists K € 7,(A)/, such that 0 < K < I, m,*(z)K = € B(H,)
and Y(y*z) = (KXo (), Ao (v)), Yo,y in N,. Let K = fol/\dF(/\) be the spectral
resolution of K. Since K # 0, there exists a A\g € R, 0 < Ag < 1, such that
F=1-F(\)#0and \F < K. Since Np, = Np,. =Ny, pr < %@K = )\—101/1
and v is admissible, it follows from Lemma 5.3 that ¢ is admissible. Further, since
[[FAp ()] < ﬁHE’/\w(x)H for all z € M, we have I < E. This contradicts the

maximality of {E,}. Hence, > E, = 1. |
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Theorem 5.5. Let ¢ be a regular quasi-weight on P(MNy) in A such that
7o(A) D(my) C D(my). Then there exists a projection E in m,(A), such that

w
pE is approximately admissible and @1 — g s strictly inadmissible. Further, E can

be taken as E =)  E,, where {Ey} is a family of mutually orthogonal projections
in m,(A)s such that each pg, is admissible.

Proof. Let {E,} be a maximal set of mutually orthogonal projections in m,(.A)%,
such that ¢p, is admissible for each a. Take F = )" FE,. Then ¢g is approxi-
mately admissible, and (as in Lemma 5.4) ¢; _ 5 is strictly inadmissible. |

Theorem 5.6. Let ¢ be a reqular quasi-weight on P(N,) in A. Then the following
are equivalent.

(1) ¢ is approxzimately admissible and m,(A)%D(m,) C D(7y).
(2) 1o =P 1, for some set {my} of bounded operator representations of A.

Proof. (1) = (2) By Lemma 5.4 there exists a set {E,} of mutually orthogonal
projections in 7, (A)y, such that ) E, = I and 7}, (z)E, € B(H,,) for each z € A.
For each a we put 7 (z) = 75(2) Ea, © € A. It is easy to show that 7, is a bounded

(€a) € (Z «) and € A we have
(

o (T ()", Eaf)
o l(m () )n£>

« 77

o (1 ()E >

= (n,ma(T)éa)

for each € D(m,(x)*), which implies 37, C 7, Hence, we have 7% C

©
(X% 7,)* =% 1, C m,, which implies 7, = 3.7 7.
(2) = (1) This follows from Lemma 5.4. O

operator representation of .A. For each & =

(mo(@)n, &) = 22
>
>
>l

Corollary 5.7. Let ¢ be a reqular quasi-weight on A. The following statements
are equivalent.

(1) ¢ is approximately admissible and m,(A),, is a von Neumann algebra.
(2) Ty = 3P, for some set {ma} of bounded operator representations of A,

where Ty is the induced extension of m, [21, Section 8.5].

6. EXAMPLES AND APPLICATIONS

6.1. Weight analogue of the Bochner-Weil-Raikov theorem: An applica-
tion to abelian harmonic analysis. Let 4 be a commutative Banach *-algebra.
Let A(A) denote its Gelfand space. Let A = {p € A(A) : ¢ = ¢*} be its Hermit-
ian part. Here o*(x) = ¢p(x*) (z € A). The abstract Bochner-Weil-Raikov integral
representation theorem states that f is a representable positive linear functional
on A iff there exists a bounded positive regular Borel measure p on A such that

z) = [12(x)dp(x), v € A — & € Co(A(A)) being the Gelfand transform. The
following theorem, which is essentially a reformation of [13, Theorem 21], provides
a weight analogue of this. We call a quasi-weight ¢ on a x-algebra A non-degenerate
if 7, is non-degenerate in the sense that [m,(A)A,(Ny)]~ = Hep.
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Theorem 6.1.1. Let (A,||-||) be a commutative Banach -algebra (not necessarily
having identity). Let (p,MN,) be a quasi-weight in A. Assume that ¢ is non-
degenerate. Then there exists a positive, not necessarily bounded, regular Borel
measure [ on A such that the following hold:

(i) e(z) = [1200)du(x) for all x € P(N,).

(i) For all a,b in N, and x € A, ab e L' () and

wwwzjfuﬁgwu»

quwzxjumummwu»

(iil) 7, s unitarily equivalent to a subrepresentation of the representation M of
A on L2 (p) defined by (M(z)f)(x) = 2(x) f(x)-

(iv) If D(p) is dense in A, then p satisfying the above is unique and m, is
unitarily equivalent to M.

Proof. By Proposition 3.8, ¢ is admissible, and since ¢ is non-degenerate, z —
7o (x) defines a non-degenerate bounded operator representation of A. By Stone’s
theorem ([13], Theorem 10.10) there exists a spectral measure E on Borel subsets
of A such that for all z € A, &, 7 in Ho,

<mmmm=Aﬂmwmw.

Let a € M,. Let p, be the Borel measure on A defined by dua = dEx, (a),x,(a)-
Then, as in ([13], p.94), [a(x)|2dus(x) = |b(x)|*dpa(x) for any a,b in N,. Now let
f e C.(A). Choose a b e A such that b(x) # 0 for all x € suppf. This defines

u(f)=/ ff(X)|B(X)|_2dﬂb(X)7

and the above shows that f — pu(f) is a positive linear functional on C,(A ). Thus,
there exists a positive Borel measure y on A such that

Mﬁzéﬂﬁ@%-

Hence, for all a € Ny, d,, (x) = |a(x)*du(x). By the boundedness of i, (a
consequence of the definition of spectral measure), (a*a) € L'(u) for all a € Ny,

and p(a*a) = ||\ (a)|]? = pa(A) = /(a*a)A(X)du(x). Since any product b*a (a,b

in M) is a linear combination of elements of the form c*c with ¢ € N, it follows
that ba € L*(u), and (i) holds. This immediately gives (i) also. Then (iii) and (iv)
can be verified as in ([13], Theorem 21.6). Note that if D(p) is dense in A, then
given any compact set K in A, there exists b € D(¢) such that b(y) # 0 for each
x € K. O

In what follows, we shall apply the above to the convolution Banach algebra
LY(G) of a locally compact abelian group G. The involution of L(G) is f*(g) =
f(=9) (g € G), and A(L*(G)) ~ G (the dual group of G) by the well known
identification, so that the Gelfand transform gets to be identified with Fourier
transform. Note that L!(G) is Hermitian, so that A(L}(G)) = L' (G).
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(a) Let ¢ be a positive linear functional on L'(G). Then there exists a bounded
positive Borel measure v on G such that

f) = [f<x>du<x>

Corollary 6.1.2. Let (¢, M,) be a non-degenerate quasi-weight in L'(G). Then

there exists a positive, not necessarily bounded, regular Borel measure v on G such
that the following hold:

(i) For all f e PM /f )dv(x
(i) For all f,g € Ny, ngLl(G,V) and o(f * g*) /f Q Ydv(x).

(b) The extension of the concept of Fourier transform from integrable functions
to positive definite complex regular Borel measures on G is a standard part of
harmonic analysis. We can use the concept of weight to define the Fourier transform
of certain unbounded positive definite measures.

Let 1 be a positive (not necessarily bounded) measure on G. Suppose pu is
positive definite, that is, [,f* * fdu > 0 for each f € L'(G). Then we define
a weight ¢ on L'(G) by ¢(f) = [,fdp. Assume that ¢ is non-degenerate. By

Corollary 6.1.2, there exists a regular positive measure fi on G such that

L m@auto) = [ Fo0htodat) (£ en,),

and
/ fu = [fdﬂ f € PLLG)).
G G

This i may be called the Fourier transform of u. This extends the considerations
of ([13], 2.7, p. 1011) to unbounded measures.

6.2. Integration algebras, measures and tracial weights.

Definition 6.2.1. An integration algebra (A, *, ) consists of a x-algebra A having
involution * and a weight ¢ on P(A) that is faithful in the sense that ¢(z*z) = 0
implies = 0.

This can be regarded as a framework for (unbounded non-commutative) inte-
gration theory. Let (A, *,¢) be an integration algebra. Then M, = {z € A :
p(xz*a*ax) < 0o, VYa € A} is equipped with the inner product (z,y) = ¢(y*z), H,
is the Hilbert space completion of M, and 7, is the closure of the left regular rep-
resentation my of A having D(m) = Ny, in H,, mo(a)z = ax (a € A,z € N,). We
discuss below the admissibility and approximate admissibility in some examples.

(A) Measures and integrals. Let (X, X, 1) be a o-finite measure space with positive
measure u. Let A be a x-algebra of y-measurable functions on X. Then ¢(f) =
Jx fdp defines a weight on A.

(A1) Take A = M(X,p), the set of all measurable functions. Then N, =
L2(u), My = {g € M(X,u) : [|fg]?du < oo for all f € M(X,pu)} = {o} if X is
atom free. The GNS-representation 7, is trivial in this case. This is to be expected
in the light of the fact that when X is atom free, M(X, ) admits no non-zero
positive linear functional.
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(A2) Let A= LS.(n) = {f € M(X,pn) : [ is essentially bounded on every set
of finite measure }.

Claims. (i) ¢ is admissible iff p is a finite measure,
(ii) ¢ is approximately admissible.

Proof. Let L°(u) = {f € L*>°(u) : f = 0 outside a set of finite measure}. Then
L(u) € Ny = {f € Lo.(p) : af € L*(p) forall a € LS. (p)}, and since 1 €
L2 (u), My, C L2(p). Thus LE(u) € N, C L*(p). Further, N, = {o}, D(p) =
span NSN, = L2 (1) N L' (p). Since LS°(p) is dense in LQ(M), it follows that
H, = L2( ),and my,(a)f = af, Va € LS. (1), Vf € D(m,). Now let ¢ be admissible.
Then 7,(a) € B(L*(u)), Ya € Lo.(u). Hence af € L*(u), Vf € L*(u). Hence
a € L*(p). Thus L2 () = L*°(u), showing that p is finite. This proves (i).

loc\H

Now choose 4, € X, A, T, u(A,) < oo and X = U A,. Then ¢, (f) = / fdp
A

defines an admissible positive linear functional on L OC( ) such that ¢, < ¢ and
© = sup @,. This proves (ii). |

(A3) Let X be a non-compact locally compact o-compact space. Let ¢ be
a positive linear functional on C.(X), hence given by a positive Radon measure
(locally finite) g on X. Given h > 0 in C(X), choose hy, € Cc(X),h, T h. Then

@(h) =limp(h,) = lim /hndu defines a faithful weight on C'(X).

Claims. (i) ¢ is an admissible weight on C(X) iff ¢ extends as a (necessarily
admissible) positive linear functional on C(X) iff u has compact support.
(i) ¢ is approximately admissible.

This can be proved as in the previous case.

(B) Traces and integrals. Let D be a dense subspace in a separable Hilbert space H
and {&,} an orthonormal basis of H contained in D. Let M be a closed O*-algebra
on D with the identity operator I, and define a faithful (tracial) weight on P(M)
by

o(XTX) = Z||X§n||2 = tr X'X, X e M.

Then (M, ) is an integration algebra. Let H@H (= C?(H)) be the *-algebra of all
Hilbert-Schmidt operators on H. Now 9, = {X € M : AX e H®H, VA € M},
an inner product space with (X,Y) = tr YTX; let H,, be its completion in the
norm || X ||la = (X, [|X€al|?)Z. Then 7, is the closure of my, where m(A)X =
AX (Ae M, X €MN,). Now let (6, D(0), Hy) be the x-representation of A defined
as:

H, = H ® H regarded as Hilbert space,

Do) ={T€H®H; THC D and AT € H®H,VA € M },

o(A)T = AT, Ae M,T € D(o).
Then (0, D(0), H,) is a closed *-representation of A. Since I € M, N, — HOH
via X — X. Hence, H,, is regarded as a closed o-invariant subspace of H® H,

and 7, is a x-subrepresentation of o; in fact, 7, = [0[M,]”, the closure of the
restriction of o on M. The following cases arise:
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(B1) Let M be an O*-algebra such that M, (= {X € M : X € B(H)}) = CI.
Then N = {X € M; p(XTX) < oo} = {0}.

(B2) Proposition 6.2.2. Let M be an O*-algebra consisting of operators com-

muting with {&, ® &, : n € N}, where (€ @7)¢ = (¢, n)é (&,1,¢ € H). Then ¢ is
approximately admissible.

Proof. We put
on(X) = (X, &n), neN, X eM.
Then since
Pen(XTATAX) = [JAXE,|P
— 2

— AX (€ & )l
[[A(&n ® é“n)XHz2
MEIPIXTEl
= ||A€n||§||XT(§n2®§n)||2
= [|A&[I7]] X &
= ||A€n||2§0n(XTX)

for all A, X € M, it follows that ¢, is an admissible positive linear functional on
M and (XTX) =3 0, (XTX) for all X € M. |

(B3) Proposition 6.2.3. Let M be a self-adjoint O*-algebra on D. Suppose
M, = CI and ©,, is self-adjoint. Then the following statements hold:

(1) Fither ¢ is admissible or ¢ is strictly inadmissible.
(2) ¢ is admissible iff M consists of bounded operators.

Proof. By [15, Lemma 5.3], o is a self-adjoint representation of M, so that o(M) =
{o(4); A € M} is a self-adjoint O*-algebra in H®H having domain D(o). Further,

o(M)y, =7'(B(H)) ={'(K) : K € B(H)},
where 7/(K)T = TK, T € H® H. Since 7, is a self-adjoint subrepresentation of
o, by [23, Theorem 4.7] there exists a projection P = 7/(K) € o(M), such that

Tp(A) = o(A)n'(K), A € M, for some K € B(H), and 7' (K)T = 7' (K)n'(K)T,
VT € H® H. Thus TK?¢ = TK¢, VT € H® H, V¢ € H. Taking T = &, ® &, we
get <K2§,§n> = (K¢, &,), Vn € N, and hence K2 = K. Similarly, K* = K. Thus
K is a projectoin. Now suppose ¢ is admissible. Then since o(A)x’(K) is unitarily
equivalent to m,(A) for each A € M, there exists a v > 0 such that

llo(A)x (K)Tls” = ||my (A)T 1" < y|IT1]2*

for all T € H® H. Take T = £ @7 for an arbitrary ¢ € D and a non-zero 1 € K'H.
Suppose that ¢ is not strictly inadmissible. Then we have

I[P AEIP = Y llo(A)r' (K)(E ©n)éa ||

| o(A)r' (K)(€ @) ||
V]| € @7 ||2>
= APl

IN
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so that A is bounded. This proves (2). To prove (1), we show that if M contains
an unbounded operator, then ¢ is strictly inadmissible. Suppose that ¢ is not
strictly inadmissible. Then there exists an admissible quasi-weight ¥ in M such
that ¢ < ¢, i.e., M, C Ny and P(XTX) < p(XTX) for each X € N,. By Lemma
5.2 there exists K € m,(M)’, such that 0 < K < I, 7,*(A)K= € B(H,), YA € M,
and Y(YTX) = (KXp(X), 2p(Y)), X, Y €N, Let K = fol AdF () be the spectral
resolutions. Then there exist \g € R, 0 < A\g < 1, and F = I — F(\) # 0 with
MF < K. Define pp(XTX) = (FA,(X),\p(X)), X € Ny, a quasi-weight such
that Ny, = Ng, = N, and pp < %OQPK < %01/1. Since v is admissible, ¢ is
admissible by Lemma 5.3. Now, as in the proof of (2), we can show that A is
bounded. This completes the proof. O

(C) Weighted traces.
(C1) Let Q € H®H\ D(0),2 > 0. Then a quasi-weight (¢q,Ny,,) is defined
in M by Q as follows:

Ny, = {X e M:QH c D(XT),XT'Q € D(0)},
pa(XTX) = (X7 Q) (X1'Q)), X €Ny,

If 0(My,) is dense in D(0)[ty(aq)], then 7y, is unitarily equivalent to o, in which
case pq is admissible iff M consists of bounded operators.
(C2) Let Q be an unbounded positive self-adjoint operator in H. Suppose there
exists a subspace £ of DN D(Q) such that
(i) € is dense in D[t ],
(i) MDO{E®m:&nel},
(iii) Q€ C D, Q€ is dense in H.
Let ¢ be the quasi-weight in M defined as

Ny, ={X e M: XT"Q € o(M)},
eo(XTX) = tr(XTQ)*(X1'Q)), X eNy,.

Proposition 6.2.4. ¢q is a faithful quasi-weight. If M contains an unbounded
operator, then @q is strictly inadmaisstble.

Proof. Let {&,} be an orthonormal basis in H contained in D(Q2). Then, 0 =
ea(XTX) =3, ||XT°0¢,||? implies that XT°Q = 0 on D(Q). Since QE is dense in
H, it follows that XT"¢ = 0 for all € € D. Hence X = 0, and so ¢q is faithful. Now

under the stated conditions, mwﬂT*Q is dense in (D(0),t,(m)); hence Ty, ~ 0.
Further, pq is regular [3]. Thus if ¢q is not strictly inadmissible, then o admits a
non-trivial bounded subrepresentation, and so there exists a projection K in B(H)
such that ||o(A)7'(K)T||2 < kal||7’(K)T||2 for all T € H ® H. This implies that
each A € M is a bounded operator. O

(D) Quasi-weights and O*-algebra approach to statistical mechanics. We consider
the problem of handling the equilibrium states of an infinite system in the algebraic
approach. Let F be the collection of all bounded open subsets of R3. For V € F, let
Ay be the observable x-algebra related to the bounded region V. Depending on the
scheme under consideration, Ay is either a C*-algebra or an O*-algebra, consisting
of operators in the Fock space Hy for V. Let Hy denote the Hamiltonian in V', a
self-adjoint operator in Hy, written-down explicitly from quantum mechanics. The
Heisenberg dynamics in V' is given by the one-parameter group of x-automorphisms
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t — o 1 Ay — Ay, o) (A) = etHv Ae~#Hv By the Gibbs postulate, the
equilibrium state for the finite subsystem in V' is given by the formal expression

1

(1) (UV(A) = Wtr(e_ﬁHvA) (A S AV)

This requires e v (3 > 0) to be a trace class operator.

(a) When Ay is a C*-algebra, Ay C B(Hy ), then e #HV A is of trace class for
all A € Ay. Thus (i) defines a normalized positive linear functional on Ay . In the
abstract formalism, a normalized positive functional (on Ay) satisfying the KMS
condition with respect to t — o has been proposed as the desired equilibrium in
V.

(b) Suppose Ay is an O*-algebra. Then (i) can be interpreted as a quasi-weight
(wy, Ny, ) in Ay having

Ny, ={X € Ay : tr(e PAVXTATAX) < 0o forall A e Ay},

and wy(XTX) = tr(pvX'X),pv = e PV /tr(e7PHv). In general, one takes
(wy, M, ) to be any quasi-weight in Ay satisfying the KMS condition with re-
spect to t — «) . This interpretation is consistent with the general formalism
suggested in [3] that when the observable algebra is an O*-algebra, the states are
better represented by quasi-weights. (Note that positive functionals are included
in quasi-weights).

Now the isotopy condition on the local net V' — Ay can be expressed by the
assumption that Vi < Vo in F = Ay, — Ay, via an injective s-isomorphism
taking My, — Nu,,, and is implemented by an isometry Hy, — Hy, taking
Dom(Ay,) — Dom(Ay,). The O*-algebra of local observales is A; = | J;, Ay. Now
the passage to the infinite system (thermodynamic limit) Limy _, involves the
following problems.

(1) Existence of equilibrium given formally by Limy oo wy (:) = w(-) on A;.

(2) Existence of dynamics given formally by Limy_ . o) (-) = ().
In principle, w(-) describes equilibrium iff it satisfies the KMS condition with respect
to t — a4(-). Now w can be interpreted as quasi-weight (w,M,) in A; as

N, ={X eA: J_,im wV(XTATAX) exists and is finite for all A € A;},

w:PM,) — [0,00), w(XTX) = Limy o wy(XTX). We investigate below the
admissibility of w.

Let (¢v, Ny, ) be a quasi-weight in Ay defined as Ny, = NyNAy, oy (XTX) =
wy (XTX)

Proposition 6.2.5. (1) Assume that (¢v,MNy, ) is admissible for all V and that
for each Vo € F, supysy, ||mpy (A)|| <00 (A€ Ay,). Then (w,MNy,) is admissible.

(2) Suppose (w,‘ﬁw_) is admissible. Further assume that Vi < Vo implies py, <
pv,- Then each py is admissible, and for any Vo € F, supy sy, ||y (A)|| < oo for
all A e AVO.

Proof. (1) Let A € A; hence A € Ay, for some V. Let X € 9M,. Choose V so
that A € Ay and X € Ay. Then

wV(XTATAX) @V(XTATAX)
170y (A)][Pov (XTX)

Supy>v, 7oy (A)]Pwy (XTX),

INIA I



ADMISSIBILITY OF WEIGHTS ON NON-NORMED #-ALGEBRAS 4649

showing that w is admissible, and, for any V € F and A € Ay,
[T (A)]] < sup |my,, (A)]l.
VISV

(2) Let V € F be fixed. Let X € M, N Ay. Then
o (XTX) = wy (XTX) =tr(py XTX) < Lim tr(py XTX) = w(XTX).

Suppose w is admissible. By Lemma 5.3 ¢y is admissible, and ||m,, (A)|] <
7o (A)l] (A € Av). Thus supy. sy [|7e,, (A)]| < [|7w(A)]] (A € Ay). This com-
pletes the proof. O

Remark. The equilibrium state for (i) the BCS-Bogolubov model of superconductiv-
ity, as well as for (iii) interacting Boson models, can be described by quasi-weights
of form ¢ [3], and using Proposition 6.2.4, it follows that these quasi-weights are
strictly inadmissible.

6.3. Vector (quasi-) weights defined by *-representations. Let (7, D(7), H)
be a closed *-representation of a x-algebra A. Let & € H. This defines a quasi-
weight fe as follows:

Ny, = {z € A: £ € D(r(a")"), n(z*)*¢ € D(m)},
fe(a'z) = |lm(z)"¢|l*, = € Ny,

Then fe is a quasi-weight on P(y, ) in A and the GNS-representation 7y, for fe
is unitarily equivalent to the closure of ﬂ(ﬂ(m} )<¢- In particular, if (9 )*¢ is
) .

dense in (D(7),tr), 7y is unitarily equivalent to 7 (denoted by 7y, = 7), and
so f¢ is admissible iff 7 is a bounded operator representation. We investigate the
(approximately) admissibility and the strictly unadmissibility of fe in the following
cases:

(A) Let A be the x-algebra consisting of polynomially dominated measurable
function on Ry, ie., f € Aiff f: Ry — C is a measurable function for which
there exists a polynomial p such that |f(¢)| < p(t), Vt € Ry. Let H be a positive
self-adjoint operator in a Hilbert space H. Let (m, D(w), H) be the *-representation
of A, defined as D(7) = C>°(H) = (,_; D(H"), n(f) = f(H)[ ¢ ). As noted in
[14], 7 is a self-adjoint representation of A, and m(Mf,)*¢ is dense in (C*°(H),t,)
by a consequence of the spectral theorem. Thus 7 = 7y, and f¢ is admissible iff
H is a bounded operator. Suppose that f¢ is regular. Now the self-adjointness of
H implies that C*°(H) contains a dense set of bounded vectors for H. Now each
bounded vector for H is a bounded vector for f(H), f € A. It follows that when
H is unbounded, f¢ is an approximately admissible, non-admissible quasi-weight.

(B) Let A be the unbounded CCR algebra of one degree of freedom. A is the
x-algebra of polynomials generated by Hermitian generators p and ¢ satisfying pg —
qp = —il. Let m be the Schrodinger representation of A defined on L?(R) having
the domain D(7) = S(R). (Schwartz space of rapidly decreasing C*°-functions on
R) as mo(p)f = —i%, (mo(q)f)(t) = tf(t). Then m is self-adjoint, faithful and
irreducible (i.e. mo(A)L, = CI).

Now let (f,,) be normalized Hermite functions in S(R). The number operator N
having domain D(N) = S(R) is defined as N = 307 (n+1)f, ® f. Let K be the
x-algebra of polynomially dominated continuous function on Ry viz. f € C(Ry)
and there exists a polynomial p such that |f(¢)| < p(¢), Vt. Let B be the x-algebra
generated by A and K. Define a representation 7 of B having domain S(R) in the
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Hilbert space L*(R) by m(z) = mo(2) if 2 € A, 7(2) = f(2) if 2= f € K. Then 7 is
self-adjoint and 7(917,)¢ is dense in S(R). Thus 7y, = 7. Since 7 is not bounded
and irreducible, it follows from Lemma 5.2 that f¢ is strictly inadmissible for each
non-zero £ € L*(R).

6.4. Point evaluations. Let X be a non-compact completely regular Hausdorff
space. Let C(X) be the algebra of all continuous complex functions on X. Let
Cy(X) ={f € C(X) : f is bounded}. All non-zero multiplicative functionals on
C(X) (resp. on Cp(X)) are given, via point evaluations, by points of the Hewitt
real compactification vX (resp. the Stone-Cech compactification 5X). Let A be a
x-subalgebra of C'(X) containing Cy(X). Let z € X \ vX. Given f € A, f > 0,
there exist f, > 0 in Cp(X) such that f,, T f. Then o(f) = liin fn(x) = sup fn(z)

defines a weight in A. It is easy to check that 7, is the 1-dimensional representation
defined by the evaluation  at x. Thus ¢ is admissible.

6.5. Weights on smooth subalgebras of a C*-algebra. Let A be a C*-algebra
with identity 1. A x-subalgebra B of A with 1 € B is smooth if it satisfies the
following:

(i) B is a complete locally convex *-algebra with a topology ¢.
(ii) B is dense in A and the induction (B,t) — (A, || - ||) is continuous.
(iii) B is spectrally invariant in A.

Proposition 6.5.1. Let B be a smooth subalgebra of a C*-algebra A. Let ¢ be a
quasi-weight on P(M,) in B. The following statements hold:

(i) ¢ is admissible, and the bounded *-representation m, of B can be uniquely
extended to a bounded x-representation m, of A on H,.

(ii) If ¢ is continous on D(yp), ¢ can be extended to a quasi-weight § on P(N,),
where My, is the closure of Ny, in (A, || - ]).

Proof. For any x € B, sp 4(x) = spg(z). This gives the spectral radius r(z) < ||z ||,
showing that (B, || - ||) and hence (B,t) are Q-algebras. Let ¢ be a quasi-weight on
P(M,) in B. By Theorems 4.2 and 3.12, ¢ is admissible and the GNS-representation
Teis a bounded operator representation. Since (B, || - ||) is a Q-algebra, m, : (B,]]-]])
— B(H,) is continuous, hence extends to a *-homomorphism 7, : (A,]| - [|) —
B(H,). Assume that ¢ is continuous on D(¢). Now, N, being a proper left ideal of
B, it contains no invertible element of B. As B is inverse closed in its completion A,
M., contains no invertible element of A. Thus 1 ¢ N, and N,, is a proper left ideal
of A. Let # € M,. Then z*x € P(M,), and there exists a sequence {z,} in N,
such that z,, — x. Then z}z, € N,"N, and z}z, — a*z. Thus {z}x,} is || - ||-
bounded; hence by assumption the sequence {¢(xfz,)} € I*°. Let w denote any
positive linear functional on {*° vanishing on Cy = {{a,} C C : Lim,,— ay, = 0}
and w({a}) = a (a € C). Define & : P(M,) — [0,00) by g(x*z) = w({p(z;xn)}).
Note that ¢ is well-defined. Indeed, let there be sequences {z,} and {y,} in N,
such that z,, — x and y,, — z. Then a,, = Yy, — 2z, € D(¢) and a,, — 0. By the
assumption ¢(a,) — 0; hence w({H(a,)}) = 0. Then p(yiy,) = &(an) + o(zkzy)
gives w({p(yiyn)}) = w{p(zizy,)}), which shows that ¢ is well-defined. Now
let z € PM,), z = >, zfz;, a finite sum with each z; € M,. Choose 2" e

N, such that xgn) — z;. Then z, = i;vl(-")*x(-n) € PM,) — z, and ¢(z,) =

2

> (@™ 2(™M). Hence 3(2) = w({p(zn)}) = X w{p(@™ ™)) = 3, 3lag),
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and so ¢ is a quasi-weight on P(‘ﬂ_g,). Finally, let + € N, and z, = z,n € N.
Then @(z*x) = w({p(ziz,)}) = p(z*z), and hence @ is an extension of ¢. This
completes the proof. O

Corollary 6.5.2. Let A and B be as above.

(1) Every positive linear functional f of B can be uniquely extended to a positive
linear functional f on A. Further, if f is extreme, then f is also extreme.

(2) Let A be commutative. Then the Gelfand spaces A(B) and A(A) are home-
omorphic.

When A = C(M), B = C>®(M) for a compact manifold M, the above recaptures
the well-known facts that every positive distribution on M is a measure and that
A(C™(M)) =M.

The above proposition also applies to the Fréchet x-algebra A of C'*°-elements
of a C*-algebra A determined by an action of a Lie group G.

6.6. Quasi-weights in non-commutative geometry. We construct quasi-
weights that arise naturally in the Connes theory of non-commutative geometry
and discuss their admissibility. The basic formalism of non-commutative geometry
is as follows:

Let A be a non-commutative -algebra with identity representing “a non-commu-
tative geometric space”. The algebra of non-commutative differential forms over
A is the x-algebra Q(A) generated by elements a € A, of degree 0 and elements
da,a € A, of degree 1 satisfying the relations d(a + b) = da + db, d(Aa) = Ada (A
a scalar), d(ab) = adb + (da)b. Then Q(A) = P, , Q2" (A) defines a gradation in
Q(A), where

Q%(A) = A,
O"(A) = {oz = Zagda} ceedal aé- € A},
J

j
the vector space consisting of differential forms of degree n. One takes (da)* = —da*
and d(ag day - - - da,,) = dagda; - - - da,,. The differentiable structure on A is imposed
by the presence of a K-cycle or a spectral triple (w, H, D) defined by the following
data:

(i) H is a separable Hilbert space.
(ii)) 7 : A — B(H) is a faithful #-representation of .4 into bounded operators on
H.
(iii) D is a self-adjoint operator in H satisfying
(iii); {a € A:[D,n(a)] is bounded} = A,
(iii) D has a compact resolvent so that for all A\ € spD, (A\I — D)~! is a
compact operator.

Now the representation 7 of A can be extended as a x-representation 7 : Q(A) —
B(H) by
m(a’da’ ---da™) = m(a®)[D, 7(a")][D, 7w (a®)] - - [D, m(a™)].

Now let C(H) denote the ideal of compact operators. For T € K(H), let |T| =
(T*T)=. Let {&,} be an orthonormal basis in H. Let {yn(T)} denote the eigen-
values of |T'| arranged in decreasing order, counted according to multiplicities. Let
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on(T) = Zﬁj:_ol tn(T). Then p,(T) — 0, which motivates calling compact op-
erators the non-commutative infinitesimals (in representation in B(H)). Then in-
finitesimals of order « constitute the two sided ideal

Ko(H)={T € B(H) : pn(T) =0(n"%) as n — oo}
in B(H).
(A) Dizmier trace. Clearly, we have
CY™W(H)={T € K(H) : on(T) = O(log N) as N — oo}
S Ky (H) = {T € K(H) : jin(T) = O (%) as 1 — 0o}

D K1+ (H) (infinitesimals of order > 1)

= (T e K(H) :un(T):o<%> as 1 — oo}
(T eK(H):3e> 0 st pun(T) = O (n%) as m — 0o}

CC'(H) = {T € K(H); Y _ pn(T) < o0}
n=0

(trace class operators).

Let w be the generalized limit (Banach limit) on [*°(N), that is, a translation
invariant positive linear functional on [°°(N) vanishing on Co(N). For T > 0 in

C'" (H), let

Tr,(T) = w({ Ulé‘é(;) })
TW(T)

|
£
=
£

(Lim,, indicates that the limit is defined in some kind of Cesdro mean). Then T'r,,
defines a tracial linear functional on C'" (H) vanishing on K+ (H) which extends
to B(H) as a trace by taking on(T) = ij:o (ITn, &n) - This Tr,, is called the
Dizmier trace. Now we define a quasi-weight (7, 91,,) in Q(A) by taking

N,, ={a € QA :7(a) € C'F(H)},

Tw(a*a) = Try(m(a)*m(a)), a € N,,.

Proposition 6.6.1. 7, is an admissible quasi-weight in Q(A), and if a € Q(A) is
such that w(a) is compact and measurable, then

1 Mdu 1

w = li
() P logh Jo uw logu

. X € CY(H),Y € B(H)
1nf{||X||1+U||Y||a X+Y:7T(a) )
where || X |1 = tr(|X]).

The following expression for T'r,, is discussed in [10]. For T' € K(H), A > 0, let

ox(T) = inf{||X||; + N||Y]| : X € C*(H),Y € B(H) with X +Y =T}.
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For A € N, 0,(T') coincides with Zn o ' 4in(T). Let

A
) =y | G

log A logu

Then T'r,,(T) = lim, 72 (T) (=any limit point of 75 (7)), and T is measurable if 75 (T)
A

— 00

is convergent when A — oo. In this case, T, (T) = limy_7A(T") independently of
w.

Proof. Let a € Q(A),z € M. Then

To(z*a*ax) = Tr, (7(z)*m(a

Try, (m(a)*7(a
|7 (a)l|* T,
(@) Tre
(a)

12

IN

(m
(

To(x*T).

[
3

[|7(a

The remaining part follows from [10, p.6212]. |

Remark 6.6.2. Let M be an O*-algebra on a dense subspace D in a Hilbert space
H. Then a quasi-weight (¢, N,) is defined in M by taking

N, ={X e M : (XTATAX) € C'F(H) for all A € M},
P(XTX) = Try(X1X), X € 9N,

(B) The d-dimensional volume integral. Following [10, p.6219], the spectral triple

(m,’H, D) is of dimension d if |[D|~! is an infinitesimal of order =-. In this case,

the sequence {o,(|D|™?)/logn} is bounded, and the K-cycle is also called d*-
summable. For a d*-summable cycle, the quantity ¢(a) = Tr,(|D|~%(a)), a €
Q(A), defines a positive linear functional on £(A) whose restriction to A is a trace
[9, Theorem 1.3]. Following [10, p.6219], ¢[ 4 is an analogue of the volume integral,
denoted by

p(a) = Try(n(a)|D|~) = Try(|D|n(a)).
In the general case, this defines a quasi-weight in A as follows:
N, = {zeA:Tr,(|D| " %n(2*a*az)) < oo for each a € A}
= {z € A:|D| % (x*a*ax)) € C**(H) for each a € A},

¢(x) = Tro(ID|"n(x))
= Tru(m(z)|D|~9)

= w ({ou(|DI7r(x))/ logn})

- o ({2 romr ] e} ).
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Now let a € A,z € N,. Then
o(r*a*axr) = Tr,(n(z*a*ax)|D|~?)
= Try(n(a*a)r(x)|D|~ % |D|"%w(a")) (by [9, p.182])

)

[m(a) |2 D[~ = m(x)*

IN

(@ Tr. (\|D| $n@)| ) (by 0. p1sa)
(@) Tr (x(a* )| DI4)
Ir(@)|o(a").

Hence we have the following.

Proposition 6.6.3. The d-dimensional volume integral p on A defines an admis-
sible quasi-weight. Further, ¢ is finite if and only if the K-cycle is d*-summable.

Remark 6.6.4. The formula
olapday -+ - day) = i"Try, (|D|_d7r(ao)[D, m(a1)][D, w(az)]---[D, W(an)])

defines a quasi-weight in Q(A). We do not know whether it is admissible or not.
The hypertrace property of X — Tr,(|D|~%X) on 7(A) used above is no longer
available on 7(Q(A)) [9, p.184].

(C) The infinite dimensional case. Motivated by [8, p.6259], consider the quasi-
weight (¢, M) in Q(A) defined by the following data:

Va € Q(A), m(z*a*az)eP” is trace class
operator for all sufficiently small e, and
{tr(m(z*a*ax)e=P")} € I®(N), e = L, ’
neN

‘th: xEQ(A):

Y(z*e) = w({tr(n(z*z)e*P7)}.)

= Limtr(w(:c*a:)e_sDz)

w

e—0

o0

. _epD2
~Lim Y| r(@)e 1, |

e—0 n=1
= Lim|| 7(z)e™ 5D ||2 . x €Ny,

w

e—0

where Lim,, indicates the limit in suitable Cesaro mean and ¢r denotes the usual
e—0

trace in B(H).

Proposition 6.6.5. The quasi-weight 1 in Q(A) is admissible. Further, ¢ is finite
if and only if the K-cycle is 8-summable.

Recall that the K-cycle (r, H, D) is 6-summable if e=P * is a trace class operator
for all € > 0. This #-summability provides a tractable class of infinite dimmensional
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K-cycles, being a kind of compactness condition [8, p. 6258]; and it defines an
integral on Q(A) as

. tr(ﬂ'(oz)e_sD2 )
fo= L
e—0

Proof. Let x € N, a € Q(A). Then, for any € > 0,
e—eDz) —

2
| 7w(aa)e 3" |y

I m(a) [Pl w(z)e= 22" ]|

|| (@) |[Ptr(m(a*@)e==P").

tr(m(z*a*ax)

N

The sequences {5, = tr(r(z*a*az)e=<P")}. and {n. = tr(z(z*z)e=P°)}. are in
1>, and 0 < 6. < ||7(a)||?*n.. Now, w being a positive linear functional on [*°, it
follows that w({d.}) < ||7(a)||?w({n:}). This gives

Y(@*a*az) < ||r(a)|]*v(z"2). O

(D) The integral ][f(a,)|da,|p (p > 0). Let a € Aidentify with 7(a), assumed to be a

self-adjoint operator in B(H). Let F' = D|D|~!. Following [10, p. 6219], da = [F, a]
is a compact operator by the definition of spectral triple. Then |da|? = |[F,a]/?
makes sense in B(H). The spectral theorem defines f(a) in B(H) for each f € Cy(R).

The integral ][f(a)|da|p = Tr,(f(a)|da?) defines a quasi-weight ¢ in Co(R) as
follows:

N, ={f € Co(R) : fa)|da |’ € C'*(H)},
o(f) = ][f(a)lda P = Try(f(a)|da|P), f>0inN,.

Since a is a bounded operator, ¢ turns out to be an admissible quasi-weight in
Co(R).
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