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ADMISSIBILITY OF WEIGHTS
ON NON-NORMED ∗-ALGEBRAS

S. J. BHATT, A. INOUE, AND H. OGI

Abstract. The notion of weights on (topological) ∗-algebras is defined and
studied. The primary purpose is to define the notions of admissibility and
approximate admissibility of weights, and to investigate when a weight is ad-
missible or approximately admissible. The results obtained are applied to
vector weights and tracial weight on unbounded operator algebras, as well as
to weights on smooth subalgebras of a C∗-algebra.

1. Introduction

Non-commutative integration deals with positive linear functionals and weights
on a non-commutative ∗-algebra A as well as the ∗-representations of A induced
by them. When A is a von Neumann algebra or a C∗-algebra, it has become an
essential part of the theory. In fact, much of the theory of these algebras can be
regarded as a non-commutative analogue of integration theory, the role of finite
(resp. infinite) measure being played by a positive linear functional (resp. weight).
Weights have also appeared naturally in unbounded operator algebras in the context
of unbounded Tomita-Takesaki theory [16], [17], as well as in quantum physics [3].
In the framework of unbounded representation theory [25], this leads to weights on
A. Though positive linear functionals and the GNS representations of A induced
by them have been greatly analyzed, no such attempt seems to have been made
for theory of weights. The purpose of the present paper is to initiate the study of
weights on abstract ∗-algebras. The paper is roughly devided into two parts. Part
I constitutes Sections 2 - 5, in which admissibility and approximate (and strict in-)
admissibility (a phenomena not found in C∗-algebras) of weights are investigated.
Section 6 constitutes Part II, in which the abstract results of Part I are applied to
a number of concrete examples.

Let P(A) denote the positive cone of A. A weight on A is a map ϕ : P(A) →
R+ ∪ {∞} such that (i) ϕ(x + y) = ϕ(x) + ϕ(y), and (ii) ϕ(λx) = λϕ(x) for
all x, y in P(A) and all λ ≥ 0. Unlike C∗-algebras, N0

ϕ ≡ {x ∈ A;ϕ(x∗x) < ∞}
need not be a left ideal of A. However, Nϕ ≡ {x ∈ A : ϕ(x∗a∗ax) < ∞, ∀a ∈ A}
is a left ideal, and ϕdP(Nϕ)= ψ is a quasi-weight in the sense that ψ is defined
on the positive cone P(Nϕ) of the left ideal Nϕ such that ψ : P(Nϕ) → R+

satisfies (i) and (ii). The construction of the GNS-representation πϕ of A using
a quasi-weight ϕ on P(Nϕ) summarized in Section 2. In general, πϕ maps A
into unbounded operators in a Hilbert space. We call ϕ admissible if πϕ is a
bounded operator representation. Such quasi-weights are characterized in Section
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3, and sufficient conditions for admissibility are investigated. Next we consider the
question: When is every (quasi-) weight on A admissible? In fact, the notion of
quasi-weights introduces a kind of boundedness structure in A. This is investigated
and exhibited in several class of ∗-algebras like Banach ∗-algebras, the BG∗-algebras
of Palmer [19], locally convex ∗-algebras, in particular, generalized B∗-algebras [2],
[12], and pro-C∗-algebras [21]. It is shown in Theorem 3.12 that if A is a pseudo-
complete locally convex ∗-algebra in which A = A0 (the Allan bounded elements of
A [1]), then every quasi-weight on A is admissible. In Section 4, conditions ensuring
A = A0 are investigated. A (quasi-) weight ϕ on a ∗-algebra A is approximately
admissible if ϕ = lim

α
ϕα for a net {ϕα} of admissible (quasi-) weights. Such

(quasi-) weights are investigated in Section 5. It is shown in Theorem 5.6 that if
ϕ is a regular quasi-weight such that πϕ is self-adjoint, then ϕ is approximately
admissible iff πϕ is a direct sum of bounded operator representations. In Section
6, we discuss the following, exhibiting weights in a number of interesting non-C∗-
algebra situations.

(1) Weight analogue of the Bochner-Weil-Raikov theorem: An integral repre-
sentation of quasi-weights on a commutative Banach ∗-algebra is obtained. This
provides weight analogue of the Bochner-Weil-Raikov Theorem, and is used to de-
fine the Fourier transform of unbounded measures on a locally compact abelian
group.

(2) Integration algebras, measures and tracial weights: A ∗-algebra A with a
faithful (quasi-) weight ϕ constitutes what we call an integration algebra. In the
framework of classical measure theory, admissibility of ϕ corresponds to finiteness
of measure, whereas approximate admissibility corresponds roughly to σ-finiteness.
Let M be an O∗-algebra (unbounded operator algebra) defined on a dense sub-
space D of a Hilbert space H. For Ω a positive operator, ϕ(X†X) = tr(X†X),
ϕΩ(X†X) = tr(X†XΩ2) (X ∈ M, X† = X∗dD) define quasi-weights in M. Con-
ditions on M are investigated under which ϕ and ϕΩ are admissible (resp. approx-
imately admissible, strictly inadmissible). Such quasi-weights ϕΩ appear in several
cases of interest in quantum theory.

(3) Vector (quasi-) weights defined by ∗-representations: Let (π, D(π), H) be
a ∗-representation of a ∗-algebra A into linear operators all defined on a dense
invariant subspace D(π) of a Hilbert space H. A vector ξ ∈ H \ D(π∗) defines a
vector quasi-weight fξ, which is not necessarily a positive functional, as follows.
Take

Nfξ
= {x ∈ A : ξ ∈ D(π(x∗)∗), π(x∗)∗ξ ∈ D(π)}.

fξ(x∗x) = ||π(x∗)∗ξ||2, x ∈ Nfξ
.

If A is the ∗-algebra of polynomially dominated measurable functions on R+ and if
π is the ∗-representation defined by the spectral theorem of a positive self-adjoint
operator h, then fξ is approximately admissible, and it is admissible iff h is bounded.
On the other hand, for the Schrödinger representation of the CCR algebra, fξ is
far away from admissibility.

(4) Point evalutions: Let C(X) be the algebra of all continuous complex func-
tions on X , and let Cb(X) = {f ∈ C(X) : f is bounded}. Let νX and βX be the
Hewitt real compactification and the Stone-Čech compactification of X , respec-
tively. Every x ∈ βX \ νX defines an admissible weight in a ∗-subalgebra A of
C(X) containing Cb(X).



ADMISSIBILITY OF WEIGHTS ON NON-NORMED ∗-ALGEBRAS 4631

(5) Weights on smooth subalgebras of a C∗-algebra: Let B be a smooth ∗-
subalgebra of a C∗-algebraA. It is shown that every quasi-weight on B is admissible,
and under an additional assumption, it extends to a quasi-weight on A.

(6) Quasi-weights in non-commutative geometry: In the framework of the Connes
theory of non-commutative geometry, let Ω(A) be the ∗-algebra of non-commutative
differential forms over a ∗-algebra A. Let (π,H,D) be a K-cycle, and let Trω de-
note the Dixmier trace on B(H). Then τω(x∗x) = Trω(π(x)∗π(x)) (x ∈ Ω(A))
defines an admissible quasi-weight on Ω(A). The d-dimensional volume integral
a → � π(a)|D|−d gives an admissible quasi-weight on A, which is finite iff the
K-cycle is d+-summable. The map ψ(x∗x) = Limε→0 tr(π(x∗x)e−εD

2
) (limit in

suitable Cesáro mean) gives an admisssible quasi-weight in Ω(A), and is finite iff
the K-cycle is θ-summable. This provides a quasi-weight approach to these quan-
tized integrals. In Connes’ original approach, only finite cases (positive functionals)
are considered.

2. Weights and quasi-weights on a ∗-algebra

Let A be a ∗-algebra, i.e. a linear associative involutive algebra. For a subspace
N of A, let P(N ) =

{∑n
k=1 x

∗
kxk : xk ∈ N (k = 1, 2, · · · , n), n ∈ N

}
, and call it

the positive cone generated by N .

Definition 2.1. (a) A map ϕ : P(A) → R+ ∪ {∞} is said to be a weight on P(A)
in A if

(i) ϕ(x + y) = ϕ(x) + ϕ(y), x, y ∈ P(A),
(ii) ϕ(λx) = λϕ(x), x ∈ P(A), λ ≥ 0.

(b) Let N be a left ideal of A. A map ϕ : P(N) → R+ is called a quasi-weight
on P(N) in A if it satisfies the above (i) and (ii) for P(N). In this case, we denote
N by Nϕ.

Lemma 2.2. Let ϕ be a weight on P(A) in A. Let Nϕ = {x ∈ A : ϕ(x∗a∗ax)
<∞ for all a ∈ A}, N0

ϕ = {x ∈ A : ϕ(x∗x) <∞}. Then the following statements
hold:

(i) N0
ϕ is a linear subspace of A, and it need not be a left ideal.

(ii) Nϕ is a left ideal of A, and ϕdP(Nϕ) is a quasi-weight (denoted by ϕq and
called a quasi-weight generated by ϕ).

(iii) If A has identity, then Nϕ ⊂ N0
ϕ.

(iv) If A is a C∗-algebra, then N0
ϕ ⊂ Nϕ.

We here state the basic theory of (unbounded) ∗-representations of A. Let D
be a dense subspace in a Hilbert space H and let L†(D) denote the set of all
linear operators X in H with the domain D for which XD ⊂ D, D(X∗) ⊃ D
and X∗D ⊂ D. Then L†(D) is a ∗-algebra under the usual operations and the
involution X → X† ≡ X∗dD. A ∗-subalgebra of the ∗-algebra L†(D) is said to
be an O∗-algebra on D in H. A ∗-representation π of A on a Hilbert space H
with a domain D is a ∗-homomorphism of A into L†(D), and then we replace
D and H by D(π) and Hπ, respectively. Let π be a ∗-representation of A. If
D(π) is complete with the graph topology tπ defined by the family of seminorms
{|| · ||π(x) ≡ || · ||+ ||π(x) · || : x ∈ A}, then π is said to be closed. It is well known
that π is closed if and only if D(π) =

⋂
x∈AD(π(x)). The closure π of π is defined
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by

D(π) =
⋂
x∈A

D(π(x)) and π(x)ξ = π(x)ξ for x ∈ A, ξ ∈ D(π).

Then π is the smallest closed extension of π. We put

D∗(π) =
⋂
x∈A

D(π(x)∗) and π∗(x)ξ = π(x∗)∗ξ for x ∈ A, ξ ∈ D∗(π).

Then π∗ is a representation of A, but it is not necessarily a ∗-representation. If
π∗ = π, then π is said to be self-adjoint. A weak commutant π(A)′w of π is defined
by

π(A)′w = {C ∈ B(Hπ) : 〈Cπ(x)ξ, η〉 = 〈Cξ, π(x∗)η〉 ∀x ∈ A, ∀ξ, η ∈ D(π)},
where B(Hπ) is the set of all bounded linear operators on Hπ, and it is a weakly
closed ∗-invariant subspace of B(Hπ), but it is not necessarily an algebra. It is
known that the self-adjointness of π implies π(A)′wD(π) ⊂ D(π) and π(A)′wD(π) ⊂
D(π) if and only if π(A)′w is a von Neumann algebra and π(x) is affiliated with the
von Neumann algebra (π(A)′w)′ for each x ∈ A. For more details we refer to [23],
[25].

Let ϕ be a quasi-weight on P(Nϕ) in A. Let D(ϕ) be the subspace of A generated
by {x∗x : x ∈ Nϕ}. Since Nϕ is a left ideal, we have D(ϕ) = linear span of
{y∗x : x, y ∈ Nϕ}. Thus each z =

∑
k αky

∗
kxk (αk ∈ C, xk, yk ∈ Nϕ) in D(ϕ)

is represented as z =
∑

j βjz
∗
j zj (βj ∈ C, zj ∈ Nϕ). Hence a linear functional

on D(ϕ) into C is defined by ϕ(z) =
∑

j βjϕ(z∗j zj). Then ϕ satisfies the Cauchy-
Schwarz inequality : |ϕ(y∗x)|2 ≤ ϕ(y∗y)ϕ(x∗x) (x, y ∈ Nϕ). Now Nϕ ≡ {x ∈ Nϕ :
ϕ(x∗x) = 0} is a left ideal of Nϕ. Let λϕ(x) = x+Nϕ, x ∈ Nϕ. Then Xϕ = Nϕ/Nϕ
is a pre-Hilbert space with inner product 〈λϕ(x), λϕ(y)〉 = ϕ(y∗x). Let Hϕ be the
Hilbert space obtained by the completion of Xϕ. Let π0

ϕ be the representation of
A on Hϕ with domain D(π0

ϕ) = Xϕ as π0
ϕ(x)λϕ(y) = λϕ(xy). Let (πϕ,D(πϕ),Hϕ)

be the closure of π0
ϕ [25]. Note that ϕ(z∗xy) = 〈πϕ(x)λϕ(y), λϕ(z)〉 (x ∈ A, y

and z in Nϕ), and if A has identity, then Hϕ = [πϕ(A)λϕ(Nϕ)]− (norm closure),
and D(πϕ) = [πϕ(A)λϕ(Nϕ)]tπϕ(A) (closure in the graph topology tπϕ(A)). The
∗-representation πϕ is called the GNS-representation for ϕ. On the other hand, in
Example 6.3, we consider the quasi-weights defined by given ∗-representations of
A.

We shall need the concept of regular quasi-weights introduced in [18]. Let {fα} be
a net of positive linear functionals on A. Define supα fα : z ∈ P(A) → supα fα(z) ∈
[0,∞]. Let Nsupα fα = {x ∈ A : supα fα(x∗x) <∞} a subspace of A. It is shown in
[18] that, for a subspace N of Nsupα fα , supα fα(x + y) = supα fα(x) + supα fα(y)
for all x, y in P(N ) iff {fα} has the net property for P(N ) in the sense that, given
a finite set {x1, x2, · · · , xm} in N , there exists a subsequence {αn} of {α} such
that lim

n→∞fαn(x∗kxk) = supα fα(x∗kxk), k = 1, 2, · · · ,m. In this case, the restriction

of the map supα fα to P(N ) is denoted by SupαfαdP(N). If {fα} has the net
property for P(N0

supα fα
), then the restriction of supα fα to P(Nsupα fα) is denoted

by Supαfα.

Definition 2.3. Let ϕ and ψ be quasi-weights in A. We write ψ ≤ ϕ if Nϕ ⊂ Nψ

and ψ(x∗x) ≤ ϕ(x∗x) for all x ∈ Nϕ. We write ψ ≺ ϕ if Nϕ = Nψ and ψ(x∗x) ≤
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ϕ(x∗x) for all x ∈ Nϕ. A positive linear functional f on A is said to be ϕ-majorized
if f ≤ ϕ and |f(x)|2 ≤ ϕ(x∗x) for all x ∈ Nϕ.

We have the following lemma.

Lemma 2.4. Let ϕ and ψ be quasi-weights in A. Suppose ψ ≤ ϕ. Then there
exists a continuous linear map Kϕ,ψ : Hϕ → Hψ defined by Kϕ,ψλϕ(x) = λψ(x)
(x ∈ Nϕ). Further, Kϕ,ψ satisfies the following :

(i) K∗
ϕ,ψKϕ,ψ ∈ πϕ(A)′w,

(ii) ψ(x∗x) =
〈
K∗
ϕ,ψKϕ,ψλϕ(x), λϕ(x)

〉
, for each x ∈ Nϕ.

Definition 2.5. A quasi-weight ϕ on P(A) is called regular if ϕ = supα fαdP(Nϕ)

for some net {fα} of ϕ-majorized positive linear functionals on A. A weight ϕ is
regular if ϕ = supα fα for some net {fϕ} of ϕ-majorized positive linear functionals
on A.

The proof of the following lemma is similar to the proof of [18, Theorem 3.5].

Lemma 2.6. Let ϕ be a regular quasi-weight in A. Then there exist a net {Cβ}
in πϕ(A)′w, 0 ≤ Cβ ≤ I, and a net {ξβ} in D(πϕ∗) such that

(i) Cβλϕ(x) = πϕ
∗(x)ξβ , for each x ∈ Nϕ,

(ii) Cβ → I strongly.

We need the following lemma in Section 5.

Lemma 2.7. Let ϕ be a regular quasi-weight in A such that πϕ(A)′w is a von
Neumann algebra. For each C ∈ πϕ(A)′w, C ≥ 0, we put

ϕC(x∗x) = 〈Cλϕ(x), λϕ(x)〉 , x ∈ Nϕ.

Then ϕC is a quasi-weight on P(A).

Proof. By Lemma 2.6, there exist a net {Cβ} in πϕ(A)′w and a net {ξβ} in D(πϕ∗)
satisfying the conditions in Lemma 2.6. For x ∈ Nϕ we have

ϕC(x∗x) = 〈Cλϕ(x), λϕ(x)〉
= lim

β
〈Cλϕ(x), Cβλϕ(x)〉

= lim
β
〈Cλϕ(x), πϕ∗(x)ξβ〉

= lim
β

〈
Cλϕ(x), π̂ϕ

∗(x)ξβ
〉

= lim
β
〈π̂ϕ(x∗)Cλϕ(x), ξβ〉

= lim
β
〈Cπ̂ϕ(x∗)λϕ(x), ξβ〉

= lim
β
〈Cπϕ(x∗)λϕ(x), ξβ〉

= lim
β
〈Cλϕ(x∗x), ξβ〉 ,

where π̂ϕ is the induced extension of πϕ [25, Section 8.5]. This implies that ϕC is
a quasi-weight on P(A).

3. Boundedness and admissibility

Let ϕ be a quasi-weight on P(Nϕ) in a ∗-algebra A. We define the ϕ-bounded
part Abϕ of A by

Abϕ = {a ∈ A : ∃ka > 0 such that ϕ(x∗a∗ax) ≤ ka ϕ(x∗x), ∀x ∈ Nϕ}.
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For a ∈ Abϕ we put

pϕ(a) = sup

{
ϕ(x∗a∗ax)

1
2

ϕ(x∗x)
1
2

: x ∈ Nϕ, ϕ(x∗x) 6= 0

}
.

We have the following:

Lemma 3.1. (1) Abϕ = {a ∈ A : πϕ(a) ∈ B(Hϕ)}, and Abϕ is a ∗-subalgebra of A.
(2) pϕ(a) = ||πϕ(a)||, a ∈ Abϕ, and pϕ is a C∗-seminorm on Abϕ.

Definition 3.2. A quasi-weight ϕ on P(Nϕ) in a ∗-algebra A is admissible if
A = Abϕ.

Let ϕ be a weight on P(A) in a ∗-algebra A. We put

Absϕ = {a ∈ A : ∃ka > 0 such that ϕ(x∗a∗ax) ≤ ka ϕ(x∗x), ∀x ∈ A}.
Then Absϕ is a subalgebra of A contained in Abϕq

.
We do not know whether Absϕ is ∗-invariant or not.

Definition 3.3. A weight ϕ on P(A) is said to be admissible if the quasi-weight
ϕq = ϕdP(Nϕ) defined by ϕ is admissible, i.e. A = Abϕq

. Further, ϕ is said to be
strongly admissible if A = Absϕ .

Lemma 3.4. Let ϕ be a weight on P(A). Then the following are equivalent.

(i) ϕ is strongly admissible.
(ii) ϕ is admissilbe and N0

ϕ ⊂ Nϕ.

Proposition 3.5. Let ϕ be a quasi-weight on P(Nϕ) in a ∗-algebra A.
(1) The following are equivalent.

(i) ϕ is admissible.
(ii) There exist a submultiplicative seminorm p on A and a scalar γ > 0 such

that |ϕ(x∗ax)| ≤ γp(a)ϕ(x∗x) for each x ∈ Nϕ and a ∈ A.

(2) ϕ is admissible if there exist a submultiplicative seminorm p on A and a
scalar γ > 0 such that |ϕ(x∗ax)| ≤ γp(x∗ax) for each a ∈ A and x ∈ Nϕ.

We do not know whether the converse of (2) holds or not. For the proof of (2),
we shall use the following [7, Proposition 2.8]:

Lemma 3.6. Let q be any submultiplicative seminorm on an algebra A. Then
lim
n→∞q(x

n)
1
n exists, and lim

n→∞q(x
n)

1
n = inf

n
q(xn)

1
n .

Proof of Proposition 3.5. (1) For a ∈ A, x ∈ Nϕ, we have ax ∈ Nϕ and x∗ax ∈
D(ϕ). Thus statement (ii) makes sense. Obviously (ii) implies (i). Suppose (i)
holds; then by the Cauchy-Schwartz inequality for ϕ in D(ϕ) we have

|ϕ(x∗ax)|2 ≤ ϕ((ax)∗ax)ϕ(x∗x) ≤ pϕ(a)2ϕ(x∗x)2 (x ∈ Nϕ, a ∈ A),

which implies (ii).
(2) Define q(x) = max(p(x), p(x∗)), x ∈ A. Then q is a ∗-invariant submulti-

plicative seminorm on A , and |ϕ(x∗ax)| ≤ γq(x∗ax) holds for all x ∈ Nϕ, a ∈ A.



ADMISSIBILITY OF WEIGHTS ON NON-NORMED ∗-ALGEBRAS 4635

Then we have
ϕ(x∗a∗ax) = ϕ(x∗(a∗ax))

= 〈λϕ(a∗ax), λϕ(x)〉
≤ ||λϕ(a∗ax)|| ||λϕ(x)||
= 〈λϕ(a∗ax), λϕ(a∗ax)〉 1

2 〈λϕ(x), λϕ(x)〉 1
2

= ϕ(x∗(a∗a)2x)
1
2 ϕ(x∗x)

1
2 .

By induction, for any n ∈ N we have

ϕ(x∗(a∗a)x)2
n+1 ≤ ϕ(x∗(a∗a)2

n+1
x)ϕ(x∗x)2

n+1−1

≤ γq(x∗(a∗a)2
n+1

x)ϕ(x∗x)2
n+1−1

≤ γq((a∗a)2
n+1

)q(x)2ϕ(x∗x)2
n+1−1.

Therefore we have

ϕ(x∗a∗ax) ≤ γ
1

2n+1 q((a∗a)2
n+1

)
1

2n+1 q(x)
1

2n ϕ(x∗x)1−
1

2n+1 .

Letting n → ∞, we get ϕ(x∗a∗ax) ≤ rq(a∗a)ϕ(x∗x) (x ∈ Nϕ, a ∈ A), where
rq(a∗a) = lim

n→∞q((a
∗a)n)

1
n <∞, which implies that ϕ is admissible.

Next we consider when every quasi-weight on a ∗-algebra A is admissible. The
notion of quasi-weights imposes a certain boundedness structure on A. Let Wq(A)
denote the set of all quasi-weights onA. An element a ∈ A is said to be quasi-weight
bounded if for each ϕ ∈ Wq(A), there is a scalar ka,ϕ > 0 such that ϕ(x∗a∗ax) ≤
ka,ϕϕ(x∗x) for all x ∈ Nϕ. Further, a is uniformly quasi-weight bounded if ka ≡
sup{ka,ϕ : ϕ ∈ Wq(A)} <∞. Let Ab (resp. Aub) denote the set of all quasi-weight
bounded (resp. uniformly quasi-weight bounded) elements of A.

Proposition 3.7. (1) Ab =
⋂
{Abϕ : ϕ ∈ Wq(A)}, and it is a ∗-subalgebra of A

containing Aub as a ∗-subalgebra.
(2) Let τ denote the (not necessarily Hausdorff) topology on Ab defined by the C∗-

seminorms {pϕ : ϕ ∈ Wq(A)}. For a ∈ Aub, let |a|∞ = sup{ pϕ(a) : ϕ ∈ Wq(A) }.
Then | · |∞ is a C∗-seminorm on Aub, and (Aub, | · |∞) ↪→ (Ab, τ) is continuous.

(3) The following are equivalent.
(a) | · |∞ is a norm on Aub.
(b) τ is Hausdorff on Ab.
(c) There exists {ϕλ : λ ∈ Λ} ⊂Wq(A) which is separating in the sense that

for any a ∈ A, ϕλ(x∗a∗ax) = 0 (∀x ∈ Nϕλ
, ∀λ ∈ Λ) implies a = 0.

(4) Every quasi-weight in A is admissible iff A = Ab.
We omit the easy proof. In the following, we illustrate the above structures, and

show that the notion of Allan boundedness [1] is included in it.

Proposition 3.8. Let (A, || · ||) be a Banach ∗-algebra. Then each quasi-weight in
A is admissible, A = Aub, and | · |∞ = p∞( · ) (the Gelfand-Naimark pseudonorm
on A). Further, if A is a C∗-algebra, then || · || = | · |∞.

Proof. For a quasi-weight ϕ on P(Nϕ) in A, the ∗-representation πϕ : A →
L†(D(πϕ)) can be extended to the unitization A1 of A. Hence we assume that
A has identity. Then for any ξ ∈ D(πϕ), the positive linear functional ωξ(a) =
〈πϕ(a)ξ, ξ〉 (a ∈ A) is continuous [7, Corollary 37.9], and |ωξ(a)| ≤ ||ωξ|| || a || =
ωξ(1 )||a||, ∀a ∈ A. Hence ||πϕ(a)ξ|| ≤ || a || || ξ || (a ∈ A, ξ ∈ D(πϕ)). Thus ϕ
is admissible, and pϕ(a) ≤ || a ||. Since the Gelfand-Naimark pseudonorm is the
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greatest C∗-seminorm on A, we have pϕ(a) ≤ p∞(a) (a ∈ A). Thus A = Aub and
| a |∞ ≤ p∞(a). On the other hand, since every positive linear functional f on A
defines a finite weight ϕ = fdP(A), it follows from [7, Corollary 39.12] that

p∞(a)2 = sup
f

{
sup

{
f(x∗a∗ax)
f(x∗x)

: x ∈ A, f(x∗x) 6= 0
}}

≤ sup{pϕ(a)2 : ϕ ∈Wq(A)}
= | a |2∞.

Following Palmer, a ∗-algebra A is a BG∗-algebra if every ∗-representation
(π, D(π), H) of A necessarily maps A into bounded operators [5]. Then σ =

∑⊕
π π

is also a bounded operator representation, and q∞(a) = ||σ(a)|| (a ∈ A) defines the
greatest C∗-seminorm on A. A U∗-algebra is a ∗-algebra A which is a linear span
of its quasi-unitary elements. A Banach ∗-algebra is a U∗-algebra, and a U∗-algebra
is a BG∗-algebra. The following proposition can be proved in the same way as the
previous one.

Proposition 3.9. Let A be a BG∗-algebra. Then A = Aub and | · |∞ = p∞( · ).
In particular, every quasi-weight in A is admissible.

Now let A be a locally convex ∗-algebra. An element a ∈ A is called (Allan)
bounded [1] if there exists a λ > 0 such that {(λ−1a)n : n ∈ N} is bounded. Let
A0 be the bounded part of A , consisting of all Allan bounded elements of A. We
denote by A[Ah0 ] the ∗-subalgebra of A generated by (A0)h = {h ∈ A : h = h∗}.
Since A0 is not even a subspace in general, A[Ah0 ] 6⊂ A0. If A0 is a ∗-sublagebra
of A (in particular, if A is commutative), then A0 = A[Ah0 ]. By B we denote
the collection of all subsets B of A such that B is bounded, closed and absolutely
convex, and B2 ⊂ B. For each B ∈ B we put

A(B) = {λx : λ ∈ C, x ∈ B},
||x||B = inf{λ > 0 : x ∈ λB}, x ∈ A(B).

Then A(B) is a normed algebra with the norm || · ||B. A locally convex algebra A
is said to be pseudo-complete if (A(B), || · ||B) is complete for every B ∈ B . If A
is sequentially complete, then it is pseudo-complete, but the converse doesn’t hold
in general [1, Example 1]. The radius of boundedness β(x) of x ∈ A is defined [1]
by

β(x) = inf{λ > 0 : {(λ−1x)n : n ∈ N} is bounded},
where inf ∅ = ∞.

Lemma 3.10. Let A be a pseudo-complete locally convex ∗-algebra. Then A[Ah0 ] ⊂
Aub, and for all a ∈ (A0)h, | a |∞ ≤ β(a) (the radius of boundedness of a). Further,
if ϕ is a weight on P(A), then A[Ah0 ] ⊂ Absϕ ∩ (Absϕ )∗.

Proof. We first show the following

Statement. Let ε > 0. Let a = a∗. Then there exists b = b∗ in A such that

x∗a2x+ (β(a)2 + ε)(x− bx)∗(x− bx) = (β(a)2 + ε)x∗x

for all x ∈ A.
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This is proved by a square root lemma argument. Let x0 = 1
(β(a)2+ε) a

2. Then
β(x0) < 1. Hence by [1, Corollary 2.17], there exists an element B in B such that

x0 ∈ A(B) and ||x0||B < 1. The scalar series f(z) = −
∞∑
n=1

(
1
2
n

)
(−z)n converges

for all z, | z | ≤ 1, and 2f(z)− f(z)2 = z. Since (A(B), || · ||B) is a Banach algebra,

this implies that
∞∑
n=1

(
1
2
n

)
(−x0)n converges in || · ||B to an element b ∈ A(B) ⊂ A0

such that 2b − b2 = x0 = 1
β(a)2+ε a

2. Since x0 = x∗0, we have b = b∗. Thus,
x∗a2x = (β(a)2 + ε)(2x∗bx− x∗b2x). This immediately gives

x∗a2x+ (β(a)2 + ε)(x− bx)∗(x− bx) = (β(a)2 + ε)x∗x.

This implies that ϕ(x∗a2x) ≤ (β(a)2 + ε)ϕ(x∗x), for all ϕ ∈ Wq(A). Letting
ε → 0, we get ϕ(x∗a2x) ≤ β(a)2ϕ(x∗x); hence pϕ(a)2 = pϕ(a2) ≤ β(a)2. Thus,
a ∈ Aub with | a |∞ ≤ β(a). It follows that A[Ah0 ] ⊂ Aub. The assertion about
weight can be proved similarly.

Lemma 3.11. Let ϕ be a quasi-weight on P(Nϕ) in a locally convex ∗-algebra A.
Assume that ϕ is continuous on D(ϕ). Then A[Ah0 ] ⊂ Abϕ.
Proof. For each x ∈ Nϕ we define a continuous positive linear functional ϕx on A
by ϕx(a) = ϕ(x∗ax), a ∈ A. By arguments as in Proposition 3.5 (2) we have

|ϕx(h)|2n ≤ ϕ(x∗x)2
n−1ϕx(h2n

)

for all h = h∗ in A and all n ∈ N. Hence it follows from [1, Proposition 2.18] that
ϕ(x∗h2x) ≤ ϕ(x∗x)β(h)2, which implies h ∈ Abϕ.

Lemmas 3.10 and 3.11 give the following.

Theorem 3.12. Let A be a locally convex ∗-algebra with A = A0.
(1) If A is pseudo-complete, then every quasi-weight and every weight is admis-

sible, A = Aub, and | a |∞ ≤ β(a∗a)
1
2 for all a ∈ A.

(2) If ϕ is a quasi-weight on P(Nϕ) in A such that ϕ is continuous on D(ϕ),
then ϕ is admissible.

Corollary 3.13. Let A be a locally convex ∗-algebra with A = A0. Let π be a
nondegenerate ∗-representation of A. If A is pseudo-complete or if π is weakly
continuous, then π is a bounded operator representation.

Proof. For ξ ∈ D(π), let fξ(a) = (ωξ ◦ π)(a) = 〈π(a)ξ, ξ〉, a ∈ A. Let A be
pseudo-complete. By Lemma 3.10 we have ||π(a)π(x)ξ||2 ≤ β(a)2||π(x)ξ||2 for all
a = a∗ ∈ A and all x ∈ A. Since π is non-degenerate, it follows that π(a) is
bounded for all a ∈ A. Now assume that π is weakly continuous. Then, since each
fξ is continuous, it follows from Lemma 3.11 that ||π(a)π(x)ξ||2 = fξ(x∗a2x) ≤
β(a)2fξ(x∗x) = β(a)2||π(x)ξ||2 for a = a∗ ∈ A and x ∈ A, which implies that π
maps A into bounded operators.

Given a locally convex ∗-algebra A, define B∗ = {B ∈ B ; B∗ = B}. Then A is
said to be a GB∗-algebra [2], [12] if the following hold:

(i) A is symmetric.
(ii) The collection B∗ admits the greatest member B0.
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(iii) The ∗-subalgebra A(B0) = {λx : λ ∈ C, x ∈ B0} is a C∗-algebra with norm
||x ||B0 = inf{λ > 0 : λ−1x ∈ B0}.

A particular case of GB∗-algebras is a projective limit of C∗-algebras called pro-C∗-
algebras [21], i.e. a complete locally convex ∗-algebra whose topology is determined
by the family s(A) of all continuous C∗−seminorms. In this case,

B0 = {a ∈ A : sup
p∈s(A)

p(a) ≤ 1} and ||a||B0 = sup
p∈s(A)

p(a).

Proposition 3.14. Let A be a pseudo-complete locally convex GB∗-algebra. Then
Aub = A(B0) and | · |∞ = || · ||B0 .

Proof. By [12], A(B0)h ⊂ (A0)h. Hence by Lemma 3.10, A(B0) ⊂ A[Ah0 ] ⊂ Aub,
and by a standard C∗-algebra argument, |a|∞ = ||a||B0 for all a ∈ A(B0). Now let
a ∈ Aub. Then for each positive linear functional f on A, f(x∗a∗ax) ≤ | a |2∞f(x∗x)
for all x ∈ A. It follows that πf (a) is bounded, and supf ||πf (a)|| ≤ |a|∞. Let π =∑⊕
f πf . By [12], π represents A faithfully as an extended C∗-algebra with common

dense domain D(π) in the Hilbert space H =
⊕

f Hf . Then for all ξ = (ξf ) ∈ D(π)
we have

||π(a)ξ||2 =
∑
f

||πf (a)ξf ||2 ≤
(

sup
f
||πf (a)||

)∑
f

||ξf ||2 ≤ | a |2∞|| ξ ||2.

Thus π(a) is bounded, and ||π(a)|| ≤ | a |∞. Since πdA(B0) is one to one, we have
|| a ||B0 = ||π(a)||. Thus A(B0) = Aub and || · ||B0 = | · |∞.

A complete locally m-convex ∗-algebra A is a complete topological ∗-algebra A
whose topology is determined by a family of ∗-invariant submultiplicative semi-
norms. By [6, Proposition 3.2], every continuous positive linear functional on A is
admissible. The following is an analogue of this result for quasi-weights.

Proposition 3.15. Let ϕ be a quasi-weight on P(Nϕ) in a locally m-convex ∗-
algebra A. If ϕ is continuous on D(ϕ), then ϕ is admissible.

Proof. This follows from Proposition 3.5 (2).

The following can be easily proved.

Proposition 3.16. Let M be an O∗-algebra on a dense subspace D of a Hilbert
space H. Let Mb = {T ∈M : T is bounded}. Then Mub = Mb, and | · |∞ = || · ||
(the operator norm on M).

We do not know whether in the above Mb = Mub or not.

4. The case A = A0 in a locally convex ∗-algebra

Theorem 3.12 suggests that from the point of view of admissibility, it is important
to characterize locally convex ∗-algebras A such that A = A0. In this section, we
consider this problem. An element x of A is quasi-regular (resp. quasi-invertible)
if (1 − x) has inverse belonging to the unitization A1 of A (resp. belonging to
(A0)1). Let Aqr (resp. Aqi) be the set of all quasi-regular (resp. quasi-invertible)
elements of A. For x ∈ Aqr , xq denotes the quasi-inverse of x, i.e. (1 −xq)(1 −x) =
(1 − x)(1 − xq) = 1 .

Lemma 4.1. Let A be pseudo-complete. Let p be a continuous seminorm on A.
The following are equivalent.



ADMISSIBILITY OF WEIGHTS ON NON-NORMED ∗-ALGEBRAS 4639

(1) {x ∈ A : p(x) < 1} ⊂ Aqi.
(2) β(x) ≤ p(x) for all x ∈ A.

Proof. (1) ⇒ (2) Take x ∈ A, λ ∈ C. Let |λ | > p(x). Then by (1), λ−1x is quasi-
invertible, and so λ1−x has inverse in (A0)1. From [1, Theorem 3.1], it follows that
there exist B ∈ B and a neighbourhood N of λ such that for each µ ∈ N , µ1 − x
is investible, Rµ = (µ1 − x)−1 ∈ A(B)1 and R is holomorphic at λ in the sense of
norm convergence in A(B)1. Hence |λ |−(n+1)xn → 0 in the norm of A(B)1, which
implies, by [1, Proposition 2.14], that β(x) ≤ |λ |. Hence β(x) ≤ p(x).

(2) ⇒ (1) Let x ∈ A. Let δ > 0 be such that p(x) < δ < 1. Since β(x) ≤ p(x) <
δ, there exists B ∈ B such that x ∈ A(B) and ||x ||B < δ. Then we have∥∥∥∥∥−

m∑
k=n

xk

∥∥∥∥∥
B

≤
m∑
k=n

‖ x ‖kB <
m∑
k=n

δk.

Since (A(B), || · ||B) is complete, it follows that −∑∞
k=1 x

k converges to y in A(B).
Clearly, y = xq. Thus x ∈ Aqi.

Theorem 4.2. Let A be a pseudo-complete locally convex ∗-algebra. Consider the
following statements.

(1) A has continuous quasi-inverse, i.e. there exists a neighbourhood U of o such
that U ⊂ Aqr and the quasi-inversion x→ xq is continuous at o.

(2) Aqr is open.
(3) There exists a continuous seminorm p on A such that β(x) ≤ p(x) for all

x ∈ A.
(4) A = A0.

Then the following implications hold.

(2)
(1) ⇒ m ⇒ (4).

(3)

If the multiplication of A is jointly continuous (e.g. A is a Fréchet ∗-algebra),
then the above statements (1), (2) and (3) are equivalent.

Proof. (2) ⇔ (3) follows from Lemma 4.1.
(1) ⇒ (3). By (1), there exists a continuous seminorm p on A such that

{x ∈ A : p(x) < 1} ⊂ Aqr. Then x(x − λ1 )−1 is a holomorphic function on
{λ ∈ C : |λ | > p(x)} and

λn−1x(x − λ1 )−1 = −
{
λn−2x+ · · ·+ xn−1 +

xn

λ

}
− xn+1

λ2

(
1 − x

λ

)−1

for all n ∈ N. By the residue theorem,

xn = − 1
2πi

∫
|λ|=δ

λn−1x(x − λ1 )−1dλ

for each δ > p(x). Hence for each continuous seminorm q on A, we have q(xn) ≤
αδn−1 (α is a constant), and so limn→∞q(xn)

1
n ≤ δ. Hence it follows from [1,

Proposition 2.18] that β(x) = supq limn→∞q(xn)
1
n ≤ p(x).

(3) ⇒ (4) is trivial.
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Now suppose that the multiplication in A is jointly continuous. We show that
(3) ⇒ (1). By the equivalence of (2) and (3), we have

U ≡ {x ∈ A : p(x) < 1} ⊂ Aqi ⊂ Aqr
and xq = −∑∞

k=1 x
k for each x ∈ U . Let q be any continuous seminorm on A and

let x ∈ U . Let p(x) < δ < 1. Since β(x) ≤ p(x), there exists n1 ∈ N such that
q(xn)

1
n − 1

n < δ for all n ≥ n1. Let ε > 0. Let n2 ∈ N be such that
∑∞
n=n2

δn < ε.
Take n0 = max(n1, n2). Then we have

q

(
−

∞∑
k=1

xk

)
≤

n0−1∑
k=1

q(xk) +
∞∑

k=n0

δk ≤
n0−1∑
k=1

q(xk) + ε.

This implies, by the joint continuity of multiplication, that x → xq is continuous.
This completes the proof.

Corollary 4.3. Let A be a complete locally m-convex ∗-algebra. If A is a Q-
algebra (i.e., Aqr is open), then every quasi-weight in A is admissible.

5. Approximate admissibility

In this section, we define the notion of approximately admissible quasi-weights,
and characterize them. Throughout this section, let A be a ∗-algebra.

Definition 5.1. Let ϕ be a quasi-weight on A. If there exists a net {ϕα} of admis-
sible quasi weights on A such that ϕα ≤ ϕ, ∀α and ϕ(x∗x) = limα ϕα(x∗x), ∀x ∈
Nϕ, then ϕ is said to be approximately admissible. If there do not exist any non-
zero admissible quasi-weights ψ on A such that ψ ≤ ϕ, then ϕ is called strictly
inadmissible.

Lemma 5.2. Let ϕ be a quasi-weight on A. Let ψ be an admissible quasi-weight
on A such that ψ ≤ ϕ. Then there exists an element K ∈ πϕ(A)′w such that

(i) 0 ≤ K ≤ 1,
(ii) πϕ∗(a)K

1
2 ∈ B(Hϕ) for each a ∈ A,

(iii) ψ(x∗x) = 〈Kλϕ(x), λϕ(x)〉 for each x ∈ Nϕ.

Proof. Take K = K∗
ϕ,ψKϕ,ψ of Lemma 2.4. Since ψ is admissible, it follows that

||K 1
2 πϕ(a)λϕ(x)||2 = ψ(x∗a∗ax) ≤ pψ(a)2ψ(x∗x) ≤ pψ(a)2||λϕ(x)||2

for all x ∈ Nϕ and all a ∈ A, which implies that K
1
2 πϕ(a) ∈ B(Hϕ). Hence, we

have πϕ∗(a)K
1
2 ∈ B(Hϕ), ∀a ∈ A. The rest are trivial.

Lemma 5.3. Let ϕ be a quasi-weight on A. The following statements hold.
(1) Suppose ϕ is admissible. Then every quasi-weight ψ on A with ψ ≺ ϕ is

admissible.
(2) Suppose ϕ is a regular, approximately admissible quasi-weight on A such that

πϕ(A)′w is a von Neumann algebra. Then every quasi-weight ψ on A with
ψ ≺ ϕ is approximately admissible.

Proof. (1) Suppose that ϕ is admissible. By Lemma 5.2, we have

ψ(x∗a∗ax) = ||K 1
2 πϕ(a)λϕ(x)||2 ≤ ||πϕ(a)||2ψ(x∗x)

for all a ∈ A and x ∈ Nϕ = Nψ , which implies that ψ is admissible.
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(2) Since ϕ is approximately admissible, there exists a net {ϕα} of admissible
quasi-weights on A such that ϕα ≤ ϕ, ∀α and limα ϕα = ϕ. By Lemma 5.2, for
each α, there is Kα ∈ πϕ(A)′w such that

0 ≤ Kα ≤ I,

ϕα(y∗x) = 〈Kαλϕ(x), λϕ(y)〉 , ∀x, y ∈ Nϕ,

||πϕ∗(a)K
1
2
α ξ|| ≤ kα||K

1
2
α ξ||, ∀a ∈ A, ξ ∈ Hϕ.(5.1)

Since 0 ≤ Kα ≤ I and limαϕα(x∗x) = ϕ(x∗x), ∀x ∈ Nϕ, it follows that Kα → I
weakly. Since ψ ≺ ϕ, Lemma 2.4 implies that there is an element H of πϕ(A)′w
such that 0 ≤ H ≤ I and ψ(y∗x) = 〈Hλϕ(x), λϕ(y)〉 for all x, y in Nϕ. We now put

ψα = ϕ
H

1
2 KαH

1
2
,

Since πϕ(A)′w is a von Neumann algebra, we have H
1
2 KαH

1
2 ∈ πϕ(A)′w, 0 ≤

H
1
2 KαH

1
2 ≤ I. Hence it follows from Lemma 2.7 that ψα is a quasi-weight on A

such that Nψα = Nψ = Nϕ and ψα ≤ ψ (that is, ψα ≺ ψ). Furthermore, we have,
for each a ∈ A and x ∈ Nϕ,

ψα(x∗a∗ax) = ||K 1
2
α H

1
2 πϕ(a)λϕ(x)||2

= ||πϕ∗(a)K
1
2
α H

1
2 λϕ(x)||2

(by 5.1)
≤ k2

a||K
1
2
α H

1
2 λϕ(x)||2

= k2
aψα(x∗x)

and

lim
α
ψα(x∗x) = lim

α

〈
KαH

1
2 λϕ(x), H

1
2 λϕ(x)

〉
=
〈
H

1
2 λϕ(x), H

1
2 λϕ(x)

〉
= ψ(x∗x),

which implies that ψ is approximately admissible. This completes the proof.

Lemma 5.4. Let ϕ be a regular approximately admissible quasi-weight on A such
that πϕ(A)′w is a von Neumann algebra. Then there exists a net {Eα}α∈Λ of mutu-
ally orthogonal projections in πϕ(A)′w such that

∑
α Eα = I and πϕ∗(a)Eα ∈ B(Hϕ)

for each a ∈ A and α ∈ Λ.

Proof. Let {Eα} be a maximal set of mutually orthogonal projections in πϕ(A)′w
such that πϕ∗(a)Eα ∈ B(Hϕ) for each a ∈ A and each α ∈ Λ. Suppose E =
I−∑αEα 6= 0. We put ϕE(x∗x) = 〈Eλϕ(x), λϕ(x)〉 , x ∈ Nϕ. By Lemma 5.3, ϕE is
an approximately admissible quasi-weight on A such that NϕE

= Nϕ and ϕE ≤ ϕ.
Hence there exists a non-zero admissible quasi-weight ψ on A such that ψ ≤ ϕE .
By Lemma 5.2, there exists K ∈ πϕ(A)′w such that 0 ≤ K ≤ I, πϕ∗(x)K

1
2 ∈ B(Hϕ)

and ψ(y∗x) = 〈Kλϕ(x), λϕ(y)〉, ∀x, y in Nϕ. Let K =
∫ 1

0
λdF (λ) be the spectral

resolution of K. Since K 6= 0, there exists a λ0 ∈ R, 0 < λ0 < 1, such that
F = I − F (λ0) 6= 0 and λ0F ≤ K. Since NϕF

= NϕK
= Nϕ, ϕF ≤ 1

λ0
ϕK = 1

λ0
ψ

and ψ is admissible, it follows from Lemma 5.3 that ϕF is admissible. Further, since
||Fλϕ(x)|| ≤ 1√

λ0
||Eλϕ(x)|| for all x ∈ Nϕ, we have F ≤ E. This contradicts the

maximality of {Eα}. Hence,
∑

αEα = I.
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Theorem 5.5. Let ϕ be a regular quasi-weight on P(Nϕ) in A such that
πϕ(A)′w D(πϕ) ⊂ D(πϕ). Then there exists a projection E in πϕ(A)′w such that
ϕE is approximately admissible and ϕI − E is strictly inadmissible. Further, E can
be taken as E =

∑
αEα, where {Eα} is a family of mutually orthogonal projections

in πϕ(A)′w such that each ϕEα is admissible.

Proof. Let {Eα} be a maximal set of mutually orthogonal projections in πϕ(A)′w
such that ϕEα is admissible for each α. Take E =

∑
αEα. Then ϕE is approxi-

mately admissible, and (as in Lemma 5.4) ϕI − E is strictly inadmissible.

Theorem 5.6. Let ϕ be a regular quasi-weight on P(Nϕ) in A. Then the following
are equivalent.

(1) ϕ is approximately admissible and πϕ(A)′wD(πϕ) ⊂ D(πϕ).
(2) πϕ =

∑⊕
α πα for some set {πα} of bounded operator representations of A.

Proof. (1) ⇒ (2) By Lemma 5.4 there exists a set {Eα} of mutually orthogonal
projections in πϕ(A)′w such that

∑
αEα = I and π∗ϕ(x)Eα ∈ B(Hϕ) for each x ∈ A.

For each α we put πα(x) = π∗ϕ(x)Eα, x ∈ A. It is easy to show that πα is a bounded
operator representation of A. For each ξ = (ξα) ∈ D(

∑⊕
πα) and x ∈ A we have

〈πϕ(x)∗η, ξ〉 =
∑

α 〈πϕ(x)∗η, Eαξ〉
=
∑

α 〈(πϕ(x)Eα)∗η, ξ〉
=
∑

α

〈
η, πϕ(x)Eαξ

〉
=
∑

α

〈
η, π∗ϕ(x)Eαξ

〉
= 〈η, πα(x)ξα〉

for each η ∈ D(πϕ(x)∗), which implies
∑⊕

πα ⊂ πϕ. Hence, we have π∗ϕ ⊂
(
∑⊕

πα)∗ =
∑⊕

πα ⊂ πϕ, which implies πϕ =
∑⊕

πα.
(2) ⇒ (1) This follows from Lemma 5.4.

Corollary 5.7. Let ϕ be a regular quasi-weight on A. The following statements
are equivalent.

(1) ϕ is approximately admissible and πϕ(A)′w is a von Neumann algebra.
(2) π̂ϕ =

∑⊕
πα for some set {πα} of bounded operator representations of A,

where π̂ϕ is the induced extension of πϕ [21, Section 8.5].

6. Examples and applications

6.1. Weight analogue of the Bochner-Weil-Raikov theorem: An applica-
tion to abelian harmonic analysis. Let A be a commutative Banach ∗-algebra.
Let ∆(A) denote its Gelfand space. Let Â = {ϕ ∈ ∆(A) : ϕ = ϕ∗} be its Hermit-
ian part. Here ϕ∗(x) = ϕ(x∗) (x ∈ A). The abstract Bochner-Weil-Raikov integral
representation theorem states that f is a representable positive linear functional
on A iff there exists a bounded positive regular Borel measure µ on Â such that
f(x) =

∫
Â x̂(χ)dµ(χ), x ∈ A → x̂ ∈ C0(∆(A)) being the Gelfand transform. The

following theorem, which is essentially a reformation of [13, Theorem 21], provides
a weight analogue of this. We call a quasi-weight ϕ on a ∗-algebraA non-degenerate
if πϕ is non-degenerate in the sense that [πϕ(A)λϕ(Nϕ)]− = Hϕ.
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Theorem 6.1.1. Let (A, || · ||) be a commutative Banach ∗-algebra (not necessarily
having identity). Let (ϕ,Nϕ) be a quasi-weight in A. Assume that ϕ is non-
degenerate. Then there exists a positive, not necessarily bounded, regular Borel
measure µ on Â such that the following hold:

(i) ϕ(x) =
∫
Â x̂(χ)dµ(χ) for all x ∈ P(Nϕ).

(ii) For all a, b in Nϕ and x ∈ A, âb̂ ∈ L1(µ) and

ϕ(b∗a) =
∫
Â
â(χ)b̂(χ)dµ(χ),

ϕ(b∗xa) =
∫
Â
â(χ)x̂(χ)b̂(χ)dµ(χ).

(iii) πϕ is unitarily equivalent to a subrepresentation of the representation M of
A on L2(µ) defined by (M(x)f)(χ) = x̂(χ)f(χ).

(iv) If D(ϕ) is dense in A, then µ satisfying the above is unique and πϕ is
unitarily equivalent to M .

Proof. By Proposition 3.8, ϕ is admissible, and since ϕ is non-degenerate, x →
πϕ(x) defines a non-degenerate bounded operator representation of A. By Stone’s
theorem ([13], Theorem 10.10) there exists a spectral measure E on Borel subsets
of Â such that for all x ∈ A, ξ, η in Hϕ,

〈πϕ(x)ξ, η〉 =
∫
Â
x̂(χ)dEξ,η(χ).

Let a ∈ Nϕ. Let µa be the Borel measure on Â defined by dµa = dEλϕ(a),λϕ(a).
Then, as in ([13], p.94), |â(χ)|2dµb(χ) = |b̂(χ)|2dµa(χ) for any a, b in Nϕ. Now let
f ∈ Cc(Â ). Choose a b ∈ A such that b̂(χ) 6= 0 for all χ ∈ suppf . This defines

µ(f) =
∫
suppf

f(χ)|b̂(χ)|−2dµb(χ),

and the above shows that f → µ(f) is a positive linear functional on Cc(Â ). Thus,
there exists a positive Borel measure µ on Â such that

µ(f) =
∫
Â
f(χ)dµ(χ).

Hence, for all a ∈ Nϕ, dµa(χ) = |â(χ)|2dµ(χ). By the boundedness of µa (a
consequence of the definition of spectral measure), (a∗a)̂ ∈ L1(µ) for all a ∈ Nϕ,

and ϕ(a∗a) = ||λϕ(a)||2 = µa(Â ) =
∫

(a∗a)̂(χ)dµ(χ). Since any product b∗a (a, b

in Nϕ) is a linear combination of elements of the form c∗c with c ∈ Nϕ, it follows
that b̂â ∈ L1(µ), and (ii) holds. This immediately gives (i) also. Then (iii) and (iv)
can be verified as in ([13], Theorem 21.6). Note that if D(ϕ) is dense in A, then
given any compact set K in Â, there exists b ∈ D(ϕ) such that b̂(χ) 6= 0 for each
χ ∈ K.

In what follows, we shall apply the above to the convolution Banach algebra
L1(G) of a locally compact abelian group G. The involution of L1(G) is f∗(g) =
f(−g) (g ∈ G), and ∆(L1(G)) ≈ Ĝ (the dual group of G) by the well known
identification, so that the Gelfand transform gets to be identified with Fourier
transform. Note that L1(G) is Hermitian, so that ∆(L1(G)) = L1(G)̂.
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(a) Let ϕ be a positive linear functional on L1(G). Then there exists a bounded
positive Borel measure ν on Ĝ such that

ϕ(f) =
∫
Ĝ

f̂(χ)dν(χ).

Corollary 6.1.2. Let (ϕ,Nϕ) be a non-degenerate quasi-weight in L1(G). Then
there exists a positive, not necessarily bounded, regular Borel measure ν on Ĝ such
that the following hold:

(i) For all f ∈ P(Nϕ), ϕ(f) =
∫
Ĝ

f̂(χ)dν(χ).

(ii) For all f, g ∈ Nϕ, f̂ ĝ ∈ L1(Ĝ, ν), and ϕ(f ∗ g∗) =
∫
Ĝ

f̂(χ)ĝ(χ)dν(χ).

(b) The extension of the concept of Fourier transform from integrable functions
to positive definite complex regular Borel measures on G is a standard part of
harmonic analysis. We can use the concept of weight to define the Fourier transform
of certain unbounded positive definite measures.

Let µ be a positive (not necessarily bounded) measure on G. Suppose µ is
positive definite, that is,

∫
G
f∗ ∗ fdµ ≥ 0 for each f ∈ L1(G). Then we define

a weight ϕ on L1(G) by ϕ(f) =
∫
Gfdµ. Assume that ϕ is non-degenerate. By

Corollary 6.1.2, there exists a regular positive measure µ̂ on Ĝ such that∫
G

(f ∗ h)(g)dµ(g) =
∫
Ĝ

f̂(χ)ĥ(χ)dµ̂(χ) (f, h ∈ Nϕ),

and ∫
G

fdµ =
∫
Ĝ

f̂dµ̂ f ∈ P(L1(G)).

This µ̂ may be called the Fourier transform of µ. This extends the considerations
of ([13], 2.7, p. 1011) to unbounded measures.

6.2. Integration algebras, measures and tracial weights.

Definition 6.2.1. An integration algebra (A, ∗, ϕ) consists of a ∗-algebraA having
involution ∗ and a weight ϕ on P(A) that is faithful in the sense that ϕ(x∗x) = 0
implies x = 0.

This can be regarded as a framework for (unbounded non-commutative) inte-
gration theory. Let (A, ∗, ϕ) be an integration algebra. Then Nϕ = {x ∈ A :
ϕ(x∗a∗ax) <∞, ∀a ∈ A} is equipped with the inner product 〈x, y〉 = ϕ(y∗x), Hϕ
is the Hilbert space completion of Nϕ, and πϕ is the closure of the left regular rep-
resentation π0 of A having D(π0) = Nϕ in Hϕ, π0(a)x = ax (a ∈ A, x ∈ Nϕ). We
discuss below the admissibility and approximate admissibility in some examples.

(A) Measures and integrals. Let (X,Σ, µ) be a σ-finite measure space with positive
measure µ. Let A be a ∗-algebra of µ-measurable functions on X . Then ϕ(f) =∫
X fdµ defines a weight on A.

(A1) Take A = M(X,µ), the set of all measurable functions. Then N0
ϕ =

L2(µ),Nϕ = {g ∈ M(X,µ) :
∫ |fg|2dµ < ∞ for all f ∈ M(X,µ)} = {o} if X is

atom free. The GNS-representation πϕ is trivial in this case. This is to be expected
in the light of the fact that when X is atom free, M(X,µ) admits no non-zero
positive linear functional.
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(A2) Let A = L∞loc(µ) = {f ∈ M(X,µ) : f is essentially bounded on every set
of finite measure }.
Claims. (i) ϕ is admissible iff µ is a finite measure,

(ii) ϕ is approximately admissible.

Proof. Let L∞c (µ) = {f ∈ L∞(µ) : f = 0 outside a set of finite measure}. Then
L∞c (µ) ⊂ Nϕ = {f ∈ L∞loc(µ) : af ∈ L2(µ) for all a ∈ L∞loc(µ)}, and since 1 ∈
L∞loc(µ),Nϕ ⊂ L2(µ). Thus L∞c (µ) ⊂ Nϕ ⊂ L2(µ). Further, Nϕ = {o}, D(ϕ) =
span Nϕ

∗Nϕ = L∞loc(µ) ∩ L1(µ). Since L∞c (µ) is dense in L2(µ), it follows that
Hϕ = L2(µ), and πϕ(a)f = af, ∀a ∈ L∞loc(µ), ∀f ∈ D(πϕ). Now let ϕ be admissible.
Then πϕ(a) ∈ B(L2(µ)), ∀a ∈ L∞loc(µ). Hence af ∈ L2(µ), ∀f ∈ L2(µ). Hence
a ∈ L∞(µ). Thus L∞loc(µ) = L∞(µ), showing that µ is finite. This proves (i).

Now choose An ∈ Σ, An↑, µ(An) < ∞ and X =
∞⋃
n=1

An. Then ϕn(f) =
∫
An

fdµ

defines an admissible positive linear functional on L∞loc(µ) such that ϕn ≤ ϕ and
ϕ = supϕn. This proves (ii).

(A3) Let X be a non-compact locally compact σ-compact space. Let ϕ be
a positive linear functional on Cc(X), hence given by a positive Radon measure
(locally finite) µ on X . Given h ≥ 0 in C(X), choose hn ∈ Cc(X), hn ↑ h. Then

ϕ(h) = limϕ(hn) = lim
n

∫
hndµ defines a faithful weight on C(X).

Claims. (i) ϕ is an admissible weight on C(X) iff ϕ extends as a (necessarily
admissible) positive linear functional on C(X) iff µ has compact support.

(ii) ϕ is approximately admissible.

This can be proved as in the previous case.

(B) Traces and integrals. Let D be a dense subspace in a separable Hilbert space H
and {ξn} an orthonormal basis of H contained in D. Let M be a closed O∗-algebra
on D with the identity operator I, and define a faithful (tracial) weight on P(M)
by

ϕ(X†X) =
∑
n

||Xξn||2 = tr X†X, X ∈M.

Then (M, ϕ) is an integration algebra. Let H⊗H (= C2(H)) be the ∗-algebra of all
Hilbert-Schmidt operators on H. Now Nϕ = {X ∈ M : AX ∈ H ⊗H, ∀A ∈ M},
an inner product space with 〈X,Y 〉 = tr Y †X ; let Hϕ be its completion in the
norm ||X ||2 ≡ (

∑
n ||Xξn||2)

1
2 . Then πϕ is the closure of π0, where π0(A)X =

AX (A ∈ M, X ∈ Nϕ). Now let (σ,D(σ),Hσ) be the ∗-representation of A defined
as:

Hσ = H⊗H regarded as Hilbert space,

D(σ) = {T ∈ H ⊗H ; TH ⊂ D and AT ∈ H⊗H, ∀A ∈ M },
σ(A)T = AT, A ∈M, T ∈ D(σ).

Then (σ,D(σ),Hσ) is a closed ∗-representation of A. Since I ∈ M, Nϕ ↪→ H⊗H
via X −→ X. Hence, Hϕ is regarded as a closed σ-invariant subspace of H ⊗H,
and πϕ is a ∗-subrepresentation of σ; in fact, πϕ ∼= [σdNϕ]−, the closure of the
restriction of σ on Nϕ. The following cases arise:
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(B1) Let M be an O∗-algebra such that Mb (≡ {X ∈ M : X ∈ B(H)}) = CI.
Then N0

ϕ ≡ {X ∈M;ϕ(X†X) <∞} = {0}.
(B2) Proposition 6.2.2. Let M be an O∗-algebra consisting of operators com-
muting with {ξn ⊗ ξn : n ∈ N}, where (ξ ⊗ η)ζ ≡ 〈ζ, η〉ξ (ξ, η, ζ ∈ H). Then ϕ is
approximately admissible.

Proof. We put

ϕn(X) = 〈Xξn, ξn〉, n ∈ N, X ∈M.

Then since

ϕn(X†A†AX) = ||AXξn||2
= ||AX(ξn ⊗ ξn)||22

= ||A(ξn ⊗ ξn)X ||22

= ||Aξn ⊗X†ξn||2
2

= ||Aξn||2||X†ξn||2
= ||Aξn||2||X†(ξn ⊗ ξn)||22

= ||Aξn||2||Xξn||2
= ||Aξn||2ϕn(X†X)

for all A,X ∈ M, it follows that ϕn is an admissible positive linear functional on
M and ϕ(X†X) =

∑
n ϕn(X

†X) for all X ∈M.

(B3) Proposition 6.2.3. Let M be a self-adjoint O∗-algebra on D. Suppose
M′

w = CI and πϕ is self-adjoint. Then the following statements hold:
(1) Either ϕ is admissible or ϕ is strictly inadmissible.
(2) ϕ is admissible iff M consists of bounded operators.

Proof. By [15, Lemma 5.3], σ is a self-adjoint representation of M, so that σ(M) ≡
{σ(A);A ∈M} is a self-adjoint O∗-algebra in H⊗H having domain D(σ). Further,

σ(M)′w = π′(B(H)) ≡ {π′(K) : K ∈ B(H)},
where π′(K)T = TK, T ∈ H ⊗ H. Since πϕ is a self-adjoint subrepresentation of
σ, by [23, Theorem 4.7] there exists a projection P = π′(K) ∈ σ(M)′w such that
πϕ(A) = σ(A)π′(K), A ∈ M, for some K ∈ B(H), and π′(K)T = π′(K)π′(K)T ,
∀T ∈ H ⊗H. Thus TK2ξ = TKξ, ∀T ∈ H ⊗H, ∀ξ ∈ H. Taking T = ξn ⊗ ξn, we
get

〈
K2ξ, ξn

〉
= 〈Kξ, ξn〉, ∀n ∈ N, and hence K2 = K. Similarly, K∗ = K. Thus

K is a projectoin. Now suppose ϕ is admissible. Then since σ(A)π′(K) is unitarily
equivalent to πϕ(A) for each A ∈ M, there exists a γ > 0 such that

||σ(A)π′(K)T ||22 = ||πϕ(A)T ||22 ≤ γ||T ||22

for all T ∈ H⊗H. Take T = ξ ⊗ η for an arbitrary ξ ∈ D and a non-zero η ∈ KH.
Suppose that ϕ is not strictly inadmissible. Then we have

|| η ||2||Aξ ||2 =
∑
n

||σ(A)π′(K)(ξ ⊗ η)ξn ||2

= ||σ(A)π′(K)(ξ ⊗ η) ||22

≤ γ|| ξ ⊗ η ||22

= γ|| ξ ||2|| η ||2,
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so that A is bounded. This proves (2). To prove (1), we show that if M contains
an unbounded operator, then ϕ is strictly inadmissible. Suppose that ϕ is not
strictly inadmissible. Then there exists an admissible quasi-weight ψ in M such
that ψ ≤ ϕ, i.e., Nϕ ⊂ Nψ and ψ(X†X) ≤ ϕ(X†X) for each X ∈ Nϕ. By Lemma
5.2 there exists K ∈ πϕ(M)′w such that 0 ≤ K ≤ I, πϕ∗(A)K

1
2 ∈ B(Hϕ), ∀A ∈ M,

and ψ(Y †X) = 〈Kλϕ(X), λϕ(Y )〉, X,Y ∈ Nϕ Let K =
∫ 1

0
λdF (λ) be the spectral

resolutions. Then there exist λ0 ∈ R, 0 < λ0 < 1, and F ≡ I − F (λ0) 6= 0 with
λ0F ≤ K. Define ϕF (X†X) = 〈Fλϕ(X), λϕ(X)〉, X ∈ Nϕ, a quasi-weight such
that NϕF = NϕK = Nϕ and ϕF ≤ 1

λ0
ϕK ≤ 1

λ0
ψ. Since ψ is admissible, ϕF is

admissible by Lemma 5.3. Now, as in the proof of (2), we can show that A is
bounded. This completes the proof.

(C) Weighted traces.
(C1) Let Ω ∈ H ⊗ H \ D(σ),Ω ≥ 0. Then a quasi-weight (ϕΩ,NϕΩ) is defined

in M by Ω as follows:

NϕΩ = {X ∈ M : ΩH ⊂ D(X†∗), X†∗Ω ∈ D(σ)},
ϕΩ(X†X) = tr((X†∗Ω)∗(X†∗Ω)), X ∈ NϕΩ .

If σ(NϕΩ) is dense in D(σ)[tσ(M)], then πϕΩ is unitarily equivalent to σ, in which
case ϕΩ is admissible iff M consists of bounded operators.

(C2) Let Ω be an unbounded positive self-adjoint operator in H. Suppose there
exists a subspace E of D ∩ D(Ω) such that

(i) E is dense in D[tM],
(ii) M⊃ {ξ ⊗ η : ξ, η ∈ E},
(iii) ΩE ⊂ D,ΩE is dense in H.

Let ϕΩ be the quasi-weight in M defined as

NϕΩ = {X ∈ M : X†∗Ω ∈ σ(M)},
ϕΩ(X†X) = tr((X†∗Ω)∗(X†∗Ω)), X ∈ NϕΩ .

Proposition 6.2.4. ϕΩ is a faithful quasi-weight. If M contains an unbounded
operator, then ϕΩ is strictly inadmissible.

Proof. Let {ξn} be an orthonormal basis in H contained in D(Ω). Then, 0 =
ϕΩ(X†X) =

∑
n ||X†∗Ωξn||2 implies that X†∗Ω = 0 on D(Ω). Since ΩE is dense in

H, it follows that X†∗ξ = 0 for all ξ ∈ D. Hence X = 0, and so ϕΩ is faithful. Now
under the stated conditions, NϕΩ

†∗Ω is dense in (D(σ), tσ(M)); hence πϕΩ ∼ σ.
Further, ϕΩ is regular [3]. Thus if ϕΩ is not strictly inadmissible, then σ admits a
non-trivial bounded subrepresentation, and so there exists a projection K in B(H)
such that ||σ(A)π′(K)T ||2 ≤ kA||π′(K)T ||2 for all T ∈ H ⊗ H. This implies that
each A ∈M is a bounded operator.

(D) Quasi-weights and O∗-algebra approach to statistical mechanics. We consider
the problem of handling the equilibrium states of an infinite system in the algebraic
approach. Let F be the collection of all bounded open subsets of R3. For V ∈ F , let
AV be the observable ∗-algebra related to the bounded region V . Depending on the
scheme under consideration, AV is either a C∗-algebra or an O∗-algebra, consisting
of operators in the Fock space HV for V . Let HV denote the Hamiltonian in V , a
self-adjoint operator in HV , written-down explicitly from quantum mechanics. The
Heisenberg dynamics in V is given by the one-parameter group of ∗-automorphisms
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t → αVt : AV → AV , αVt (A) = eitHV Ae−itHV . By the Gibbs postulate, the
equilibrium state for the finite subsystem in V is given by the formal expression

ωV (A) =
1

tr(e−βHV )
tr(e−βHV A) (A ∈ AV ).(i)

This requires e−βHV (β > 0) to be a trace class operator.
(a) When AV is a C∗-algebra, AV ⊂ B(HV ), then e−βHV A is of trace class for

all A ∈ AV . Thus (i) defines a normalized positive linear functional on AV . In the
abstract formalism, a normalized positive functional (on AV ) satisfying the KMS
condition with respect to t → αVt has been proposed as the desired equilibrium in
V .

(b) Suppose AV is an O∗-algebra. Then (i) can be interpreted as a quasi-weight
(ωV ,NωV ) in AV having

NωV = {X ∈ AV : tr(e−βHV X†A†AX) <∞ for all A ∈ AV },
and ωV (X†X) = tr(ρVX†X), ρV = e−βHV /tr(e−βHV ). In general, one takes
(ωV ,NωV ) to be any quasi-weight in AV satisfying the KMS condition with re-
spect to t → αVt . This interpretation is consistent with the general formalism
suggested in [3] that when the observable algebra is an O∗-algebra, the states are
better represented by quasi-weights. (Note that positive functionals are included
in quasi-weights).

Now the isotopy condition on the local net V → AV can be expressed by the
assumption that V1 ≤ V2 in F =⇒ AV1 ↪→ AV2 via an injective ∗-isomorphism
taking NωV1

↪→ NωV2
, and is implemented by an isometry HV1 ↪→ HV2 taking

Dom(AV1) ↪→ Dom(AV2). The O∗-algebra of local observales is Al =
⋃
V AV . Now

the passage to the infinite system (thermodynamic limit) LimV→∞ involves the
following problems.

(1) Existence of equilibrium given formally by LimV→∞ ωV (·) = ω(·) on Al.
(2) Existence of dynamics given formally by LimV→∞ αVt (·) = αt(·).

In principle, ω(·) describes equilibrium iff it satisfies the KMS condition with respect
to t→ αt(·). Now ω can be interpreted as quasi-weight (ω,Nω) in Al as

Nω = {X ∈ Al : Lim
V→∞

ωV (X†A†AX) exists and is finite for all A ∈ Al},

ω : P(Nω) → [0,∞), ω(X†X) = LimV→∞ ωV (X†X). We investigate below the
admissibility of ω.

Let (ϕV ,NϕV ) be a quasi-weight in AV defined as NϕV = Nω∩AV , ϕV (X†X) =
ωV (X†X).

Proposition 6.2.5. (1) Assume that (ϕV ,NϕV ) is admissible for all V and that
for each V0 ∈ F , supV≥V0

||πϕV (A)|| <∞ (A ∈ AV0). Then (ω,Nω) is admissible.
(2) Suppose (ω,Nω) is admissible. Further assume that V1 ≤ V2 implies ρV1 ≤

ρV2 . Then each ϕV is admissible, and for any V0 ∈ F , supV≥V0
||πϕV (A)|| <∞ for

all A ∈ AV0 .

Proof. (1) Let A ∈ A; hence A ∈ AV0 for some V0. Let X ∈ Nω. Choose V so
that A ∈ AV and X ∈ AV . Then

ωV (X†A†AX) = ϕV (X†A†AX)
≤ ||πϕV (A)||2ϕV (X†X)
≤ supV ′≥V0

||πϕV ′ (A)||2ωV (X†X),
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showing that ω is admissible, and, for any V ∈ F and A ∈ AV ,

||πω(A)|| ≤ sup
V ′≥V

||πϕV ′ (A)||.

(2) Let V ∈ F be fixed. Let X ∈ Nω ∩ AV . Then

ϕV (X†X) = ωV (X†X) = tr(ρVX†X) ≤ Lim
V→∞

tr(ρVX†X) = ω(X†X).

Suppose ω is admissible. By Lemma 5.3 ϕV is admissible, and ||πϕV (A)|| ≤
||πω(A)|| (A ∈ AV ). Thus supV ′≥V ||πϕV ′ (A)|| ≤ ||πω(A)|| (A ∈ AV ). This com-
pletes the proof.

Remark. The equilibrium state for (i) the BCS-Bogolubov model of superconductiv-
ity, as well as for (iii) interacting Boson models, can be described by quasi-weights
of form ϕΩ [3], and using Proposition 6.2.4, it follows that these quasi-weights are
strictly inadmissible.

6.3. Vector (quasi-) weights defined by ∗-representations. Let (π,D(π),H)
be a closed ∗-representation of a ∗-algebra A. Let ξ ∈ H. This defines a quasi-
weight fξ as follows:

Nfξ
= {x ∈ A : ξ ∈ D(π(x∗)∗), π(x∗)∗ξ ∈ D(π)},

fξ(x∗x) = ||π(x∗)∗ξ||2, x ∈ Nfξ
.

Then fξ is a quasi-weight on P(Nfξ
) in A and the GNS-representation πfξ

for fξ
is unitarily equivalent to the closure of πdπ(N∗

fξ
)∗ξ. In particular, if π(N∗

fξ
)∗ξ is

dense in (D(π), tπ), πfξ
is unitarily equivalent to π (denoted by πfξ

∼= π), and
so fξ is admissible iff π is a bounded operator representation. We investigate the
(approximately) admissibility and the strictly unadmissibility of fξ in the following
cases:

(A) Let A be the ∗-algebra consisting of polynomially dominated measurable
function on R+, i.e., f ∈ A iff f : R+ −→ C is a measurable function for which
there exists a polynomial p such that |f(t)| ≤ p(t), ∀t ∈ R+. Let H be a positive
self-adjoint operator in a Hilbert space H. Let (π,D(π),H) be the ∗-representation
of A , defined as D(π) = C∞(H) =

⋂∞
n=1D(Hn), π(f) = f(H)dC∞(H). As noted in

[14], π is a self-adjoint representation of A, and π(Nfξ
∗ )∗ξ is dense in (C∞(H), tπ)

by a consequence of the spectral theorem. Thus π ∼= πfξ
and fξ is admissible iff

H is a bounded operator. Suppose that fξ is regular. Now the self-adjointness of
H implies that C∞(H) contains a dense set of bounded vectors for H . Now each
bounded vector for H is a bounded vector for f(H), f ∈ A. It follows that when
H is unbounded, fξ is an approximately admissible, non-admissible quasi-weight.

(B) Let A be the unbounded CCR algebra of one degree of freedom. A is the
∗-algebra of polynomials generated by Hermitian generators p and q satisfying pq−
qp = −i1 . Let π0 be the Schrödinger representation of A defined on L2(R) having
the domain D(π) = S(R). (Schwartz space of rapidly decreasing C∞-functions on
R) as π0(p)f = −i dfdt , (π0(q)f)(t) = tf(t). Then π0 is self-adjoint, faithful and
irreducible (i.e. π0(A)′w = CI).

Now let (fn) be normalized Hermite functions in S(R). The number operator N
having domain D(N) = S(R) is defined as N =

∑∞
n=0(n+ 1)fn⊗ fn. Let K be the

∗-algebra of polynomially dominated continuous function on R+ viz. f ∈ C(R+)
and there exists a polynomial p such that |f(t)| ≤ p(t), ∀t. Let B be the ∗-algebra
generated by A and K. Define a representation π of B having domain S(R) in the
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Hilbert space L2(R) by π(z) = π0(z) if z ∈ A, π(z) = f(z) if z = f ∈ K. Then π is
self-adjoint and π(Nfξ

∗ )ξ is dense in S(R). Thus πfξ
∼= π. Since π is not bounded

and irreducible, it follows from Lemma 5.2 that fξ is strictly inadmissible for each
non-zero ξ ∈ L2(R).

6.4. Point evaluations. Let X be a non-compact completely regular Hausdorff
space. Let C(X) be the algebra of all continuous complex functions on X . Let
Cb(X) = {f ∈ C(X) : f is bounded}. All non-zero multiplicative functionals on
C(X) (resp. on Cb(X)) are given, via point evaluations, by points of the Hewitt
real compactification νX (resp. the Stone-Cech compactification βX). Let A be a
∗-subalgebra of C(X) containing Cb(X). Let x ∈ βX \ νX . Given f ∈ A, f ≥ 0,
there exist fn ≥ 0 in Cb(X) such that fn ↑ f . Then ϕ(f) = lim

n
fn(x) = sup

n
fn(x)

defines a weight in A. It is easy to check that πϕ is the 1-dimensional representation
defined by the evaluation x̂ at x. Thus ϕ is admissible.

6.5. Weights on smooth subalgebras of a C∗-algebra. Let A be a C∗-algebra
with identity 1 . A ∗-subalgebra B of A with 1 ∈ B is smooth if it satisfies the
following:

(i) B is a complete locally convex ∗-algebra with a topology t.
(ii) B is dense in A and the induction (B, t) −→ (A, || · ||) is continuous.
(iii) B is spectrally invariant in A.

Proposition 6.5.1. Let B be a smooth subalgebra of a C∗-algebra A. Let ϕ be a
quasi-weight on P (Nϕ) in B. The following statements hold:

(i) ϕ is admissible, and the bounded ∗-representation πϕ of B can be uniquely
extended to a bounded ∗-representation π̃ϕ of A on Hϕ.

(ii) If ϕ̇ is continous on D(ϕ), ϕ can be extended to a quasi-weight ϕ̃ on P(Nϕ),
where Nϕ is the closure of Nϕ in (A, || · ||).
Proof. For any x ∈ B, spA(x) = spB(x). This gives the spectral radius r(x) ≤ ||x ||,
showing that (B, || · ||) and hence (B, t) are Q-algebras. Let ϕ be a quasi-weight on
P (Nϕ) in B. By Theorems 4.2 and 3.12, ϕ is admissible and the GNS-representation
πϕ is a bounded operator representation. Since (B, || · ||) is a Q-algebra, πϕ : (B, ||·||)
−→ B(Hϕ) is continuous, hence extends to a ∗-homomorphism π̃ϕ : (A, || · ||) −→
B(Hϕ). Assume that ϕ̇ is continuous on D(ϕ). Now, Nϕ being a proper left ideal of
B, it contains no invertible element of B. As B is inverse closed in its completion A,
Nϕ contains no invertible element of A. Thus 1 6∈ Nϕ and Nϕ is a proper left ideal
of A. Let x ∈ Nϕ. Then x∗x ∈ P(Nϕ), and there exists a sequence {xn} in Nϕ

such that xn → x. Then x∗nxn ∈ Nϕ
∗Nϕ and x∗nxn → x∗x. Thus {x∗nxn} is || · ||-

bounded; hence by assumption the sequence {ϕ(x∗nxn)} ∈ l∞. Let ω denote any
positive linear functional on l∞ vanishing on C0 ≡ {{αn} ⊂ C : Limn→∞ αn = 0}
and ω({α}) = α (α ∈ C). Define ϕ̃ : P(Nϕ) → [0,∞) by ϕ̃(x∗x) = ω({ϕ(x∗nxn)}).
Note that ϕ̃ is well-defined. Indeed, let there be sequences {xn} and {yn} in Nϕ

such that xn → x and yn → x. Then an ≡ y∗nyn−x∗nxn ∈ D(ϕ) and an → 0. By the
assumption ϕ̇(an) → 0; hence ω({ϕ̇(an)}) = 0. Then ϕ(y∗nyn) = ϕ̇(an) + ϕ(x∗nxn)
gives ω({ϕ(y∗nyn)}) = ω({ϕ(x∗nxn)}), which shows that ϕ̃ is well-defined. Now
let z ∈ P(Nϕ), z =

∑
i x
∗
i xi, a finite sum with each xi ∈ Nϕ. Choose x(n)

i ∈
Nϕ such that x(n)

i → xi. Then zn ≡
∑

i x
(n)
i

∗
x

(n)
i ∈ P(Nϕ) → z, and ϕ(zn) =∑

i ϕ(x(n)
i

∗
x

(n)
i ). Hence ϕ̃(z) = ω({ϕ(zn)}) =

∑
i ω({ϕ(x(n)

i

∗
x

(n)
i )}) =

∑
i ϕ̃(x∗i xi),
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and so ϕ̃ is a quasi-weight on P(Nϕ). Finally, let x ∈ Nϕ and xn = x, n ∈ N.
Then ϕ̃(x∗x) = ω({ϕ(x∗nxn)}) = ϕ(x∗x), and hence ϕ̃ is an extension of ϕ. This
completes the proof.

Corollary 6.5.2. Let A and B be as above.
(1) Every positive linear functional f of B can be uniquely extended to a positive

linear functional f̃ on A. Further, if f is extreme, then f̃ is also extreme.
(2) Let A be commutative. Then the Gelfand spaces ∆(B) and ∆(A) are home-

omorphic.

When A = C(M),B = C∞(M) for a compact manifold M , the above recaptures
the well-known facts that every positive distribution on M is a measure and that
∆(C∞(M)) = M .

The above proposition also applies to the Fréchet ∗-algebra A∞ of C∞-elements
of a C∗-algebra A determined by an action of a Lie group G.

6.6. Quasi-weights in non-commutative geometry. We construct quasi-
weights that arise naturally in the Connes theory of non-commutative geometry
and discuss their admissibility. The basic formalism of non-commutative geometry
is as follows:

LetA be a non-commutative ∗-algebra with identity representing “a non-commu-
tative geometric space”. The algebra of non-commutative differential forms over
A is the ∗-algebra Ω(A) generated by elements a ∈ A, of degree 0 and elements
da, a ∈ A, of degree 1 satisfying the relations d(a + b) = da + db, d(λa) = λda (λ
a scalar), d(ab) = adb + (da)b. Then Ω(A) =

⊕∞
n=0 Ωn(A) defines a gradation in

Ω(A), where

Ω0(A) = A,
Ωn(A) =

{
α =

∑
j

a0
jda

1
j · · · danj : aij ∈ A

}
,

the vector space consisting of differential forms of degree n. One takes (da)∗ = −da∗
and d(a0 da1 · · · dan) = da0da1 · · ·dan. The differentiable structure on A is imposed
by the presence of a K-cycle or a spectral triple (π,H, D) defined by the following
data:

(i) H is a separable Hilbert space.
(ii) π : A → B(H) is a faithful ∗-representation of A into bounded operators on

H.
(iii) D is a self-adjoint operator in H satisfying

(iii)1 {a ∈ A : [D, π(a)] is bounded} = A,
(iii)2 D has a compact resolvent so that for all λ 6∈ spD, (λI − D)−1 is a

compact operator.

Now the representation π of A can be extended as a ∗-representation π : Ω(A) →
B(H) by

π(a0da1 · · · dan) = π(a0)[D, π(a1)][D, π(a2)] · · · [D, π(an)].

Now let K(H) denote the ideal of compact operators. For T ∈ K(H), let |T | =
(T ∗T )

1
2 . Let {ξn} be an orthonormal basis in H. Let {µn(T )} denote the eigen-

values of |T | arranged in decreasing order, counted according to multiplicities. Let



4652 S. J. BHATT, A. INOUE, AND H. OGI

σN (T ) =
∑N−1

n=0 µn(T ). Then µn(T ) → 0, which motivates calling compact op-
erators the non-commutative infinitesimals (in representation in B(H)). Then in-
finitesimals of order α constitute the two sided ideal

Kα(H) = {T ∈ B(H) : µn(T ) = O(n−α) as n→∞}
in B(H).

(A) Dixmier trace. Clearly, we have

C1+(H) ≡ {T ∈ K(H) : σN (T ) = O(logN) as N →∞}
⊃ K1(H) = {T ∈ K(H) : µn(T ) = O

(
1
n

)
as n→∞}

⊃ K1+(H) (infinitesimals of order > 1)

≡ {T ∈ K(H) : µn(T ) = o

(
1
n

)
as n→∞}

= {T ∈ K(H) : ∃ε > 0 s.t. µn(T ) = O

(
1

n1 + ε

)
as n→∞}

⊂ C1(H) ≡ {T ∈ K(H);
∞∑
n=0

µn(T ) <∞}
(trace class operators).

Let ω be the generalized limit (Banach limit) on l∞(N), that is, a translation
invariant positive linear functional on l∞(N) vanishing on C0(N). For T ≥ 0 in
C1+

(H), let

Trω(T ) ≡ ω
({

σN (T )
logN

})
≡ τω(T )
≡ Limω

N→∞
σN (T )
logN

(Limω indicates that the limit is defined in some kind of Cesáro mean). Then Trω
defines a tracial linear functional on C1+

(H) vanishing on K1+(H) which extends
to B(H) as a trace by taking σN (T ) =

∑N
n=0 〈|T |ξn, ξn〉 . This Trω is called the

Dixmier trace. Now we define a quasi-weight (τω,Nτω) in Ω(A) by taking{
Nτω = {a ∈ Ω(A) : π(a) ∈ C1+(H)},
τω(a∗a) = Trω(π(a)∗π(a)), a ∈ Nτω .

Proposition 6.6.1. τω is an admissible quasi-weight in Ω(A), and if a ∈ Ω(A) is
such that π(a) is compact and measurable, then

τω(a) = lim
λ→∞

1
logλ

∫ λ

0

du

u

1
log u

· inf
{
||X ||1 + u||Y ||; X ∈ C1(H), Y ∈ B(H)

X + Y = π(a)

}
,

where ||X ||1 = tr(|X |).
The following expression for Trω is discussed in [10]. For T ∈ K(H), λ > 0, let

σλ(T ) = inf{||X ||1 + λ||Y || : X ∈ C1(H), Y ∈ B(H) with X + Y = T }.
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For λ ∈ N, σλ(T ) coincides with
∑N−1
n=0 µn(T ). Let

τλ(T ) =
1

logλ

∫ λ

0

σu(T )
log u

du

u
.

Then Trω(T ) = limω
λ→∞

τλ(T ) (=any limit point of τλ(T )), and T is measurable if τλ(T )

is convergent when λ→∞. In this case, Trω(T ) = limλ→∞τλ(T ) independently of
ω.

Proof. Let a ∈ Ω(A), x ∈ Nτω . Then

τω(x∗a∗ax) = Trω (π(x)∗π(a)∗π(a)π(x))
= Trω (π(a)∗π(a)π(x)π(x)∗)
≤ ||π(a)||2 Trω(π(x)π(x)∗) (by [9])
= ||π(a)||2 Trω(π(x)∗π(x))
= ||π(a)||2 τω(x∗x).

The remaining part follows from [10, p.6212].

Remark 6.6.2. Let M be an O∗-algebra on a dense subspace D in a Hilbert space
H. Then a quasi-weight (ϕ,Nϕ) is defined in M by taking{

Nϕ = {X ∈M : (X†A†AX) ∈ C1+(H) for all A ∈M},
ϕ(X†X) = Trω(X†X), X ∈ Nϕ.

(B) The d-dimensional volume integral. Following [10, p.6219], the spectral triple
(π,H, D) is of dimension d if |D|−1 is an infinitesimal of order 1

d . In this case,
the sequence

{
σn(|D|−d)/ logn

}
is bounded, and the K-cycle is also called d+-

summable. For a d+-summable cycle, the quantity ϕ(a) ≡ Trω(|D|−dψ(a)), a ∈
Ω(A), defines a positive linear functional on Ω(A) whose restriction to A is a trace
[9, Theorem 1.3]. Following [10, p.6219], ϕdA is an analogue of the volume integral,
denoted by

ϕ(a) = Trω(π(a)|D|−d) = Trω(|D|−dπ(a)).

In the general case, this defines a quasi-weight in A as follows:

Nϕ ≡ {x ∈ A : Trω(|D|−dπ(x∗a∗ax)) <∞ for each a ∈ A}
= {x ∈ A : |D|−dπ(x∗a∗ax)) ∈ C1+(H) for each a ∈ A},

ϕ(x) ≡ Trω(|D|−dπ(x))
= Trω(π(x)|D|−d)
= ω

({
σn(|D|−dπ(x))/ log n

})
= ω

({∑n−1
k=0

∥∥∥π(x)|D|− d
2 ξk

∥∥∥2

/ logn
})

.
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Now let a ∈ A, x ∈ Nϕ. Then

ϕ(x∗a∗ax) = Trω(π(x∗a∗ax)|D|−d)
= Trω(π(a∗a)π(x)|D|− d

2 |D|− d
2 π(x∗)) (by [9, p.182])

= Trω

(
|π(a)|2

∣∣∣|D|− d
2 π(x)∗

∣∣∣2)
≤ ||π(a)||2 Trω

(∣∣∣|D|− d
2 π(x)∗

∣∣∣2) (by [9, p.184])

= ||π(a)||2 Trω(π(x∗x)|D|−d)
= ||π(a)||2ϕ(x∗x).

Hence we have the following.

Proposition 6.6.3. The d-dimensional volume integral ϕ on A defines an admis-
sible quasi-weight. Further, ϕ is finite if and only if the K-cycle is d+-summable.

Remark 6.6.4. The formula

ϕ(a0da1 · · · dan) = inTrω
(|D|−dπ(a0)[D, π(a1)][D, π(a2)] · · · [D, π(an)]

)
defines a quasi-weight in Ω(A). We do not know whether it is admissible or not.
The hypertrace property of X → Trω(|D|−dX) on π(A) used above is no longer
available on π(Ω(A)) [9, p.184].

(C) The infinite dimensional case. Motivated by [8, p.6259], consider the quasi-
weight (ψ,Nψ) in Ω(A) defined by the following data:

Nψ =

x ∈ Ω(A) :

∀a ∈ Ω(A), π(x∗a∗ax)e−εD
2

is trace class
operator for all sufficiently small ε, and
{tr(π(x∗a∗ax)e−εD

2
)} ∈ l∞(N), ε = 1

n ,
n ∈ N

 ,

ψ(x∗x) ≡ ω({tr(π(x∗x)e−εD
2
)}ε)

= Lim
ω
ε→0

tr(π(x∗x)e−εD
2
)

= Lim
ω
ε→0

∞∑
n=1

||π(x)e−
ε
2D

2
ξn ||2

= Lim
ω
ε→0

||π(x)e−
ε
2D

2 ||2
2
, x ∈ Nψ,

where Limω
ε→0

indicates the limit in suitable Cesáro mean and tr denotes the usual

trace in B(H).

Proposition 6.6.5. The quasi-weight ψ in Ω(A) is admissible. Further, ψ is finite
if and only if the K-cycle is θ-summable.

Recall that the K-cycle (π,H,D) is θ-summable if e−εD
2

is a trace class operator
for all ε > 0. This θ-summability provides a tractable class of infinite dimmensional
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K-cycles, being a kind of compactness condition [8, p. 6258]; and it defines an
integral on Ω(A) as ∫

−α = Lim
ω
ε→0

tr(π(α)e−εD
2
)

tr(e−εD2)
.

Proof. Let x ∈ Nϕ, a ∈ Ω(A). Then, for any ε > 0,

tr(π(x∗a∗ax)e−εD
2
) = ||π(ax)e−

ε
2D

2 ||2
2

≤ ||π(a) ||2||π(x)e−
ε
2D

2 ||2
2

= ||π(a) ||2tr(π(x∗x)e−εD
2
).

The sequences {δε = tr(π(x∗a∗ax)e−εD
2
)}ε and {ηε = tr(π(x∗x)e−εD

2
)}ε are in

l∞, and 0 ≤ δε ≤ ||π(a)||2ηε. Now, ω being a positive linear functional on l∞, it
follows that ω({δε}) ≤ ||π(a)||2ω({ηε}). This gives

ψ(x∗a∗ax) ≤ ||π(a)||2ψ(x∗x).

(D) The integral
∫
−f(a)|da|p (p > 0). Let a ∈ A identify with π(a), assumed to be a

self-adjoint operator in B(H). Let F = D|D|−1. Following [10, p. 6219], da ≡ [F, a]
is a compact operator by the definition of spectral triple. Then |da|p = |[F, a]|p
makes sense in B(H). The spectral theorem defines f(a) in B(H) for each f ∈ C0(R).

The integral
∫
−f(a)|da|p = Trω(f(a)|da|p) defines a quasi-weight ϕ in C0(R) as

follows:

Nϕ = {f ∈ C0(R) : f(a)| da |p ∈ C1+(H)},
ϕ(f) =

∫
−f(a)| da |p = Trω(f(a)| da |p), f ≥ 0 in Nϕ.

Since a is a bounded operator, ϕ turns out to be an admissible quasi-weight in
C0(R).
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